skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Use of Solid Hydride Fuel for Improved long-Life LWR Core Designs

Technical Report ·
DOI:https://doi.org/10.2172/881855· OSTI ID:881855

The primary objective of this project was to assess the feasibility of improving the performance of PWR and BWR cores by using solid hydride fuels instead of the commonly used oxide fuel. The primary measure of performance considered is the bus-bar cost of electricity (COE). Additional performance measures considered are safety, fuel bundle design simplicity – in particular for BWR’s, and plutonium incineration capability. It was found that hydride fuel can safely operate in PWR’s and BWR’s without restricting the linear heat generation rate of these reactors relative to that attainable with oxide fuel. A couple of promising applications of hydride fuel in PWR’s and BWR’s were identified: (1) Eliminating dedicated water moderator volumes in BWR cores thus enabling to significantly increase the cooled fuel rods surface area as well as the coolant flow cross section area in a given volume fuel bundle while significantly reducing the heterogeneity of BWR fuel bundles thus achieving flatter pin-by-pin power distribution. The net result is a possibility to significantly increase the core power density – on the order of 30% and, possibly, more, while greatly simplifying the fuel bundle design. Implementation of the above modifications is, though, not straightforward; it requires a design of completely different control system that could probably be implemented only in newly designed plants. It also requires increasing the coolant pressure drop across the core. (2) Recycling plutonium in PWR’s more effectively than is possible with oxide fuel by virtue of a couple of unique features of hydride fuel – reduced inventory of U-238 and increased inventory of hydrogen. As a result, the hydride fuelled core achieves nearly double the average discharge burnup and the fraction of the loaded Pu it incinerates in one pass is double that of the MOX fuel. The fissile fraction of the Pu in the discharged hydride fuel is only ~2/3 that of the MOX fuel and the discharged hydride fuel is more proliferation resistant. Preliminary feasibility assessment indicates that by replacing some of the ZrH1.6 by ThH2 it will be possible to further improve the plutonium incineration capability of PWR’s. Other possibly promising applications of hydride fuel were identified but not evaluated in this work. A number of promising oxide fueled PWR core designs were also found as spin-offs of this study: (1) The optimal oxide fueled PWR core design features smaller fuel rod diameter of D=6.5 mm and a larger pitch-to-diameter ratio of P/D=1.39 than presently practiced by industry – 9.5mm and 1.326. This optimal design can provide a 30% increase in the power density and a 24% reduction in the cost of electricity (COE) provided the PWR could be designed to have the coolant pressure drop across the core increased from the reference 29 psia to 60 psia. (2) Using wire wrapped oxide fuel rods in hexagonal fuel assemblies it is possible to design PWR cores to operate at 54% higher power density than the reference PWR design that uses grid spacers and a square lattice, provided 60 psia coolant pressure drop across the core could be accommodated. Uprating existing PWR’s to use such cores could result in 40% reduction in the COE. The optimal lattice geometry is D = 8.08 mm and P/D = 1.41. The most notable advantages of wire wraps over grid spacers are their significant lower pressure drop, higher critical heat flux and improved vibrations characteristics.

Research Organization:
Univ. of California (United States)
Sponsoring Organization:
USDOE - Office of Energy Research (ER)
DOE Contract Number:
FG07-02SF22615
OSTI ID:
881855
Report Number(s):
DOE/SF/22615-1; TRN: US0702702
Country of Publication:
United States
Language:
English