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Abstract

Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural
gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal
beds, where CO, is preferentially adsorbed, displacing methane. Black shales may similarly
desorb methane in the presence of CO,.

Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were
sampled to determine CO, and CH,4 adsorption isotherms. Sidewall core samples were acquired
to investigate CO, displacement of methane. An elemental capture spectroscopy log was
acquired to investigate possible correlations between adsorption capacity and mineralogy.

Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and
condensate hydrocarbon maturity range). Total organic content determined from acid-washed
samples ranges from 0.69 to 14 percent. CO, adsorption capacities at 400 psi range from a low
of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation
between measured total organic carbon content and the adsorptive capacity of the shale; CO,
adsorption capacity increases with increasing organic carbon content.

Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of
CO; in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28
billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the
black shales of Kentucky prove to be a viable geologic sink for CO,, their extensive occurrence
in Paleozoic basins across North America would make them an attractive regional target for
economic CO, storage and enhanced natural gas production.
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Executive Summary

Increased emissions of CO,, especially from the combustion of fossil fuels, are being
linked to global climate change and are of considerable global concern. These concerns are
driving initiatives to develop carbon management technologies, including geologic sequestration
of CO,. One option for sequestration may be Devonian black shales, organic-rich rocks that
serve as both the source and trap for natural gas. Most of the natural gas is adsorbed on clay
and kerogen surfaces, very similar to the way methane is stored within coal beds. It has been
demonstrated in gassy coals that, on average, CO, is preferentially adsorbed, displacing
methane at a ratio of two for one. Black shales may similarly desorb methane in the presence of
adsorbing CO.. If this is the case, black shales may be an excellent sink for CO, and have the
added benefit of serving to enhance natural-gas production. A bibliography of Devonian shale
has been compiled to identify previous work and provide supporting data for continued
research.

Because of the volume of material lost during washing the sampling protocol was
modified to collect cuttings before washing. Unwashed candidate samples have been selected
and are being prepared for total organic carbon, vitrinite reflectance, and petrographic and CO,
adsorption analyses to determine the gas-storage potential of the shale and to identify shale
facies with the most sequestration potential. For the Devonian shale, average total organic
carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16.

Columbia Natural Resources (CNR) has provided access to a selected drill hole of
opportunity for collecting sidewall cores and an elemental capture spectroscopy (ECS) logging
suite for correlation and mineralogical analysis. A shale analysis integrating the standard
nuclear log suite and ECS log data has been acquired. The data from this log analysis is being
correlated with the adsorption data. Sidewall cores were submitted for methane and CO,
adsorption isotherms and methane displacement analyses. The results of the displacement and
flow through experiments are pending.

All samples from the CNR well were submitted for TOC and CO, adsorption analyses
including samples from the New Albany Shale (Illinois Basin) and the Battelle deep well in
Mason County, West Virginia (AEP #1). Methane adsorption isotherms are being obtained on all
most recently submitted samples. X-ray diffraction analyses have been conducted to assist in
mineral characterization and correlating results from electron capture spectroscopy logging.

In cooperation with Interstate Natural Gas, Pikeville, Kentucky, another ECS log and 10
sidewall cores were acquired for a shale well in Martin County. The shale gas analytical model
developed by Schlumberger was applied to the logs for this well. Five sidewall core samples
were analyzed for quantitative x-ray diffraction, porosity, and permeability. Mineralogically,
guantitative x-ray diffraction data from this well average 46% quartz and 39% clay minerals.
Phyllosilicate minerals (clays and mica) include lllite, Kaolinite, and Chlorite. As received,
porosity averaged 0.9 percent and permeability averaged 0.0005 millidarcys. CO, adsorption
isotherm data using whole rock (not crushed) techniques and data have been received for one
of 5 sidewall cores. The reported Langmuir volume is 174.75 scf/ton and the Langmuir pressure
is 993.88 psia.

