skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Observations of GW170817 by DESGW and the DECam GW-EM Collaboration

    On August 17, 2017 LIGO/Virgo detected a binary neutron star via gravitational waves. We observed 70 sq-degrees in the LIGO/Virgo spatial localization with the DECam on the 4m Blanco telescope covering 80% of the nal map. Our group independently discovered an optical counterpart in NGC 4993. We searched our entire imaged region: the object in NGC 4993 was the only viable candidate. Our observations of NGC4993 show complicated morphology but simple star formation history. Our x-ray and radio observations indicate an o-axis jet as afterglow. Our high-cadence optical and infrared spectra show a source that must be described by atmore » least two components, one of which is dominated by the r-process nucleosynthesis elements characteristic of a kilonova. Our modeling of the light curve demonstrates such a model in which 0.05 M of material is ejected from the system. Finally, we discuss the first standard siren measurement of H0.« less
  2. A Microlensing Search for Primordial Black Holes in Dark Energy Survey Date

    The search for dark matter is currently one of the most exciting fields in astronomy. One possible candidate for dark matter is primordial black holes, formed from density fluctuations at the beginning of the universe. We search for these black holes through microlensing events by creating light curves from stars in the Dark Energy Survey (DES). Microlensing occurs when a primordial black hole (lens) passes in front of a background star, briefly brightening the output from that star. This brightening, due to the increase in magnitude, becomes detectable. First, we must cut out galaxies from our sample of stars. Wemore » then vary key parameters involved in lensing to create potential light curves, and then compare them to light curves from actual events, as well as calculating errors. We then send off these curves for further analysis to determine if any real events occurred. We plan to create 106 light curves, due to the large amount of parameters being varied. If these primordial black holes are dark matter, we hope to eventually detect multiple events using the light curves we have created.« less
  3. Cosmology with Gravitational Waves in DES and LSST

    Motivated by the prospect of the wealth of data arising from the inauguration of the era of gravitational wave detection by ground-based interferometers the DES collaboration, in partnership with members of the LIGO collaboration and members of the astronomical commu- nity at large, have established a research program to search for their optical counterparts and to explore their use as cosmological probes. In this talk we present the status of our program and discuss prospects for establishing this new probe as part of the portfolio of the Dark Energy research program in the future, in particular for the next generationmore » survey, LSST.« less
  4. Experimentally, How Dark Are Black Hole Mergers?

    The first Advanced LIGO observing run detected two black hole merger events with confidence and likely a third. Many groups organized to followup the events in the optical even though the strong theoretical prior that no optical emission should be seen. We carry through the logic of this by asking about the experimental upper limits to the optical light from Advanced LIGO black hole mergere events. We inventory the published optical searches for transient events associated with the black hole mergers. We describe the factors that go into a formal limit on the visibility of an event (sky area coverage,more » the coverage factor of the camera, the fraction of sky not covered by intervening objects), and list what is known from the literature of the followup teams quantitative assessment of each factor. Where possible we calculate the total probability from each group that the source was imaged. The calculation of confidence level is reviewed for the case of no background. We find that an experimental 95% upper limit on the magnitude of a black hole requires the sum of the total probabilities over all events to be more than 3. In the first Advanced LIGO observing run we were far from reaching that threshold.« less
  5. Weak-lensing calibration of a stellar mass-based mass proxy for redMaPPer and Voronoi Tessellation clusters in SDSS Stripe 82

    Here, we present the first weak lensing calibration of μ*, a new galaxy cluster mass proxy corresponding to the total stellar mass of red and blue members, in two cluster samples selected from the SDSS Stripe 82 data: 230 red-sequence Matched-filter Probabilistic Percolation (redMaPPer) clusters at redshift 0.1 ≤ z < 0.33 and 136 Voronoi Tessellation (VT) clusters at 0.1 ≤ z < 0.6. We use the CS82 shear catalogue and stack the clusters in μ* bins to measure a mass-observable power-law relation. For redMaPPer clusters we obtain M0 = (1.77 ± 0.36) × 10 14 h –1M , αmore » = 1.74 ± 0.62. For VT clusters, we find M 0 = (4.31 ± 0.89) × 10 14 h –1M , α = 0.59 ± 0.54 and M0 = (3.67 ± 0.56) × 10 14 h –1M , α = 0.68 ± 0.49 for a low and a high redshift bin, respectively. Our results are consistent, internally and with the literature, indicating that our method can be applied to any cluster-finding algorithm. In particular, we recommend that μ* be used as the mass proxy for VT clusters. Catalogues including μ* measurements will enable its use in studies of galaxy evolution in clusters and cluster cosmology.« less
  6. Core or Cusps: The Central Dark Matter Profile of a Strong Lensing Cluster with a Bright Central Image at Redshift 1

