Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information
  1. Increased Reliability for Near-Term Quantum Computers via Low-Level Control (CRADA Final Report)

    This project helped narrow the gap between near-term hardware and practical applications of quantum computing through the development and implementation of optimized compilation and error mitigation techniques. These advances were enabled by low-level control available on the Advanced Quantum Testbed, and led to methods that characterized and improved the platform’s performance on quantum algorithms. Results of this work were published in the scientific literature and used to inform internal software development of partner Super.tech.

  2. Hardware-Conscious Optimization of the Quantum Toffoli Gate

    While quantum computing holds great potential in combinatorial optimization, electronic structure calculation, and number theory, the current era of quantum computing is limited by noisy hardware. Many quantum compilation approaches can mitigate the effects of imperfect hardware by optimizing quantum circuits for objectives such as critical path length. Few approaches consider quantum circuits in terms of the set of vendor-calibrated operations (i.e., native gates) available on target hardware. This manuscript expands the analytical and numerical approaches for optimizing quantum circuits at this abstraction level. We present a procedure for combining the strengths of analytical native gate-level optimization with numerical optimization. Although we focus on optimizing Toffoli gates on the IBMQ native gate set, the methods presented are generalizable to any gate and superconducting qubit architecture. Our optimized Toffoli gate implementation demonstrates an 18% reduction in infidelity compared with the canonical implementation as benchmarked on IBM Jakarta with quantum process tomography. Assuming the inclusion of multi-qubit cross-resonance (MCR) gates in the IBMQ native gate set, we produce Toffoli implementations with only six multi-qubit gates, a 25% reduction from the canonical eight multi-qubit implementations for linearly connected qubits.

  3. Quantum-centric supercomputing for materials science: A perspective on challenges and future directions

    Computational models are an essential tool for the design, characterization, and discovery of novel materials. Computationally hard tasks in materials science stretch the limits of existing high-performance supercomputing centers, consuming much of their resources for simulation, analysis, and data processing. Quantum computing, on the other hand, is an emerging technology with the potential to accelerate many of the computational tasks needed for materials science. In order to do that, the quantum technology must interact with conventional high-performance computing in several ways: approximate results validation, identification of hard problems, and synergies in quantum-centric supercomputing. Here in this paper, we provide a perspective on how quantum-centric supercomputing can help address critical computational problems in materials science, the challenges to face in order to solve representative use cases, and new suggested directions.

  4. Quantum-centric Supercomputing for Materials Science: A Perspective on Challenges and Future Directions

    Computational models are an essential tool for the design, characterization, and discovery of novel materials. Hard computational tasks in materials science stretch the limits of existing high-performance supercomputing centers, consuming much of their simulation, analysis, and data resources. Quantum computing, on the other hand, is an emerging technology with the potential to accelerate many of the computational tasks needed for materials science. In order to do that, the quantum technology must interact with conventional high-performance computing in several ways: approximate results validation, identification of hard problems, and synergies in quantum-centric supercomputing. In this paper, we provide a perspective on how quantum-centric supercomputing can help address critical computational problems in materials science, the challenges to face in order to solve representative use cases, and new suggested directions.

  5. CAFQA: A Classical Simulation Bootstrap for Variational Quantum Algorithms

    Classical computing plays a critical role in the advancement of quantum frontiers in the NISQ era. In this spirit, this work uses classical simulation to bootstrap Variational Quantum Algorithms (VQAs). VQAs rely upon the iterative optimization of a parameterized unitary circuit (ansatz) with respect to an objective function. Since quantum machines are noisy and expensive resources, it is imperative to classically choose the VQA ansatz initial parameters to be as close to optimal as possible to improve VQA accuracy and accelerate their convergence on today’s devices. This work tackles the problem of finding a good ansatz initialization, by proposing CAFQA, a Clifford Ansatz For Quantum Accuracy. The CAFQA ansatz is a hardware-efficient circuit built with only Clifford gates. In this ansatz, the parameters for the tunable gates are chosen by searching efficiently through the Clifford parameter space via classical simulation. The resulting initial states always equal or outperform traditional classical initialization (e.g., Hartree-Fock), and enable high-accuracy VQA estimations. CAFQA is well-suited to classical computation because: a) Clifford-only quantum circuits can be exactly simulated classically in polynomial time, and b) the discrete Clifford space is searched efficiently via Bayesian Optimization. For the Variational Quantum Eigensolver (VQE) task of molecular ground state energy estimation (up to 18 qubits), CAFQA’s Clifford Ansatz achieves a mean accuracy of nearly 99% and recovers as much as 99.99% of the molecular correlation energy that is lost in Hartree-Fock initialization. CAFQA achieves mean accuracy improvements of 6.4x and 56.8x, over the state-of-the-art, on different metrics. Here, the scalability of the approach allows for preliminary ground state energy estimation of the challenging chromium dimer (Cr2) molecule. With CAFQA’s high-accuracy initialization, the convergence of VQAs is shown to accelerate by 2.5x, even for small molecules. Furthermore, preliminary exploration of allowing a limited number of non-Clifford (T) gates in the CAFQA framework, shows that as much as 99.9% of the correlation energy can be recovered at bond lengths for which Clifford-only CAFQA accuracy is relatively limited, while remaining classically simulable.