Adsorption capacity reported as measured langmuir volumes ranges from 37 to 2,078
standard cubic feet CO, per ton of shale (scf/ton) at langmuir pressures ranging from 243 to
14,284 psia. These values represent the range of values for coefficients of the selected
langmuir model. At a constant pressure of 400 psia indicate the CO, adsorption capacity ranges
from 14 to 136 scf/ton with a median value of 40 scf/ton. Methane adsorption capacity ranges
from 2 to 38 scf/ton with a median value of 8 scf/ton. At 400 psia, CO, adsorption exceeds CH,
adsorption by a factor of 5. These data are being correlated with data from nuclear log suites for
modeling TOC and CO, storage capacity for individual wells.
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Gamma ray and density log data have been digitized for 18 wells in the Big Sandy Gas
field. These data have been correlated and models are being developed to calculate CO,
sequestration capacity as adsorbed gas in place from the shale density log data. ASCII text files
of digital log data for 722 wells throughout Kentucky have been converted to log ASCII standard
(LAS) format and loaded into mapping software for calculation and spatial analysis of TOC and
CO, adsorption capacity.

Initial estimates at 68 scf/ton indicate a sequestration capacity of 5.3 billion tons CO, in
the Lower Huron Member of the Ohio shale in parts of eastern Kentucky. At 500 psia,
adsorption capacity of the Lower Huron Member of the shale averages 72 scf/ton. Assuming a
thickness weighted average adsorption capacity of 40 scf/ton (at 400 psia), as much as 28
billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The
black shales of Kentucky could be a viable geologic sink for CO,, and their extensive
occurrence in Paleozoic basins across North America would make them an attractive regional
target for economic CO, storage and enhanced natural gas production.

Accomplishments this quarter:

Convert 722 ASCII text files of digital log data to LAS format

Load LAS digital log files to Petra software for analysis and mapping

Complete XRD, porosity, and permeability analyses for the Interstate #3 Jude well
Complete CO, adsorption isotherm for 1 sidewall core (whole rock) for the Interstate #3
Jude well

e Acquire (Schlumberger) Well Montage Shale Analysis logs for the CNR and Interstate
wells. Begin analysis and correlation of these data.

M:\DevShSeq\DOEReports\41442R12.doc Page 2
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Technology Transfer Summary

o NE/SE Combined GSA Section Meeting, April 2-5, 2002, Lexington, KY

¢ 2nd National Conference on Carbon Sequestration (NETL), May 5-8, 2003, Alexandria,
Virginia: (poster session)

¢ Kentucky Oil and Gas Association Annual Meeting, June 23-25, 2003, Louisville, Kentucky

e 2003 GSA Annual Meeting and Exposition, November 2-5, 2003, Seattle, Washington

o NE/SE Combined GSA Section Meeting, March 25-27, 2004, Washington, DC

o DOE/NETL Carbon Sequestration Project Review, March 29 to April 1, 2004, Pittsburgh,
Pennsylvania

o AAPG Annual Meeting, April 18-21, 2004, Dallas, Texas.

e 3" Annual Conference on Carbon Sequestration (NETL), May 2-6, 2004, Alexandria,

Virginia.

e 7" International Conference on Greenhouse Gas Control Technologies, September 5-9,
2004, Vancouver, British Columbia, Canada

o AAPG Eastern Section, October 3-7, 2004, Columbus, Ohio
Regional Carbon Sequestration Partnership Geologic Characterization Working Group
Workshop, Houston, Texas

e 2004 GSA Annual Meeting and Exposition, November 7-10, Denver, Colorado

e 4" Annual Conference on Carbon Sequestration (NETL), May 2-5, 2005, Alexandria,
Virginia

e AAPG Annual Meeting, June 19-22, 2005, Calgary, Alberta, Canada

e AAPG Eastern Section, October 18-20, 2005, Morgantown, West Virginia: (upcoming,
abstract accepted)

Introduction

Carbon dioxide (CO,) is an efficient heat-trapping gas occurring in Earth's atmosphere.
Over the past decades, there has been a growing concern that anthropogenic emissions of CO,
are contributing to a systematic warming of Earth's climate; that is, global warming. The majority
of anthropogenic emissions of CO, are from fossil fuel combustion. Electric power generation,
transportation fuels, and industrial applications are highly dependent on coal, crude oil, and
natural gas. It is estimated that the reliance on fossil fuel combustion will extend well into the
21st century (EIA, 2000). In Kentucky, 95 percent of the total electric generation capacity relies
on fossil fuels (EIA, 2002, Table 4), with annual emissions of 87 million metric tonnes of CO,
(EIA, 2002, Table 7).

CO, emissions can be decreased by increasing the efficiency of fossil fuel combustion
processes, switching to alternate and renewable fuels (biomass, nuclear, solar, wind), and
capturing and sequestering CO,. Each of these methods will undoubtedly be used to achieve
goals for addressing global warming and meet increasing energy demands. For sequestering
CO,, marine and terrestrial options are being researched, but geologic sequestration is the
focus of this project. Geologic sequestration includes long-term carbon storage in old oil and
gas fields, coals, saline aquifers, and unconventional reservoirs.

