skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Simple Array Beam-Shaping Using Phase-Only Adjustments.

    Conventional beam-shaping for array antennas is accomplished via an amplitude-taper on the elemental radiators. It is well known that proper manipulation of the elemental phases can also shape the antenna far-field pattern. A fairly simple transformation from a desired amplitude-taper to a phase-taper can yield nearly equivalent results.
  2. SAR Image Complex Pixel Representations

    Complex pixel values for Synthetic Aperture Radar (SAR) images of uniform distributed clutter can be represented as either real/imaginary (also known as I/Q) values, or as Magnitude/Phase values. Generally, these component values are integers with limited number of bits. For clutter energy well below full-scale, Magnitude/Phase offers lower quantization noise than I/Q representation. Further improvement can be had with companding of the Magnitude value.
  3. Radar Design to Protect Against Surprise

    Technological and doctrinal surprise is about rendering preparations for conflict as irrelevant or ineffective . For a sensor, this means essentially rendering the sensor as irrelevant or ineffective in its ability to help determine truth. Recovery from this sort of surprise is facilitated by flexibility in our own technology and doctrine. For a sensor, this mean s flexibility in its architecture, design, tactics, and the designing organizations ' processes. - 4 - Acknowledgements This report is the result of a n unfunded research and development activity . Sandia National Laboratories is a multi - program laboratory manage d and operatedmore » by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000.« less
  4. Motion measurement for synthetic aperture radar

    Synthetic Aperture Radar (SAR) measures radar soundings from a set of locations typically along the flight path of a radar platform vehicle. Optimal focusing requires precise knowledge of the sounding source locations in 3-D space with respect to the target scene. Even data driven focusing techniques (i.e. autofocus) requires some degree of initial fidelity in the measurements of the motion of the radar. These requirements may be quite stringent especially for fine resolution, long ranges, and low velocities. The principal instrument for measuring motion is typically an Inertial Measurement Unit (IMU), but these instruments have inherent limi ted precision andmore » accuracy. The question is %22How good does an IMU need to be for a SAR across its performance space?%22 This report analytically relates IMU specifications to parametric requirements for SAR. - 4 - Acknowledgements Th e preparation of this report is the result of a n unfunded research and development activity . Although this report is an independent effort, it draws heavily from limited - release documentation generated under a CRADA with General Atomics - Aeronautical System, Inc. (GA - ASI), and under the Joint DoD/DOE Munitions Program Memorandum of Understanding. Sandia National Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of En ergy's National Nuclear Security Administration under contract AC04-94AL85000.« less
  5. Generating nonlinear FM chirp radar signals by multiple integrations

    A phase component of a nonlinear frequency modulated (NLFM) chirp radar pulse can be produced by performing digital integration operations over a time interval defined by the pulse width. Each digital integration operation includes applying to a respectively corresponding input parameter value a respectively corresponding number of instances of digital integration.
  6. Phase Centers of Subapertures in a Tapered Aperture Array.

    Antenna apertures that are tapered for sidelobe control can also be parsed into subapertures for Direction of Arrival (DOA) measurements. However, the aperture tapering complicates phase center location for the subapertures, knowledge of which is critical for proper DOA calculation. In addition, tapering affects subaperture gains, making gain dependent on subaperture position. Techniques are presented to calculate subaperture phase center locations, and algorithms are given for equalizing subapertures’ gains. Sidelobe characteristics and mitigation are also discussed.
  7. A comparison of interferometric SAR antenna options.

  8. Single-Axis Three-Beam Amplitude Monopulse Antenna-Signal Processing Issues

    Typically, when three or more antenna beams along a single axis are required, the answer has been multiple antenna phase-centers, essentially a phase-monopulse system. Such systems and their design parameters are well-reported in the literature. Less appreciated is that three or more antenna beams can also be generated in an amplitude-monopulse fashion. Consequently, design guidelines and performance analysis of such antennas is somewhat under-reported in the literature. We provide discussion herein of three beams arrayed in a single axis with an amplitude-monopulse configuration. Acknowledgements The preparation of this report is the result of an unfunded research and development activity. Sandiamore » National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administ ration under contract DE-AC04-94AL85000.« less
...

Search for:
All Records
Creator / Author
"Doerry, Armin W."

Refine by:
Resource Type
Availability
Publication Date
Creator / Author
Research Organization