The detection and refocus of moving targets in SAR imagery is of interest in a number of applications. In this paper the authors address the problem of refocusing a blurred signature that has by some means been identified as a moving target. They assume that the target vehicle velocity is constant, i.e., the motion is in a straight line with constant speed. The refocus is accomplished by application of a two-dimensional phase function to the phase history data obtained via Fourier transformation of an image chip that contains the blurred moving target data. By considering separately the phase effects ofmore » the range and cross-range components of the target velocity vector, they show how the appropriate phase correction term can be derived as a two-parameter function. They then show a procedure for estimating the two parameters, so that the blurred signature can be automatically refocused. The algorithm utilizes optimization of an image domain contrast metric. They present results of refocusing moving targets in real SAR imagery by this method.« less
In this paper we describe a new method for creating three-dimensional images using pairs of synthetic aperture radar (SAR) images obtained from a unique collection geometry. This collection mode involves synthetic apertures that have a common center. In this sense the illumination directions for the two SAR images are the same, while the slant planes are at different spatial orientations. The slant plane orientations give rise to cross-range layover (fore-shortening) components in the two images that are of equal magnitude but opposite directions. This differential cross-range layover is therefore proportional to the elevation of a given target, which is completelymore » analogous to the situation in stereo optical imaging, wherein two film planes (corresponding to the two slant planes) result in elevation-dependent parallax. Because the two SAR collections are coherent in this particular collection mode, the images have the same speckle patterns throughout. As a result, the images may be placed into stereo correspondence via calculation of correlations between micro-patches of the complex image data. The resulting computed digital stereo elevation map can be quite accurate. Alternatively, an analog anaglyph can be displayed for 3-D viewing, avoiding the necessity of the stereo correspondence calculation.« less
In a typical interferometric synthetic aperture radar (IFSAR) system employed for terrain elevation mapping, terrain height is estimated from phase difference data obtained from two phase centers separated spatially in the cross-track direction. In this paper we show how the judicious design of a three phase center IFSAR renders phase unwrapping, i.e., the process of estimating true continuous phases from principal values of phase (wrapped modulo 2{pi}), a much simpler process than that inherent in traditional algorithms. With three phase centers, one IFSAR baseline can be chosen to be relatively small (two of the phase centers close together) so thatmore » all of the scene`s terrain relief causes less than one cycle of phase difference. This allows computation of a coarse height map without use of any form of phase unwrapping. The cycle number ambiguities in the phase data derived from the other baseline, chosen to be relatively large (two of the phase centers far apart), can then be resolved by reference to the heights computed from the small baseline data. This basic concept of combining phase data from one small and one large baseline to accomplish phase unwrapping has been previously employed in other interferometric problems, e.g., laser interferometry and direction-of-arrival determination from multiple element arrays, The new algorithm is shown to possess a certain form of immunity to corrupted interferometric phase data that is not inherent in traditional two-dimensional path-following phase unwrappers. This is because path-following algorithms must estimate, either implicity or explicity, those portions of the IFSAR fringe data where discontinuities in phase occur. Such discontinuties typically arise from noisy phase measurements derived from low radar return areas of the SAR imagery, e.g., shadows, or from areas of steep terrain slope.« less
In this paper we take a new look at the tomographic formulation of spotlight mode synthetic aperture radar (SAR), so as to include the case of targets having three-dimensional structure. This bridges the work of David C. Munson and his colleagues, who first described SAR in terms of two-dimensional tomography, with Jack Walker`s original derivation of spotlight mode SAR imaging via Doppler analysis. The main result is to demonstrate that the demodulated radar return data from a spotlight mode collection represent a certain set of samples of the three-dimensional Fourier transform of the target reflectivity function, and to do somore » using tomographic principles instead of traditional Doppler arguments. We then show that the tomographic approach is useful in interpreting the two-dimensional SAR image of a three-dimensional scene. In particular, the well-known SAR imaging phenomenon commonly referred to as layover is easily explained in terms of tomographic projection. 4 refs.« less