Usually considered to be the seal for conventional oil and gas reservoirs, gas shales
warrant study as a possible sequestration option. This research tests the hypothesis that
organic- and gas-rich black shales can adsorb significant amounts of CO,. In carrying out the
research, the Devonian black shales of Kentucky are being tested in the laboratory to determine
their CO, sorption capacity using powdered drill cuttings and sidewall cores. The ability of
sorbed CO; to displace methane is being tested on sidewall cores in order to assess the
potential for enhanced natural gas production from the shales.
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Organic matter in the Devonian gas shales has large surface areas similar to that found
in coal. Coal seams are currently being investigated as potential sequestering sites for CO,, the
most important greenhouse gas (IEA Coal Research, 1999). Naturally occurring organic matter
(kerogen) is a microporous material that possesses a very high surface area and hence sorption
capacity for gas. In the subsurface, coal commonly has economically significant amounts of
sorbed methane (coalbed methane). Because organic matter has a greater sorption affinity for
CO, than methane, injection of CO, with simultaneous production of methane may be viable
(see Reznik and others, 1982; Bachu and Gunter, 1998). Currently a pilot CO, injection project
is under way in Alberta, led by the Alberta Research Council and a consortium of petroleum
companies. In the San Juan Basin, New Mexico, Amoco has carried out a pilot investigation of
CO; injection, and Burlington Resources is currently evaluating the utility of CO, injection to
enhance recovery of methane from coal. Results from these tests have shown that CO; injection
and co-production of coalbed methane is technically and economically feasible. Since 1996,
over 57 million m® of CO, has been sequestered in Cretaceous coal of the San Juan Basin, New
Mexico. The question is: can Devonian gas shales adsorb sufficient amounts of CO,, making
them significant targets for CO, sequestration?

Study Area

The study area is primarily confined to the major gas-producing area of the Ohio Shale
in the Big Sandy Gas Field, eastern Kentucky (Figure 1, main concentration of producing
localities). As key wells and available samples are identified, wells in deep (at least 1,000 feet)
and thick (at least 50 feet) areas will be included. The Devonian New Albany Shale in two lllinois
Basin wells in Indiana have been sampled. Battelle has contributed drill cuttings through the
Devonian Lower Huron Member of the Ohio Shale from their deep AEP CO, segestration
project well in Mason County, W. Va.

Regional Geology

Thinly bedded, fissile gray and black (carbonaceous) shales of Early Mississippian and
Late Devonian age occur in the subsurface of nearly two-thirds of Kentucky. In general, the
shales are thicker and deeper in eastern and western Kentucky (Figure 1) and are absent in the
Bluegrass Region of central Kentucky and the Mississippi Embayment Region in the Jackson
Purchase area of extreme western Kentucky. Along the axis of the Cincinnati Arch in central
Kentucky, the thickness of the shale is usually 50 feet or less. The shale thickens eastward to
more than 1,700 feet in Pike County. The shale is exposed in outcrop around the margin of the
Jessamine Dome (along the perimeter of the Inner and Outer Bluegrass Regions of central
Kentucky) and along the Cumberland River drainage in south-central Kentucky. A subcrop of
the shale has been identified beneath the Cretaceous sediments of the Mississippi Embayment
Region of western Kentucky. Figure 2 shows the elevation of the top of the Devonian shale in
Kentucky and illustrates the progressive deepening of the shale east and west of the Cincinnati
Arch area of central Kentucky.

Stratigraphy

Figure 3 shows the distribution of the Devonian shales in Kentucky, known variously as
the New Albany (lllinois Basin), Chattanooga (central Kentucky, Cincinnati Arch area), and Ohio
(Appalachian Basin) Shales. Reservoir integrity for CO, sequestration is a concern. Figure 4
provides a composite general geologic column illustrating more than 3,800 feet of Mississippian
and Pennsylvanian lithologies, including carbonate, sand, shale, and coal that have proven an
effective seal for existing shale gas resources. The assumption that sequestration will take
place in the shale at depths of at least 1,000 feet recognizes the possible limitations of a
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fractured reservoir to act as an effective seal. Testing the integrity of this seal with respect to
CO2 is beyond the scope of this project and will be the subject of any subsequent CO2 injection
demonstration project.

