skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Numerical simulation of solid state sintering II :sintering of a powder compact.

    No abstract prepared.
  2. Predicting the Hall-Petch effect in FCC metals using non-local crystal plasticity.

    No abstract prepared.
  3. Capturing deformation length scales through non-local crystal plasticity.

    No abstract prepared.
  4. Simulation of Sintering of Layered Structures

    An integrated approach, combining the continuum theory of sintering and Potts model based mesostructure evolution analysis, is used to solve the problem of bi-layered structure sintering. Two types of bi-layered structures are considered: layers of the same material with different initial porosity, and layers of two different materials. The effective sintering stress for the bi-layer powder sintering is derived, both at the meso- and the macroscopic levels. Macroscopic shape distortions and spatial distributions of porosity are determined as functions of the dimensionless specific time of sintering. The effect of the thickness of the layers on shrinkage, warpage, and pore-grain structuremore » is studied. Ceramic ZnO powders are employed as a model experimental system to assess the model predictions.« less
  5. Combined macro-meso scale modeling of sintering. Part II, Mesoscale simulations

    A mesoscale kinetic Monte Carlo model is presented to simulate microstructural evolution during sintering of 2D complex microstructures which evolves by grain growth, pore migration and densification. No assumptions about the geometry of the evolving microstructure are made. The results of these simulations are used to generate sintering stress and normalize viscous bulk modulus for use in continuum level simulation of sintering. The advantage of these simulations is that they can be used to generate more accurate parameters as various assumptions regarding geometry and transport mechanism are made. The previous companion paper used the results from the mesoscale simulations tomore » simulate shrinkage and warpage in sintering of bilayer ceramics.« less
  6. Three-dimensional simulation of sintering using a continuum modeling approach.

    No abstract prepared.
  7. On the Connection Between the Discrete Dislocation Slip Model and the Orowan Equation

    Within the framework of thermodynamic theory of plasticity and specific structural-variables (associated with individual dislocations), a transition has been made to an expression containing one internal variable of the averaging type--the density of glissile dislocations, N{sub g}. This expression should be considered a tensorial generalization of the well-known Orowan's equation and relates it directly to the simplest possible case of normal flow in metallic materials. Since most metals display deviations from normality in the flow rule{sup 7} it also clearly indicates that more rigorous assessment of the relation between plastic strain rate and dislocation populations is required especially for materialsmore » displaying plastic instabilities in the form of dislocation patterning, strain-softening and strain-rate softening phenomena. The obtained result could be a useful starting point in establishing such rigorous macroscopic relations from microscopic considerations associated with individual dislocations and to find useful applications in dislocation density-related constitutive modeling of plastic deformation.« less
  8. A Combined Statistical-Microstructural Model for Simulation of Sintering

    Sintering theory has been developed either as the application of complex diffusion mechanisms to a simple geometry or as the deformation and shrinkage of a continuum body. They present a model that can treat in detail both the evolution of microstructure and the sintering mechanisms, on the mesoscale, so that constitutive equations with detail microstructural information can be generated. The model is capable of simulating vacancy diffusion by grain boundary diffusion, annihilation of vacancies at grain boundaries resulting in densification, and coarsening of the microstructural features. In this paper, they review the stereological theory of sintering and its application tomore » microstructural evolution and the diffusion mechanism, which lead to sintering. They then demonstrate how these stereological concepts and diffusion mechanisms were incorporated into a kinetic Monte Carlo model to simulate sintering. Finally, they discuss the limitations of this model.« less
  9. Numerical simulation of anisotropic shrinkage in a 2D compact of elongated particles.

    Microstructural evolution during simple solid-state sintering of two-dimensional compacts of elongated particles packed in different arrangements was simulated using a kinetic, Monte Carlo model. The model used simulates curvature-driven grain growth, pore migration by surface diffusion, vacancy formation, diffusion along grain boundaries, and annihilation. Only the shape of the particles was anisotropic; all other extensive thermodynamic and kinetic properties such as surface energies and diffusivities were isotropic. We verified our model by simulating sintering in the analytically tractable cases of simple-packed and close-packed, elongated particles and comparing the shrinkage rate anisotropies with those predicted analytically. Once our model was verified,more » we used it to simulate sintering in a powder compact of aligned, elongated particles of arbitrary size and shape to gain an understanding of differential shrinkage. Anisotropic shrinkage occurred in all compacts with aligned, elongated particles. However, the direction of higher shrinkage was in some cases along the direction of elongation and in other cases in the perpendicular direction, depending on the details of the powder compact. In compacts of simple-packed, mono-sized, elongated particles, shrinkage was higher in the direction of elongation. In compacts of close-packed, mono-sized, elongated particles and of elongated particles with a size and shape distribution, the shrinkage was lower in the direction of elongation. The results of these simulations are analyzed, and the implication of these results is discussed.« less
  10. Numerical simulation of sintering at multiple length scales.

    Sintering is one of the oldest processes used by man to manufacture materials dating as far back as 12,000 BC. While it is an ancient process, it is also necessary for many modern technologies such a multilayered ceramic packages, wireless communication devices, and many others. The process consists of thermally treating a powder or compact at a temperature below the melting point of the main constituent, for the purpose of increasing its strength by bonding together of the particles. During sintering, the individual particles bond, the pore space between particles is eliminated, the resulting component can shrinks by as muchmore » as 30 to 50% by volume, and it can distort its shape tremendously. Being able to control and predict the shrinkage and shape distortions during sintering has been the goal of much research in material science. And it has been achieved to varying degrees by many. The object of this project was to develop models that could simulate sintering at the mesoscale and at the macroscale to more accurately predict the overall shrinkage and shape distortions in engineering components. The mesoscale model simulates microstructural evolution during sintering by modeling grain growth, pore migration and coarsening, and vacancy formation, diffusion and annihilation. In addition to studying microstructure, these simulation can be used to generate the constitutive equations describing shrinkage and deformation during sintering. These constitutive equations are used by continuum finite element simulations to predict the overall shrinkage and shape distortions of a sintering crystalline powder compact. Both models will be presented. Application of these models to study sintering will be demonstrated and discussed. Finally, the limitations of these models will be reviewed.« less

Search for:
All Records
Creator / Author

Refine by:
Resource Type
Publication Date
Creator / Author
Research Organization