54 Search Results
-
Reaction fronts associated with mineral carbonation of fractured basalts
Presented by NETL at 2017 Association of Environmental Engineering and Science Professionals Research and Education Conference; 06/2017
-
Phosphate-Induced Immobilization of Uranium in Hanford Sediments
Phosphate can be added to subsurface environments to immobilize U(VI) contamination. The efficacy of immobilization depends on the site-specific groundwater chemistry and aquifer sediment properties. Batch and column experiments were performed with sediments from the Hanford 300 Area in Washington State and artificial groundwater prepared to emulate the conditions at the site. Batch experiments revealed enhanced U(VI) sorption with increasing phosphate addition. X-ray absorption spectroscopy measurements of samples from the batch experiments found that U(VI) was predominantly adsorbed at conditions relevant to the column experiments and most field sites (low U(VI) loadings, <25 μM), and U(VI) phosphate precipitation occurred only at high initial U(VI) (>25μM) and phosphate loadings. While batch experiments showed the transition of U(VI) uptake from adsorption to precipitation, the column study was more directly relevant to the subsurface environment because of the high solid:water ratio in the column and the advective flow of water. In column experiments, nearly six times more U(VI) was retained in sediments when phosphate-containing groundwater was introduced to U(VI)-loaded sediments than when the groundwater did not contain phosphate. This enhanced retention persisted for at least one month after cessation of phosphate addition to the influent fluid. Sequential extractions and laser-induced fluorescence spectroscopy of sediments from the columns suggested that the retained U(VI) was primarily in adsorbed forms. These results indicate that in situ remediation of groundwater by phosphate addition provides lasting benefit beyond the treatment period via enhanced U(VI) adsorption to sediments.
-
Heterogeneous Lead Phosphate Nucleation at Organic–Water Interfaces: Implications for Lead Immobilization
Phosphate is added to Pb-contaminated soils to induce lead immobilization through lead phosphate precipitation. Organic coatings on soils, which may affect heterogeneous lead phosphate nucleation, can impact the effectiveness of lead immobilization. SiO2 surfaces were coated with silanol self-assembled thin films terminated with -COOH and -OH functional groups to act as model organic coatings on soil particles. Using grazing incidence small-angle X-ray scattering (GISAXS), heterogeneous lead phosphate nucleation on coatings was measured from mixed Pb(NO3)2 and Na2HPO4/NaH2PO4 solutions at pH 7 with varied ionic strengths (IS = 0.58, 4, and 11 mM). Raman spectroscopy identified the homogeneous precipitates in solution as hydroxylpyromorphite (Pb5(PO4)3OH). The smallest lead phosphate nuclei (4.5 ± 0.5 nm) were observed on -COOH coatings, which resulted from the highest level of lead and phosphate ion adsorption on -COOH coatings. The IS of the solution also affected the sizes of the heterogeneous precipitates on -COOH coating, with smaller nuclei (1.3 ± 0.4 nm) forming under higher IS (4 and 11 mM). Finally, this study provided new findings that can improve our understanding of lead immobilization in contaminated soil environments.
-
Effect of Humic Acid on the Removal of Chromium(VI) and the Production of Solids in Iron Electrocoagulation
Iron-based electrocoagulation can be highly effective for Cr(VI) removal from water supplies. However, the presence of humic acid (HA) inhibited the rate of Cr(VI) removal in electrocoagulation, with the greatest decreases in Cr(VI) removal rate at higher pH. This inhibition was probably due to the formation of Fe(II) complexes with HA that are more rapidly oxidized than uncomplexed Fe(II) by dissolved oxygen, making less Fe(II) available for reduction of Cr(VI). Close association of Fe(III), Cr(III), and HA in the solid products formed during electrocoagulation influenced the fate of both Cr(III) and HA. At pH 8, the solid products were colloids (1–200 nm) with Cr(III) and HA concentrations in the filtered fraction being quite high, while at pH 6 these concentrations were low due to aggregation of small particles. In our work, X-ray diffraction and X-ray absorption fine structure spectroscopy indicated that the iron oxides produced were a mixture of lepidocrocite and ferrihydrite, with the proportion of ferrihydrite increasing in the presence of HA. Cr(VI) was completely reduced to Cr(III) in electrocoagulation, and the coordination environment of the Cr(III) in the solids was similar regardless of the humic acid loading, pH, and dissolved oxygen level.
-
CO2 mineral trapping in fractured basalt
Fractures in basalt can provide substantial surface area for reactions, and limited mass transfer in fractures can allow accumulation of cations to form carbonate minerals in geologic carbon sequestration. In this study, flood basalt and serpentinized basalt with engineered fractures were reacted in water equilibrated with 10 MPa CO2 at 100 °C or 150 °C for up to 40 weeks. Carbonation in basalt fractures was observed as early as 6 weeks, with Mg- and Ca-bearing siderite formed in both basalts reacted at 100 °C and Mg-Fe-Ca carbonate minerals formed in the flood basalt reacted at 150 °C. X-ray μCT segmentation revealed that precipitates filled 5.4% and 15% (by volume) of the flood basalt fracture after 40 weeks of reaction at 100 °C and 150 °C, respectively. Zones of elevated carbonate abundance did not completely seal the fracture. Limited siderite clusters (<1% volume fraction) were found in localized areas in the serpentinized basalt fracture. A 1-dimensional reactive transport model developed in CrunchTope examined how geochemical gradients drive silicate mineral dissolution and carbonate precipitation in the fracture. The model predicts that siderite will form as early as 1 day after the addition of CO2. In conclusion, the predicted location of maximum siderite abundance is consistent with experimental observations, and the predicted total carbonate volumes are comparable to estimates derived from CT segmentation.
-
CO2 Mineral Sequestration in Naturally Porous Basalt
Continental flood basalts are extensive geologic features currently being evaluated as reservoirs that are suitable for long-term storage of carbon emissions. Favorable attributes of these formations for containment of injected carbon dioxide (CO2) include high mineral trapping capacity, unique structural features, and enormous volumes. We experimentally investigated mineral carbonation in whole core samples retrieved from the Grand Ronde basalt, the same formation into which ~1000 t of CO2 was recently injected in an eastern Washington pilot-scale demonstration. The rate and extent of carbonate mineral formation at 100 °C and 100 bar were tracked via time-resolved sampling of bench-scale experiments. Basalt cores were recovered from the reactor after 6, 20, and 40 weeks, and three-dimensional X-ray tomographic imaging of these cores detected carbonate mineral formation in the fracture network within 20 weeks. Under these conditions, a carbon mineral trapping rate of 1.24 ± 0.52 kg of CO2/m3 of basalt per year was estimated, which is orders of magnitude faster than rates for deep sandstone reservoirs. On the basis of these calculations and under certain assumptions, available pore space within the Grand Ronde basalt formation would completely carbonate in ~40 years, resulting in solid mineral trapping of ~47 kg of CO2/m3 of basalt.