The Ohio Shale is subdivided into seven recognizable units (Figure 5): Cleveland Shale,
Three Lick Bed, Upper, Middle, and Lower Huron, Olentangy, and Rhinestreet. In the
subsurface, these units have been differentiated based on gamma ray and density differences
that are essentially related to the organic-matter content of the shale. The upper most black,
carbonaceous shales (Cleveland and Upper Huron) pinch out eastward into gray, more clastic
sequences correlative to the Three Lick Bed, herein called the Chagrin Shale. The Olentangy
and Rhinestreet black shales correspond to the Java Formation of West Virginia, and thin and
pinch out westward. Some authors consider that the Olentangy and Rhinestreet are members of
the Devonian Ohio Shale. Although they are not everywhere present in the subsurface in the
study area, the units are included in the analyses where samples are available.

Production

The first Devonian shale gas wells were drilled between 1863 and 1865 in Meade
County, west-central Kentucky, and were used to fuel street lamps and provide heat in
Louisville. Shale gas was discovered in eastern Kentucky circa 1892 in Floyd County (Hoeing,
1905). Overall, cumulative Devonian shale gas production in Kentucky probably exceeds 84.9
billion cubic meters (bm?); gas in place is estimated by various investigators to be between 26
trillion cubic meters (tm®) and 73 tm*® (Hamilton-Smith, 1993, p. 5). According to production data
on file at the Kentucky Geological Survey, the giant Big Sandy Gas Field of Floyd, Knott,
Letcher, Martin, and Pike Counties produced 77 percent of the nearly 2.5 bm? of natural gas
produced in Kentucky in 2003.

Reservoir parameters for the Big Sandy Gas Field were summarized in the "Atlas of
Major Appalachian Gas Plays" (Boswell, 1996). The average completed interval exceeds 500
feet in thickness. Average porosity is 4.3 percent, with a maximum of 11 percent. Reservoir
temperature averages 84°F, with an initial reservoir pressure of 800 psi or more. Current
reservoir pressure averages 400 psi. Limited permeability data are available, but indicate less
than 0.1 millidarcy of matrix permeability. Analyses of sidewall core samples acquired for this
project from the Interstate no. 3 Jude well, Martin County, indicate permeability averages 0.0005
millidarcys. Fracture permeability may exceed several hundred millidarcys.

Drilling and completions target organic-rich intervals with abundant natural fractures,
mostly in the Lower Huron Member of the Ohio Shale (Figure 5) of eastern Kentucky. The
completion often consists of multiple completions including the Sunbury to Upper Huron interval
with the Lower Huron completed separately. Completions in the gray, more clastic, shale
intervals (Three Lick Bed/Chagrin and Middle Huron are typical only where temperature,
density, and audio anomalies indicate fracturing of the shale. Nitrogen is typically used as the
carrier fluid in hydraulic fracturing stimulations, which are intended to intersect with and enhance
any natural fractures. Sand is employed as a proppant to maintain an open fracture system. The
industry rule of thumb is that a shale well can be expected to produce 300 million cubic feet of
natural gas (MMcf). Some wells often produce from 500 MMcf to more than 1 billion cubic feet.
Devonian shale gas production tends to be long-term. This long-term production (with many
wells exhibiting flat, or inclining production; see Figure 6) and high organic content suggest the
shale contains a large component of adsorbed methane.
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Methods

Drill Cuttings

Drill cuttings on file at the Kentucky Geological Survey Well Sample and Core Library
and sidewall cores are the main source of material for analysis. Unwashed sets of recently
acquired drill cuttings were used to minimize weathering of material and to maximize volume of
material for analysis. Drill cuttings are commonly collected during drilling in 5- to 10-foot
intervals and consist of a mix of chipped rock fragments and powder. Distribution and
stratigraphy of the Devonian shale in eastern Kentucky suggest dividing well cuttings into up to
three samples for adsorption analysis. The upper part of the shale from the Cleveland Member
to the Middle Huron is generally less organic-rich, as indicated by the gamma-ray response on
standard geophysical well logs (Figure 5). Drill cuttings of this sequence generally have a lighter
gray color and more recognizable quartz material than the darker gray to black samples with
sparse pyrite that are characteristic of the Lower Huron Member. In some areas of the Big
Sandy Gas Field, the Olentangy and Rhinestreet Members of the Ohio Shale are present but
have a somewhat lesser organic content as indicated by gamma-ray logs. Where present, these
shales were composited as a separate sample. Some wells have an insufficient volume of
cuttings available to analyze the individual members of the Ohio Shale; in these cases the entire
shale sequence was composited into a single sample. The rock chip and powder samples were
divided into two splits: one for TOC, vitrinite reflectance, and X-ray diffraction analyses, and one
for determination of CO, isotherms. Each split was then milled and seived to the specifications
of the respective analytical technique.

