skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Frequency-feedback cavity enhanced spectrometer

    A spectrometer comprising an optical cavity, a light source capable of producing light at one or more wavelengths transmitted by the cavity and with the light directed at the cavity, a detector and optics positioned to collect light transmitted by the cavity, feedback electronics causing oscillation of amplitude of the optical signal on the detector at a frequency that depends on cavity losses, and a sensor measuring the oscillation frequency to determine the cavity losses.
  2. Portable nitrous oxide sensor for understanding agricultural and soil emissions

    Nitrous oxide (N2O) is the third most important greenhouse gas (GHG,) with an atmospheric lifetime of ~114 years and a global warming impact ~300 times greater than that of carbon dioxide. The main cause of nitrous oxide’s atmospheric increase is anthropogenic emissions, and over 80% of the current global anthropogenic flux is related to agriculture, including associated land-use change. An accurate assessment of N2O emissions from agriculture is vital not only for understanding the global N2O balance and its impact on climate but also for designing crop systems with lower GHG emissions. Such assessments are currently hampered by the lackmore » of instrumentation and methodologies to measure ecosystem-level fluxes at appropriate spatial and temporal scales. Southwest Sciences and Princeton University are developing and testing new open-path eddy covariance instrumentation for continuous and fast (10 Hz) measurement of nitrous oxide emissions. An important advance, now being implemented, is the use of new mid-infrared laser sources that enable the development of exceptionally low power (<10 W) compact instrumentation that can be used even in remote sites lacking in power. The instrumentation will transform the ability to measure and understand ecosystem-level nitrous oxide fluxes. The Phase II results included successful extended field testing of prototype flux instruments, based on quantum cascade lasers, in collaboration with Michigan State University. Results of these tests demonstrated a flux detection limit of 5 µg m-2 s-1 and showed excellent agreement and correlation with measurements using chamber techniques. Initial tests of an instrument using an interband cascade laser (ICL) were performed, verifying that an order of magnitude reduction in instrument power requirements can be realized. These results point toward future improvements and testing leading to introduction of a commercial open path instrument for N2O flux measurements that is truly portable and cost-effective. The technology developed on this project is especially groundbreaking as it could be widely applied across FLUXNET and AmeriFlux sites (>1200 worldwide) for direct measurements of N2O exchange. The technology can be more broadly applied to gas monitoring requirements in industry, environmental monitoring, health and safety, etc.« less
  3. Phase-shift feedback cavity ring-down spectroscopy

  4. Converting a Slip Table Random Vibration Test to a Fixed Base Modal Analysis.

    Abstract not provided.
  5. Microbial agent detection using near-IR electrophoretic and spectral signatures (MADNESS) for rapid identification in detect-to-warn applications.

    Rapid identification of aerosolized biological agents following an alarm by particle triggering systems is needed to enable response actions that save lives and protect assets. Rapid identifiers must achieve species level specificity, as this is required to distinguish disease-causing organisms (e.g., Bacillus anthracis) from benign neighbors (e.g., Bacillus subtilis). We have developed a rapid (1-5 minute), novel identification methodology that sorts intact organisms from each other and particulates using capillary electrophoresis (CE), and detects using near-infrared (NIR) absorbance and scattering. We have successfully demonstrated CE resolution of Bacillus spores and vegetative bacteria at the species level. To achieve sufficient sensitivitymore » for detection needs ({approx}10{sup 4} cfu/mL for bacteria), we have developed fiber-coupled cavity-enhanced absorbance techniques. Using this method, we have demonstrated {approx}two orders of magnitude greater sensitivity than published results for absorbing dyes, and single particle (spore) detection through primarily scattering effects. Results of the integrated CE-NIR system for spore detection are presented.« less
  6. What's shakin', dude? : effective use of modal shakers.

    No abstract prepared.

Search for:
All Records
Creator / Author
"Gomez, Anthony"

Refine by:
Resource Type
Publication Date
Creator / Author
Research Organization