Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information
  1. Microwave assisted preparation of Eu[superscript 2+]-doped Ã…kermanite Ca[subscript 2]MgSi[subscript 2]O[subscript 7]

    A rapid and energy efficient microwave assisted solid state preparative route for europium-doped Akermanite (Ca{sub 2}MgSi{sub 2}O{sub 7}) has been developed. This method reduces the reaction time and energy needed by more than 90%, compared to the preparation carried out in a conventional furnace. The obtained samples are phase pure as has been determined using synchrotron X-ray powder diffraction data and Rietveld analyses. Scanning electron microscopy was employed to investigate the morphology of the microwave prepared compounds whilst energy dispersive X-ray spectroscopy (EDX) was used to verify the elemental composition of the specimens. A systematic investigation of the influence of the utilized microwave setup is presented. Finally, the microwave prepared materials were subject to temperature dependent photoluminescence measurements in order to investigate the thermal quenching of the luminescence.

  2. A green-yellow emitting oxyfluoride solid solution phosphor Sr[subscript 2]Ba(AlO[subscript 4]F)[subscript 1;#8722;x](SiO[subscript 5])x:Ce[superscript 3+] for thermally stable, high color rendition solid state white lighting

    A near-UV excited, oxyfluoride phosphor solid solution Sr{sub 1.975}Ce{sub 0.025}Ba(AlO{sub 4}F){sub 1-x}(SiO{sub 5}){sub x} has been developed for solid state white lighting applications. An examination of the host lattice, and the local structure around the Ce{sup 3+} activator ions through a combination of density functional theory, synchrotron X-ray and neutron powder diffraction and total scattering, and electron paramagnetic resonance, points to how chemical substitutions play a crucial role in tuning the optical properties of the phosphor. The maximum emission wavelength can be tuned from green ({lambda}{sub em} = 523 nm) to yellow ({lambda}{sub em} = 552 nm) by tuning the composition, x. Photoluminescent quantum yield is determined to be 70 {+-} 5% for some of the examples in the series. Excellent thermal properties were found for the x = 0.5 sample, with the photoluminescence intensity at 160 C only decreased to 82% of its room temperature value. Phosphor-converted LED devices fabricated using an InGaN LED ({lambda}{sub max} = 400 nm) exhibit high color rendering white light with R{sub a} = 70 and a correlated color temperature near 7000 K. The value of R{sub a} could be raised to 90 by the addition of a red component, and the correlated color temperature lowered to near 4000 K.

  3. Efficient and Color-Tunable Oxyfluoride Solid Solution Phosphors for Solid-State White Lighting

    A solid solution strategy helps increase the efficiency of Ce{sup 3+} oxyfluoride phosphors for solid-state white lighting. The use of a phosphor-capping architecture provides additional light extraction. The accompanying image displays electroluminescence spectra from a 434-nm InGaN LED phosphor that has been capped with the oxyfluoride phosphor.

  4. A protected annealing strategy to enhanced light emission and photostability of YAG:Ce nanoparticle-based films

    A significant obstacle in the development of YAG:Ce nanoparticles as light converters in white LEDs and as biological labels is associated with the difficulty of finding preparative conditions that allow simultaneous control of structure, particle size and size distribution, while maintaining the optical properties of bulk samples. Preparation conditions frequently involve high-temperature treatments of precursors (up to 1400 C), which result in increased particle size and aggregation, and lead to oxidation of Ce(III) to Ce(IV). We report here a process that we term protected annealing, that allows the thermal treatment of preformed precursor particles at temperatures up to 1000 C while preserving their small size and state of dispersion. In a first step, pristine nanoparticles are prepared by a glycothermal reaction, leading to a mixture of YAG and boehmite crystalline phases. The preformed nanoparticles are then dispersed in a porous silica. Annealing of the composite material at 1000 C is followed by dissolution of the amorphous silica by hydrofluoric acid to recover the annealed particles as a colloidal dispersion. This simple process allows completion of YAG crystallization while preserving their small size. The redox state of Ce ions can be controlled through the annealing atmosphere. The obtained particles of YAG:Ce (60 {+-} 10 nm in size) can be dispersed as nearly transparent aqueous suspensions, with a luminescence quantum yield of 60%. Transparent YAG:Ce nanoparticle-based films of micron thickness can be deposited on glass substrates using aerosol spraying. Films formed from particles prepared by the protected annealing strategy display significantly improved photostability over particles that have not been subject to such annealing.