M:\DevShSeq\DOEReports\41442R12.doc Page 6
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DEYSHALE - CO2 Sequestration in the Devonian Shale
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FiguFe 7 shows the location of wells sampled to date in eastern Kentucky.

Total Organic Carbon

To investigate any relation between organic content and CO, sorption capacity, total
organic carbon content (TOC) is being determined. For total organic carbon analyses, samples
were first crushed to a maximum particle size of 200 microns (—-60 mesh). Samples were run in
duplicate. One split was run “as is.” Another split was treated with 30 percent hydrochloric acid
(HCI) for 12 to 24 hours to remove any carbonate minerals from the matrix, prior to analysis.
Although carbonate minerals are typically a rare component of Devonian shales, they present a
possible bias in the calculation of TOC. Like organic material, carbonate minerals dissociate in
the combustion chamber and form CO,. The hydrochloric acid was removed by repeated
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washings with distilled water, followed by centrifugation. The samples were then placed in a
drying oven (50°C).

Total organic carbon was measured on a LECO SC-144 DR dual range sulfur and
carbon analyzer, which is a nondispersive, infrared, digitally controlled instrument designed to
measure sulfur and carbon in a wide variety of organic and inorganic materials. The unit
combusts samples in a pure oxygen environment at 1,350°C. Sulfur compounds are
immediately oxidized and form sulfur dioxide (SO,); carbon compounds are oxidized to CO,.
From the combustion system, sample gases pass through two tubes containing magnesium
perchlorate (MgCIlQO,), which removes moisture, and then are routed to the infrared (IR)
detection cells. A sulfur IR cell measures the amount of SO, present in the gas stream, and a
carbon IR cell does the same for CO,. All molecules, with the exception of bipolar species (e.g.,
N2, H,, O,), absorb energy in the infrared region. As radiant energy is projected through the
sample material an IR absorption spectrum is produced. Since no two molecules produce the
same spectrum, the identity and quantity of a compound can be readily, and accurately,
determined.

An anomaly was noted in the last group of samples submitted for TOC determination;
the carbon content after acid washing was consistently higher than the content as received. A
new TOC standard has been selected and the samples were reanalyzed. It was determined that
the observed difference in TOC content before and after washing were smaller than instrument
error. This indicated that very little, if any, inorganic carbon was present in the samples. The
Montage Well Shale Analysis modeling of both the CNR and Interstate wells indicate
concentrations of calcite cemented mudstones that may represent the occurrence of flooding
surfaces as noted in the work by MacQuaker (2005) on the Mancos Shale, Book Cliffs, Utah.

Vitrinite Reflectance

Vitrinite reflectance is used as a measure of the maturity of the organic matter in shale
and that maturity may influence CO2 sorption capacity. Mean random reflectance (Rorandom) ON
dispersed vitrinite particles in the samples was determined on a Zeiss USMP incident light
microscope calibrated using glass standards of known reflectance. Depending on the amount of
vitrinite in the samples, 50 or 100 grains were measured at a magnification of 640x to determine
mean reflectance. Mean random reflectance was used because it eliminates the need to rotate
the stage to determine maximum and minimum reflectance values. As the vitrinite particles in
the analyzed samples were quite small (usually less than 10 microns), stage rotation simply
wasn'’t practical, because it often resulted in the reflectance measuring spot moving off the
grain. Maximum vitrinite reflectance values (Romax) Can be estimated by multiplying the mean
random measurements by 1.066 (Ting, 1978).

Adsorption Isotherms

The classic theory used to describe the type | isotherm for microporous materials with
small external surface area is based on the Langmuir equation (1916). The type | isotherm
displays a steep increase in adsorption at low relative pressures due to enhanced adsorption
caused by the overlapping adsorption potentials between the walls of pores whose diameters
are commensurate in size with the adsorbate molecule. The type | isotherm then flattens out
into a plateau region at higher relative pressure, which is believed to be caused by the
completion of a monolayer of adsorbed gas. The micropore volume is thought to then be filled
by only a few molecular layers of adsorbate, and further uptake is limited by the dimensions of
the micropores.