    We report on SPT-CLJ2011-5228, a giant system of arcs created by a cluster atmore » $z=1.06$. The arc system is notable for the presence of a bright central image. The source is a Lyman Break galaxy at $$z_s=2.39$$ and the mass enclosed within the 14 arc second radius Einstein ring is $$10^{14.2}$$ solar masses. We perform a full light profile reconstruction of the lensed images to precisely infer the parameters of the mass distribution. The brightness of the central image demands that the central total density profile of the lens be shallow. By fitting the dark matter as a generalized Navarro-Frenk-White profile---with a free parameter for the inner density slope---we find that the break radius is $$270^{+48}_{-76}$$ kpc, and that the inner density falls with radius to the power $$-0.38\pm0.04$$ at 68 percent confidence. Such a shallow profile is in strong tension with our understanding of relaxed cold dark matter halos; dark matter only simulations predict the inner density should fall as $$r^{-1}$$. The tension can be alleviated if this cluster is in fact a merger; a two halo model can also reconstruct the data, with both clumps (density going as $$r^{-0.8}$$ and $$r^{-1.0}$$) much more consistent with predictions from dark matter only simulations. At the resolution of our Dark Energy Survey imaging, we are unable to choose between these two models, but we make predictions for forthcoming Hubble Space Telescope imaging that will decisively distinguish between them.« less
  7. Flying across Galaxy Clusters with Google Earth: additional imagery from SDSS co-added data

    Galaxy clusters are spectacular. We provide a Google Earth compatible imagery for the deep co-added images from the Sloan Digital Sky Survey and make it a tool for examing galaxy clusters. Google Earth (in sky mode) provides a highly interactive environment for visualizing the sky. By encoding the galaxy cluster information into a kml/kmz file, one can use Google Earth as a tool for examining galaxy clusters and fly across them freely. However, the resolution of the images provided by Google Earth is not very high. This is partially because the major imagery google earth used is from Sloan Digitalmore » Sky Survey (SDSS) (SDSS collaboration 2000) and the resolutions have been reduced to speed up the web transferring. To have higher resolution images, you need to add your own images in a way that Google Earth can understand. The SDSS co-added data are the co-addition of {approx}100 scans of images from SDSS stripe 82 (Annis et al. 2010). It provides the deepest images based on SDSS and reach as deep as about redshift 1.0. Based on the co-added images, we created color images in a way as described by Lupton et al. (2004) and convert the color images to Google Earth compatible images using wcs2kml (Brewer et al. 2007). The images are stored at a public server at Fermi National Accelerator Laboratory and can be accessed by the public. To view those images in Google Earth, you need to download a kmz file, which contains the links to the color images, and then open the kmz file with your Google Earth. To meet different needs for resolutions, we provide three kmz files corresponding to low, medium and high resolution images. We recommend the high resolution one as long as you have a broadband Internet connection, though you should choose to download any of them, depending on your own needs and Internet speed. After you open the downloaded kmz file with Google Earth (in sky mode), it takes about 5 minutes (depending on your Internet connection and the resolution of images you want) to get some initial images loaded. Then, additional images corresponding to the region you are browsing will be loaded automatically. So far, you have access to all the co-added images. But you still do not have the galaxy cluster position information to look at. In order to see the galaxy clusters, you need to download another kmz file that tell Google Earth where to find the galaxy clusters in the co-added data region. We provide a kmz file for a few galaxy clusters in the stripe 82 region and you can download and open it with Google Earth. In the SDSS co-added region (stripe 82 region), the imagery from Google Earth itself is from the Digitized Sky Survey (2007), which is in very poor quality. In Figure1 and Figure2, we show screenshots of a cluster with and without the new co-added imagery in Google Earth. Much more details have been revealed with the deep images.« less
  8. Discovery of a new blue quasar: SDSS J022218.03-062511.1

    We report the discovery of a bright blue quasar: SDSS J022218.03–062511.1. This object was discovered spectroscopically while searching for hot white dwarfs that may be used as calibration sources for large sky surveys such as the Dark Energy Survey or the Large Synoptic Survey Telescope project. In addition, we present the calibrated spectrum, spectral line shifts and report a redshift of z = 0.521 ± 0.0015 and a rest-frame g-band luminosity of 8.71 × 10 11 L .
  9. The Sloan Digital Sky Survey Stripe 82 Imaging Data: Depth-Optimized Co-adds Over 300 deg$^2$ in Five Filters

    We present and release co-added images of the Sloan Digital Sky Survey (SDSS) Stripe 82. Stripe 82 covers an area of ~300 deg(2) on the celestial equator, and has been repeatedly scanned 70-90 times in the ugriz bands by the SDSS imaging survey. By making use of all available data in the SDSS archive, our co-added images are optimized for depth. Input single-epoch frames were properly processed and weighted based on seeing, sky transparency, and background noise before co-addition. The resultant products are co-added science images and their associated weight images that record relative weights at individual pixels. The depths of themore » co-adds, measured as the 5σ detection limits of the aperture (3.''2 diameter) magnitudes for point sources, are roughly 23.9, 25.1, 24.6, 24.1, and 22.8 AB magnitudes in the five bands, respectively. They are 1.9-2.2 mag deeper than the best SDSS single-epoch data. The co-added images have good image quality, with an average point-spread function FWHM of ~1'' in the r, i, and z bands. We also release object catalogs that were made with SExtractor. These co-added products have many potential uses for studies of galaxies, quasars, and Galactic structure. We further present and release near-IR J-band images that cover ~90 deg(2) of Stripe 82. These images were obtained using the NEWFIRM camera on the NOAO 4 m Mayall telescope, and have a depth of about 20.0-20.5 Vega magnitudes (also 5σ detection limits for point sources).« less

Search for:
All Records
Creator / Author
"Annis, James"

Refine by:
Resource Type
Publication Date
Creator / Author
Research Organization