In this paper we take a new look at the tomographic formulation of spotlight mode synthetic aperture radar (SAR), so as to include the case of targets having three-dimensional structure. This bridges the work of David C. Munson and his colleagues, who first described SAR in terms of two-dimensional tomography, with Jack Walker's original derivation of spotlight mode SAR imaging via Doppler analysis. The main result is to demonstrate that the demodulated radar return data from a spotlight mode collection represent a certain set of samples of the three-dimensional Fourier transform of the target reflectivity function, and to do somore » using tomographic principles instead of traditional Doppler arguments. We then show that the tomographic approach is useful in interpreting the two-dimensional SAR image of a three-dimensional scene. In particular, the well-known SAR imaging phenomenon commonly referred to as layover is easily explained in terms of tomographic projection. 4 refs.« less
In this paper, the authors introduce a general formulation for wavefront curvature correction in spotlight-mode SAR images formed using the polar-formatting algorithm (PFA). This correction is achieved through the use of an efficient, image domain space-variant filter which is applied as a post-processing step to PFA. Wavefront curvature defocus effects occur in certain SAR collection modes that include imaging at close range, using low center frequency, and/or imaging very large scenes. The formulation is general in that it corrects for wavefront curvature in roadside as well as squinted collection modes, with no computational penalty for correcting squint-mode images. Algorithms suchmore » as the range migration technique (also known as seismic migration), and a recent enhancement known as frequency domain replication, FReD, have been developed to accommodate these wavefront curvature effects. However, they exhibit no clear computational advantage over space-variant post-filtering in conjunction with polar formatting (PF2). This paper will present the basic concepts of the formulation, and will provide computer results demonstrating the capabilities of space-variant post-filtering.« less
Wavefront curvature defocus effects can occur in spotlight-mode SAR imagery when reconstructed via the well-known polar formatting algorithm (PFA) under certain scenarios that include imaging at close range, use of very low center frequency, and/or imaging of very large scenes. The range migration algorithm (RMA), also known as seismic migration, was developed to accommodate these wavefront curvature effects. However, the along-track upsampling of the phase history data required of the original version of range migration can in certain instances represent a major computational burden. A more recent version of migration processing, the Frequency Domain Replication and Downsampling (FReD) algorithm, obviatesmore » the need to upsample, and is accordingly more efficient. In this paper the authors demonstrate that the combination of traditional polar formatting with appropriate space-variant post-filtering for refocus can be as efficient or even more efficient than FReD under some imaging conditions, as demonstrated by the computer-simulated results in this paper. The post-filter can be pre-calculated from a theoretical derivation of the curvature effect. The conclusion is that the new polar formatting with post filtering algorithm (PF2) should be considered as a viable candidate for a spotlight-mode image formation processor when curvature effects are present.« less
In this report, we employ an approach quite different from any previous work; we show that a new methodology leads to a simpler and clearer understanding of the fundamental principles of SAR interferometry. This methodology also allows implementation of an important collection mode that has not been demonstrated to date. Specifically, we introduce the following six new concepts for the processing of interferometric SAR (INSAR) data: (1) processing using spotlight mode SAR imaging (allowing ultra-high resolution), as opposed to conventional strip-mapping techniques; (2) derivation of the collection geometry constraints required to avoid decorrelation effects in two-pass INSAR; (3) derivation ofmore » maximum likelihood estimators for phase difference and the change parameter employed in interferometric change detection (ICD); (4) processing for the two-pass case wherein the platform ground tracks make a large crossing angle; (5) a robust least-squares method for two-dimensional phase unwrapping formulated as a solution to Poisson`s equation, instead of using traditional path-following techniques; and (6) the existence of a simple linear scale factor that relates phase differences between two SAR images to terrain height. We show both theoretical analysis, as well as numerous examples that employ real SAR collections to demonstrate the innovations listed above.« less
The need arises in certain vehicular surveillance applications for an electronic imager that can perform without human interaction and can transmit definitive images over very low bandwidth channels. The investigators have found that line scan imagers offer particular advantages toward these ends. Specifically, the use of a line scan imager facilitates the following processing steps: (1) segmentation of the vehicle from the background, (2) automatic exposure control, (3) light level equalization prior to quantization, and (4) implementation of an adaptive sampling scheme. These processing steps together with the source encoder may be implemented on a relatively low throughput processor andmore » achieve near real time operation. The specific encoding method used here is an extended differential pulse code modulation (DPCM). A prototype system has been developed, producing medium resolution images at less than 10K bits per frame.« less