  6. Quantum Computing in the Cloud: Analyzing job and machine characteristics

    As the popularity of quantum computing continues to grow, quantum machine access over the cloud is critical to both academic and industry researchers across the globe. And as cloud quantum computing demands increase exponentially, the analysis of resource consumption and execution characteristics are key to efficient management of jobs and resources at both the vendor-end as well as the client-end. While the analysis of resource consumption and management are popular in the classical HPC domain, it is severely lacking for more nascent technology like quantum computing. This paper is a first-of-its-kind academic study, analyzing various trends in job execution and resources consumption / utilization on quantum cloud systems. We focus on IBM Furthermore, quantum systems and analyze characteristics over a two year period, encompassing over 6000 jobs which contain over 600,000 quantum circuit executions and correspond to almost 10 billion “shots” or trials over 20+ quantum machines. Specifically, we analyze trends focused on, but not limited to, execution times on quantum machines, queuing/waiting times in the cloud, circuit compilation times, machine utilization, as well as the impact of job and machine characteristics on all of these trends. Furthermore, our analysis identifies several similarities and differences with classical HPC cloud systems. Based on our insights, we make recommendations and contributions to improve the management of resources and jobs on future quantum cloud systems.

  7. Adaptive Circuit Learning for Quantum Metrology

    Quantum sensing is an important application of emerging quantum technologies. We explore whether a hybrid system of quantum sensors and quantum circuits can surpass the classical limit of sensing. In particular, we use optimization techniques to search for encoder and decoder circuits that scalably improve sensitivity under given application and noise characteristics. Furthermore, our approach uses a variational algorithm that can learn a quantum sensing circuit based on platform-specific control capacity, noise, and signal distribution. The quantum circuit is composed of an encoder which prepares the optimal sensing state and a decoder which gives an output distribution containing information of the signal. We optimize the full circuit to maximize the Signal-to-Noise Ratio (SNR). Furthermore, this learning algorithm can be run on real hardware scalably by using the "parameter-shift" rule which enables gradient evaluation on noisy quantum circuits, avoiding the exponential cost of quantum system simulation. We demonstrate up to 13.12x SNR improvement over existing fixed protocol (GHZ), and 3.19x Classical Fisher Information (CFI) improvement over the classical limit on 15 qubits using IBM quantum computer. More notably, our algorithm overcomes the decreasing performance of existing entanglement-based protocols with increased system sizes.

  8. Optimized Quantum Program Execution Ordering to Mitigate Errors in Simulations of Quantum Systems

    Simulating the time evolution of a physical system at quantum mechanical levels of detail - known as Hamiltonian Simulation (HS) - is an important and interesting problem across physics and chemistry. For this task, algorithms that run on quantum computers are known to be exponentially faster than classical algorithms; in fact, this application motivated Feynman to propose the construction of quantum computers. Nonetheless, there are challenges in reaching this performance potential. Prior work has focused on compiling circuits (quantum programs) for HS with the goal of maximizing either accuracy or gate cancellation. Our work proposes a compilation strategy that simultaneously advances both goals. At a high level, we use classical optimizations such as graph coloring and travelling salesperson to order the execution of quantum programs. Specifically, we group together mutually commuting terms in the Hamiltonian (a matrix characterizing the quantum mechanical system) to improve the accuracy of the simulation. We then rearrange the terms within each group to maximize gate cancellation in the final quantum circuit. Furthermore, these optimizations work together to improve HS performance and result in an average 40% reduction in circuit depth. This work advances the frontier of HS which in turn can advance physical and chemical modeling in both basic and applied sciences.

  9. Coreset Clustering on Small Quantum Computers

    Many quantum algorithms for machine learning require access to classical data in superposition. However, for many natural data sets and algorithms, the overhead required to load the data set in superposition can erase any potential quantum speedup over classical algorithms. Recent work by Harrow introduces a new paradigm in hybrid quantum-classical computing to address this issue, relying on coresets to minimize the data loading overhead of quantum algorithms. We investigated using this paradigm to perform k-means clustering on near-term quantum computers, by casting it as a QAOA optimization instance over a small coreset. We used numerical simulations to compare the performance of this approach to classical k-means clustering. We were able to find data sets with which coresets work well relative to random sampling and where QAOA could potentially outperform standard k-means on a coreset. However, finding data sets where both coresets and QAOA work well—which is necessary for a quantum advantage over k-means on the entire data set—appears to be challenging.

  10. Adapting Quantum Approximation Optimization Algorithm (QAOA) for Unit Commitment

    In the present Noisy Intermediate-Scale Quantum (NISQ), hybrid algorithms that leverage classical resources to reduce quantum costs are particularly appealing. We formulate and apply such a hybrid quantum-classical algorithm to a power system optimization problem called Unit Commitment, which aims to satisfy a target power load at minimal cost. Our algorithm extends the Quantum Approximation Optimization Algorithm (QAOA) with a classical minimizer in order to support mixed binary optimization. Using Qiskit, we simulate results for sample systems to validate the effectiveness of our approach. Here, we also compare to purely classical methods. Our results indicate that classical solvers are effective for our simulated Unit Commitment instances with fewer than 400 power generation units. However, for larger problem instances, the classical solvers either scale exponentially in runtime or must resort to coarse approximations. This opens the door to potential quantum advantage for systems with several hundred units, though quantum error correction may be necessary at this scale.


Search for:
All Records
Author / Contributor
"Gokhale, Pranav"

Refine by:
Resource Type
Availability
Publication Date
  • 2020: 10 results
  • 2021: 4 results
  • 2022: 3 results
  • 2023: 3 results
  • 2024: 1 results
2020
2024
Author / Contributor
Research Organization