skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. A model of the saturation of coupled electron and ion scale gyrokinetic turbulence

    A new paradigm of zonal flow mixing as the mechanism by which zonal E × B fluctuations impact the saturation of gyrokinetic turbulence has recently been deduced from the nonlinear 2D spectrum of electric potential fluctuations in gyrokinetic simulations. These state of the art simulations span the physical scales of both ion and electron turbulence. It was found that the zonal flow mixing rate, rather than zonal flow shearing rate, competes with linear growth at both electron and ion scales. A model for saturation of the turbulence by the zonal flow mixing was developed and applied to the quasilinear trappedmore » gyro-Landau fluid transport model (TGLF). The first validation tests of the new saturation model are reported in this paper with data from L-mode and high-β p regime discharges from the DIII-D tokamak. Lastly, the shortfall in the predicted L-mode edge electron energy transport is improved with the new saturation model for these discharges but additional multiscale simulations are required in order to verify the safety factor and collisionality dependencies found in the modeling.« less
  2. The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence

    The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the zonal (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the zonal ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the thresholdmore » for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the zonal flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. Finally, the zonal flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by zonal flows in ionscale gyrokinetic simulations.« less
  3. Research, Development and Demonstration of Peak Load Reduction on Distribution Feeders Using Distributed Energy Resources for the City of Fort Collins

    This project titled “Research, Development and Demonstration of Peak Load Reduction on Distribution Feeders Using Distributed Energy Resources for the City of Fort Collins” evolved in response to the Department of Energy’s (DOE) Funding Opportunity Announcement (FOA) Number DE-PS26-07NT43119. Also referred to as the Fort Collins Renewable and Distributed System Integration (RDSI) Project, the effort was undertaken by a diverse group of local government, higher education and business organizations; and was driven by three overarching goals: I. Fulfill the requirements of the DOE FOA’s Area of Interest 2: Renewable and Distributed System Integration; most notably, to demonstrate the ability tomore » reduce electric system distribution feeder peak load by 15% or more through the coordinated use of Distributed Energy Resources (DER). II. Advance the expertise, technologies and infrastructure necessary to support the long term vision of the Fort Collins Zero Energy District (FortZED) and move towards creating a zero energy district in the Fort Collins “Old Town” area. III. Further the goals of the City of Fort Collins Energy Policy, including the development of a Smart Grid-enabled distribution system in Fort Collins, expanded use of renewable energy, increased energy conservation, and peak load reduction. Through the collaborative efforts of the partner organizations, the Fort Collins RDSI project was successful in achieving all three of these goals. This report is organized into two distinct sections corresponding to the two phases of the project: • Part 1: Feeder Peak Load Reduction and the FortZED Initiative. • Part 2: Forming and Operating Utility Microgrids and Managing Load and Production Variability The original project scope addressed the Part 1 feeder peak load reduction. That work took place from 2009 through 2011 and was largely complete when the project scope was amended to include a demonstration of microgrid operations. While leveraging the assets, partner relationships, and lessons learned from Part 1, Part 2 was managed and executed as a distinct and substantially independent sub-project during the spring and summer of 2013. Both Parts 1 and 2 of the overall RDSI project can be viewed as cohesive stand-alone bodies of work and are presented as such within this report. In addition to the narratives, this document includes two Appendices that were compiled to supplement information about the various aspects of activities performed during Parts 1 and 2 of the project. Moreover, these Appendices are organized (as outlined below) so as to directly relate to the narratives in Part 1 and 2 of this report. • Appendix - Part 1: describes the roles of each project participant in regards to the feeder peak load reduction effort, and • Appendix - Part 2: deals with the microgrid research/demonstration.« less
  4. Fusion Energy Sciences Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Fusion Energy Sciences, January 27-29, 2016, Gaithersburg, Maryland

    The additional computing power offered by the planned exascale facilities could be transformational across the spectrum of plasma and fusion research — provided that the new architectures can be efficiently applied to our problem space. The collaboration that will be required to succeed should be viewed as an opportunity to identify and exploit cross-disciplinary synergies. To assess the opportunities and requirements as part of the development of an overall strategy for computing in the exascale era, the Exascale Requirements Review meeting of the Fusion Energy Sciences (FES) community was convened January 27–29, 2016, with participation from a broad range ofmore » fusion and plasma scientists, specialists in applied mathematics and computer science, and representatives from the U.S. Department of Energy (DOE) and its major computing facilities. This report is a summary of that meeting and the preparatory activities for it and includes a wealth of detail to support the findings. Technical opportunities, requirements, and challenges are detailed in this report (and in the recent report on the Workshop on Integrated Simulation). Science applications are described, along with mathematical and computational enabling technologies. Also see for more information.« less

Search for:
All Records
Creator / Author
"Howard, Nathan"

Refine by:
Resource Type
Creator / Author
Research Organization