The Langmuir model assumes that a state of dynamic equilibirum is established
between the adsorbate vapor and the adsorbent surface and that adsorption is restricted to a
single monolayer. The adsorbend surface is thought to be composed of a regular array of
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energetically homogeneous adsorption sites upon which an adsorbed monolayer is assumed to
form. The rate of condensation is assumed to be equal to the rate of evaporation from the
adsorbed monolayer at a given relative pressure and constant temperature. The Langmuir
equation was developed with these assumptions and takes the following form:

P_1

P
V BV, V,

where P is the equilibrium pressure, V is the volume of gas adsorbed at equilibrium, Vm is the
volume of adsorbate occupying the monolayer, and B is an empirical constant. A plot of P/V vs.
relative pressure should yield a straight line whose slope will yield Vm, from which the surface
area may be obtained.

The Langmuir isotherm can be written:

V(P)= VP
P+P
P = gas pressure
V(P) = predicted amount of gas adsorbed at P
VL = Langmuir volume parameter
PL = Langmuir pressure parameter

The difference between the measured amount of gas adsorbed (V(P)) and that predicted
using the Langmuir equation (Vi(P)) is a measure of error and is given as:

Err(P)=V,(P)-V(P)

This error may be positive or negative. The square of the error is always positive and is
a measure of how well the calculated isotherm matches the data. This error can be calculated
for each point and summed giving a measure of the overall error:

N
SSE = ) Err?
i=1

N = number of measured points

The goodness of fit of the isotherm is expressed by calculating the correlation coefficient
between the measured points and the calculated points. The results generally yield correlations
that are better than r? = 0.99, and standard errors of Langmuir volumes of +2 percent. The
reported CO, sorption capacity and corresponding pressure are calculated coefficients of the
Langmuir model and are used to determine the sorption capacity at reservoir-appropriate
pressures.

Adsorption analyses were performed using a high-pressure volumetric adsorption
technique similar to that described by Mavor and others (1990). Isotherms were measured on a
custom-made apparatus modeled after a similar module designed and built at CSIRO in Lucas
Heights, Australia. The apparatus is based on Boyle’s Law. In simple terms, a known volume of
gas within a reference cell is used to dose a sample cell that contains the sample. The amount
of gas adsorbed in the sample cell is then determined, based on a change in pressure in the

M:\DevShSeq\DOEReports\41442R12.doc Page 9



Kentucky Geological Survey 07/28/05

sample cell using the Real Gas Law. Following dosing of the sample cell, the pressure drops
until equilibrium is reached (i.e., no more gas can be adsorbed by a sample at a particular
pressure). When equilibrium is reached, the sample is dosed at a higher pressure. Typically, 11
separate pressure points are selected and measured so that a Langmuir regression curve can
be accurately generated. The pressures in the reference and sample cells are measured using
pressure transducers that are interfaced to a computer equipped with special boards and
software. The computer monitors the transducers and determines when equilibrium is reached;
it also controls valves and switches for dosing and purging the cells.

Sidewall Cores for Adsorption and Methane Displacement

Laboratory investigation of methane displacement in the presence of CO; is being
performed on whole rock core samples. In cooperation with Columbia Natural Resources,
access to a well in Knott County, eastern Kentucky, was obtained for logging and collection of
sidewall cores. Schlumberger Oilfield Services provided elemental capture spectroscopy logging
for mineral identification and obtained the sidewall cores. The sidewall core plugs are being
saturated with methane. To test the potential for enhanced natural gas production, the cores are
being subjected to simulated injection of CO,, and the amount of methane displaced during
injection is being measured. Laboratory setup and analyses are similar to the standard
procedure for obtaining adsorption isotherms. The results from this flow-thru experiment are
pending.

Mineralogy: Elemental Capture Spectroscopy and X-Ray Diffraction

Elemental capture spectroscopy (ECS) is an advanced tool used for lithology and
mineral determination that uses the same technology employed by NASA on the Mars Rover
missions. An AmBe neutron source is used to activate a formation. Relative elemental yields are
derived using fourier transform infrared spectroscopy analysis to identify 23 elements. Primary
elements measured include: Si, Ca, Fe, S, Ti, Gd, Cl, and H. The relative abundance of these
elements has been correlated with particular minerals and sedimentary lithologies (Herron and
Herron, 1997 and Schlumberger, 2000). To supplement the ECS log, x-ray diffraction (XRD)
data are being acquired. Samples for XRD analysis are pulverized to 200 mesh or smaller and
side packed.