  5. Structure-Directing Roles and Interactions of Fluoride and Organocations with Siliceous Zeolite Frameworks

    Interactions of fluoride anions and organocations with crystalline silicate frameworks are shown to depend subtly on the architectures of the organic species, which significantly influence the crystalline structures that result. One- and two-dimensional (2D) {sup 1}H, {sup 19}F, and {sup 29}Si nuclear magnetic resonance (NMR) spectroscopy measurements establish distinct intermolecular interactions among F{sup -} anions, imidazolium structure-directing agents (SDA{sup +}), and crystalline silicate frameworks for as-synthesized siliceous zeolites ITW and MTT. Different types and positions of hydrophobic alkyl ligands on the imidazolium SDA{sup +} species under otherwise identical zeolite synthesis compositions and conditions lead to significantly different interactions between the F{sup -} and SDA{sup +} ions and the respective silicate frameworks. For as-synthesized zeolite ITW, F{sup -} anions are established to reside in the double-four-ring (D4R) cages and interact strongly and selectively with D4R silicate framework sites, as manifested by their strong {sup 19}F{sup 29}Si dipolar couplings. By comparison, for as-synthesized zeolite MTT, F{sup -} anions reside within the 10-ring channels and interact relatively weakly with the silicate framework as ion pairs with the SDA{sup +} ions. Such differences manifest the importance of interactions between the imidazolium and F{sup -} ions, which account for their structure-directing influences on the topologies of the resulting silicate frameworks. Furthermore, 2D {sup 29}Si{l_brace}{sup 29}Si{r_brace} double-quantum NMR measurements establish {sup 29}Si-O-{sup 29}Si site connectivities within the as-synthesized zeolites ITW and MTT that, in conjunction with synchrotron X-ray diffraction analyses, establish insights on complicated order and disorder within their framework structures.

  6. Rapid Microwave Preparation of Highly Efficient Ce[superscript 3+]-Substituted Garnet Phosphors for Solid State White Lighting

    Ce{sup 3+}-substituted aluminum garnet compounds of yttrium (Y{sub 3}Al{sub 5}O{sub 12}) and lutetium (Lu{sub 3}Al{sub 5}O{sub 12}) - both important compounds in the generation of (In,Ga)N-based solid state white lighting - have been prepared using a simple microwave heating technique involving the use of a microwave susceptor to provide the initial heat source. Carbon used as the susceptor additionally creates a reducing atmosphere around the sample that helps stabilize the desired luminescent compound. High quality, phase-pure materials are prepared within a fraction of the time and using a fraction of the energy required in a conventional ceramic preparation; the microwave technique allows for a reduction of about 95% in preparation time, making it possible to obtain phase pure, Ce{sup 3+}-substituted garnet compounds in under 20 min of reaction time. It is estimated that the overall reduction in energy compared with ceramic routes as practiced in the lab is close to 99%. Conventionally prepared material is compared with material prepared using microwave heating in terms of structure, morphology, and optical properties, including quantum yield and thermal quenching of luminescence. Finally, the microwave-prepared compounds have been incorporated into light-emitting diode 'caps' to test their performance characteristics in a real device, in terms of their photon efficiency and color coordinates.

  7. Preliminary Evaluation of Burnable Poisons in Uranium-Based Fully Ceramic Microencapsulated Fuel for PWRs

    No abstract prepared.

