skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Quasicontinuum Study of Nanovoid Collapse under Uniaxial Loading in Ta

Journal Article · · Acta Materalia, N/A, no. 10, May 17, 2008, pp. 2389-2399
OSTI ID:944325

The mechanisms underlying the deformation of nanovoids in Ta single crystals are analyzed when they are subjected to cyclic uniaxial deformation using numerical simulations. Boundary and cell-size effects have been mitigated by means of the Quasicontinuum (QC) method. We have considered {approx} 1 billion-atom systems containing 10.9 nm voids. Two kinds of simulations have been performed, each characterized by a different boundary condition. First, we compress the material along the nominal [0 0 1] direction, resulting in a highly symmetric configuration that results in high stresses. Second, we load the material along the high-index [{bar 4}819] direction to confine plasticity to a single slip system and break the symmetry. We find that the plastic response under these two conditions is strikingly different, the former governed by dislocation loop emission and dipole formation, while the latter is dominated by twinning. We calculate the irreversible plastic work budget derived from a loading-unloading cycle and identify the most relevant yield points. These calculations represent the first fully three-dimensional, fully non-local simulations of any body-centered cubic metal using QC.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
944325
Report Number(s):
UCRL-JRNL-236991; TRN: US200902%%687
Journal Information:
Acta Materalia, N/A, no. 10, May 17, 2008, pp. 2389-2399, Vol. 56, Issue 10
Country of Publication:
United States
Language:
English

Similar Records

Uniaxial, Pure Bending, and Column Buckling Experiments on Superelastic NiTi Rods and Tubes
Journal Article · Fri Mar 23 00:00:00 EDT 2018 · International Journal of Solids and Structures · OSTI ID:944325

Finite-Temperature Non-equilibrium Quasicontinuum Method based on Langevin Dynamics
Journal Article · Fri May 08 00:00:00 EDT 2009 · Modelling and Simulation in Materials Science and Engineering · OSTI ID:944325

X-ray measurement of lattice strains in textured low carbon steel under uniaxial loading
Journal Article · Wed Mar 01 00:00:00 EST 1995 · Metallurgical Transactions, A · OSTI ID:944325