Geophysical Logs

A gamma-ray density (GRD) log suite is typically available for shale wells drilled within
the past few decades. More recently, the standard open-hole log suite has expanded to include
temperature, audio, density porosity, and lithology (photoelectric effect) determinations.
Schmoker (1979, 1993) developed a model for determining TOC of the shale from formation
density log data. Shale can be considered a mixture of three components: clay minerals, quartz-
feldspar-mica, and organic matter. Schmoker (1979) suggests the organic matter content is the
main contributing factor to observed variations in shale density. Using Schmoker’s (1993, p. J4)
method, TOC for intervals can be estimated from density logs using the equation:

TOC = 55.822[& - 1}
o,

R = maximum density of gray shale intervals
(typically 2.67 to 2.72 glcm®)

P = formation density from log
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Schlumberger QOilfield Services has developed a shale analysis model that uses a
standard nuclear log suite (Schlumberger Platform Express service) and an ECS log. This
model provides detailed continuous lithologic and mineralogic interpretations, TOC, gas content,
and reserves estimates.

Sequestration Capacity of the Shale

ArcView GIS software was used to develop a method to compile an estimate of the
sequestration capacity of the shale. The method uses a cell-based approach that enables
combining shale thickness and depth information in the form of continuous grids with shale
density and spatially variable CO, adsorption capacity data. Preliminary estimates were
compiled using a uniform, minimum CO, adsorption capacity and include data projected into the
Illinois Basin portion of western Kentucky.

Results to Date

Fourty-three samples have been collected from 11 wells, including three cuttings
samples, 10 sidewall cores from the Columbia Natural Resources No. 24752 Elkhorn Coal
Corporation well in Knott County (Figure 8), and 10 sidewall cores from the Interstate Natural
Gas No. 3 John Jude Heirs in Martin County. Data for completed analyses are presented in
Table 1. In recognition of the regional nature of the potential reservoir, both the Midwest
Geologic Sequestration Consortium (lllinois Basin, ISGS) and the Midwest Regional Carbon
Sequestration Partnership (Appalachian Basin, Battelle) were contacted to obtain shale
samples. lllinois Basin core samples and drill cuttings from the Battelle AEP test well have been
acquired and were analyzed for CO, adsorption capacity and TOC.

Rorandom Values (Table 1) range from a minimum of 0.78 to 1.59 with a median of 1.1 and
a mean of 1.2. This places the shale in the upper oil to wet gas and condensate maturity range
as measured by reflectance. In Figure 9. Mean random reflectance (RO andom), axis labels refer
to the upper (right) end of the graphed class.

The currently available adsorption isotherms are presented in Figure 10. The Langmuir
volume and pressure data reported in Table 1 must be compared on a uniform pressure basis
by formation. These summary data are shown in Table 2 which provides calculated adsorption
capacities at three pressure values that are expected to be typical of the range of observed
Devonian shale gas reservoir conditions. To effectively compare capacity data derived from
adsorption isotherms, three pressure conditions were selected: 200, 400, and 600 psia. These
comparison data are presented in Figure 12.

Columbia Natural Resources (CNR, now owned by Triana) drills a number of Devonian
shale gas wells in eastern Kentucky as a normal part of their resource development program. A
drill hole of opportunity was identified and sidewall cores and logs were obtained from the well.
An elemental capture spectroscopy (ECS) log was obtained. The cores have been submitted for
laboratory analysis by saturation with CH, and analysis of CH, displacement efficiency as CO,
is injected into the core. The CNR well number 24752 Elk Horn Coal Company is located in
eastern Knott County (Figure 8).

A second ECS log was acquired by Interstate Natural Gas Company, Pikeville, Kentucky
for their No. 3 John Jude Heirs well in Martin County. As of this writing, the ECS log and the
derived Schlumberger well montage shale analysis are being held proprietary. Copies have
been secured and permission is being sought to include the data in the final report. For this well,
ten sidewall cores were acquired in closely spaced (less than one vertical foot apart) pairs. One
core of each pair was subdivided: one sample for quantitative X-ray diffraction analysis and the
other sample for porosity and permeability analysis. The second core plug of each sample pair
was submitted for whole rock CO2 adsorption analysis. Available data are provided in Appendix
D. In summary, quantitative x-ray diffraction data from this well average 46% quartz and 39%
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clay minerals. Identified phyllosilicate minerals (clays and mica) include lllite, Kaolinite, and
Chlorite. As received, porosity averaged 0.9 percent and permeability averaged 0.0005
millidarcys. CO, adsorption isotherm data using whole rock (not crushed) techniques and data
have been received for one of 5 sidewall cores. The reported Langmuir volume is 174.75 scf/ton
and the Langmuir pressure is 993.88 psia.

