skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Abstract not provided.
  2. A distributed impedance “field cage” structure is proposed and evaluated for electric field control in GaN-based, lateral high electron mobility transistors (HEMTs) operating as kilovolt-range power devices. In this structure, a resistive voltage divider is used to control the electric field throughout the active region. The structure complements earlier proposals utilizing floating field plates that did not employ resistively connected elements. Transient results, not previously reported for field plate schemes using either floating or resistively connected field plates, are presented for ramps of dV ds /dt = 100 V/ns. For both DC and transient results, the voltage between the gatemore » and drain is laterally distributed, ensuring the electric field profile between the gate and drain remains below the critical breakdown field as the source-to-drain voltage is increased. Our scheme indicates promise for achieving breakdown voltage scalability to a few kV.« less
  3. Abstract not provided.
  4. Abstract not provided.
  5. Abstract not provided.
  6. An AlN barrier high electron mobility transistor (HEMT) based on the AlN/Al{sub 0.85}Ga{sub 0.15}N heterostructure was grown, fabricated, and electrically characterized, thereby extending the range of Al composition and bandgap for AlGaN channel HEMTs. An etch and regrowth procedure was implemented for source and drain contact formation. A breakdown voltage of 810 V was achieved without a gate insulator or field plate. Excellent gate leakage characteristics enabled a high I{sub on}/I{sub off} current ratio greater than 10{sup 7} and an excellent subthreshold slope of 75 mV/decade. A large Schottky barrier height of 1.74 eV contributed to these results. The room temperature voltage-dependent 3-terminalmore » off-state drain current was adequately modeled with Frenkel-Poole emission.« less
  7. Abstract not provided.
  8. Varying atomic ratios in compound semiconductors is well known to have large effects on the etching properties of the material. The use of thin device barrier layers, down to 25 nm, adds to the fabrication complexity by requiring precise control over etch rates and surface morphology. The effects of bias power and gas ratio of BCl 3 to Cl 2 for inductively coupled plasma etching of high Al content AlGaN were contrasted with AlN in this study for etch rate, selectivity, and surface morphology. Etch rates were greatly affected by both bias power and gas chemistry. Here we detail themore » effects of small variations in Al composition for AlGaN and show substantial changes in etch rate with regards to bias power as compared to AlN.« less
  9. Abstract not provided.
  10. Abstract not provided.

Search for:
All Records
Creator / Author
"Baca, Albert G."

Refine by:
Resource Type
Publication Date
Creator / Author
Research Organization