  8. NEUTRONICS STUDIES OF URANIUM-BASED FULLY CERAMIC MICRO-ENCAPSULATED FUEL FOR PWRs

    This study evaluates the core neutronics and fuel cycle characteristics that result from employing uranium-based fully ceramic micro-encapsulated (FCM) fuel in a pressurized water reactor (PWR). Specific PWR bundle designs with FCM fuel have been developed, which by virtue of their TRISO particle based elements, are expected to safely reach higher fuel burnups while also increasing the tolerance to fuel failures. The SCALE 6.1 code package, developed and maintained at ORNL, was the primary software employed to model these designs. Analysis was performed using the SCALE double-heterogeneous (DH) fuel modeling capabilities. For cases evaluated with the NESTLE full-core three-dimensional nodal simulator, because the feature to perform DH lattice physics branches with the SCALE/TRITON sequence is not yet available, the Reactivity-Equivalent Physical Transformation (RPT) method was used as workaround to support the full core analyses. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a color-set array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In addition, a parametric study was performed by varying the various TRISO particle design features; such as kernel diameter, coating layer thicknesses, and packing fractions. Also, other features such as the selection of matrix material (SiC, Zirconium) and fuel rod dimensions were perturbed. After evaluating different uranium-based fuels, the higher physical density of uranium mononitride (UN) proved to be favorable, as the parametric studies showed that the FCM particle fuel design will need roughly 12% additional fissile material in comparison to that of a standard UO2 rod in order to match the lifetime of an 18-month PWR cycle. Neutronically, the FCM fuel designs evaluated maintain acceptable design features in the areas of fuel lifetime, temperature coefficients of reactivity, as well as pin cell and assembly peaking factors. Key Words: FCM, TRISO, Uranium Mononitride, PWR

  9. Application of Fully Ceramic Microencapsulated Fuels in Light Water Reactors

    This study aims to perform a preliminary evaluation of the feasibility of incorporation of Fully Ceramic Microencapsulated (FCM) fuels in Light Water Reactors (LWRs). In particular pin cell, lattice, and full core analyses are carried out on FCM fuel in a pressurized water reactor. Using uranium-based fuel and transuranic (TRU) based fuel in TRistructural ISOtropic (TRISO) particle form, each fuel design was examined using the SCALE 6.1 analytical suite. In regards to the uranium-based fuel, pin cell calculations were used to determine which fuel material performed best when implemented in the fuel kernel as well as the size of the kernel and surrounding particle layers. The higher physical density of uranium mononitride (UN) proved to be favorable, while the parametric studies showed that the FCM particle fuel design would need roughly 12% additional fissile material in comparison to that of a standard UO2 rod in order to match the lifetime of an 18-month PWR cycle. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a color-set array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In regards to the TRU based fuel, lattice calculations were performed to determine an optimal lattice design based on reactivity behavior, pin power peaking, and isotopic content. After obtaining a satisfactory lattice design, feasibility of core designs fully loaded with TRU FCM lattices was demonstrated using the NESTLE three-dimensional core simulator.

  10. Constraints in Quantum Geometrodynamics

    We compare different treatments of the constraints in canonical quantum gravity. The standard approach on the superspace of 3-geometries treats the constraints as the sole carriers of the dynamic content of the theory, thus rendering the traditional dynamical equations obsolete. Quantization of the constraints in both the Dirac and ADM square root Hamiltonian approaches leads to the well known problems of time evolution. These problems of time are of both an interpretational and technical nature. In contrast, the geometrodynamic quantization procedure on the superspace of the true dynamical variables separates the issues of quantization from the enforcement of the constraints. The resulting theory takes into account states that are off-shell with respect to the constraints, and thus avoids the problems of time. We develop, for the first time, the geometrodynamic quantization formalism in a general setting and show that it retains all essential features previously illustrated in the context of homogeneous cosmologies.


Search for:
All Records
Author / Contributor
"George, Nathan"

Refine by:
Resource Type
Availability
Publication Date
  • 2012: 11 results
  • 2013: 3 results
  • 2014: 5 results
  • 2015: 4 results
  • 2016: 2 results
  • 2017: 1 results
  • 2018: 0 results
  • 2019: 1 results
  • 2020: 0 results
  • 2021: 0 results
  • 2022: 0 results
  • 2023: 0 results
  • 2024: 1 results
  • 2025: 1 results
2012
2025
Author / Contributor
Research Organization