An ECS log presents dry weight fractions of major lithologic components including
silicates (quartz, feldspar, and mica), clay minerals, and carbonates. Figure 13 shows a portion
of the ECS log through the Lower Huron Member of the Devonian Ohio Shale in the CNR well
24725 Elk Horn Coal. As measured on the ECS log through the complete Ohio Shale interval,
the dry weight fraction of clay ranges from a minimum of 25 percent to a maximum of 71
percent. The mean clay content is 55 percent and the mode is 63 percent. Figure 14 shows a
typical whole rock x-ray diffraction trace indicating the presence of lllite, Kaolinite, Pyrite, and
Quartz. Another clay mineral (indicated by “M” in the figure) is most likely an authigenic
Smectite (possibly Montmorillonite). Hosterman and Whitlow (1983) reported an lllite-Smectite
mixed layer clay (consistent with Montmorillonite).

Ten sidewall cores were recovered from the CNR 24752 Elk Horn Coal well and are
summarized in Appendix C. Of these cores, 7 were intact and have been submitted for CO2
adsorption and methane displacement analysis. The three broken cores are being analyzed for
solvent extraction for chromatographic analysis identify any light hydrocarbons present and for
petrographic analysis. Appendix C also includes sections of the litho-density and elemental
capture spectroscopy logs acquired. Adsorption capacity reported as measured langmuir
volumes ranges from 37 to 2,078 standard cubic feet CO2 per ton of shale (scf/ton) at langmuir
pressures ranging from 243 to 14,284 psia (

Table 2). These values represent the range of values for coefficients of the selected
langmuir model. At a constant pressure of 400 psia, the indicated CO2 adsorption capacity
ranges from 14 to 136 scf/ton with a median value of 40 scf/ton. Methane adsorption capacity
ranges from 2 to 38 scf/ton with a median value of 8 scf/ton (Table 3). At 400 psia, CO2
adsorption exceeds CH4 adsorption by a factor of 5.3 (Figure 11).

A direct relationship has been observed between total organic content and the
adsorption capacity of the shale. Figure 15 shows the relation by formation analyzed. (It should
be noted that the Indiana Selmeir (New Albany Shale) samples were specifically chosen for
their high organic content.) It was observed that two samples are enriched with respect to the
amount of CO, that can be adsorbed based on organic carbon content. When these outliers are
included in regression analysis, the correlation coefficient is 0.80 (at the 95 pecent level of
confidence). Excluding the outliers, the correlation coefficient improves to 0.96 (at the 95
percent level of confidence).

Gamma ray and density logs have been digitized for 18 shale wells including all wells for
which adsorption data were acquired and supplemental wells needed to construct a detailed
cross section sub-parallel to regional dip through the main part of the Big Sandy Gas Field. The
cross section, Figure 16, was compiled using the Petra software from GeoPlus Corporation and
shows the facies transition from predominantly black, carbonaceous shales in the west to
predominantly clastic-rich gray shales toward the basin center (eastward). Gamma ray versus
density cross plots have been made for these 18 wells. Two plots of this type are shown in
Figure 17. With reference to the top plot in the figure, the general pattern of sandstone units, in
this case the Berea sandstone, data are clustered between densities of 2.4 to 2.8 grams per
cubic centimeter (g/cm®) with the natural gamma-ray being less than 200 API units. Gray shales
with little organic matter (the Three Lick Bed, Middle Huron, and Chagrin) cluster between
densities of 2.55 and 2.82 g/cm® and a gamma-ray reading generally between 150 and 250 API
units. The black, organic rich units, however, show a wide variation along a broad, linear trend
supporting Schmoker’s assumptions. The same pattern holds for individual wells (see bottom
cross plot in Figure 17). For calculating TOC from the density curve using the method of
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Schmoker (1993) a bulk density of 2.82 g/cm?® for the maximum density of the gray shale
sections of the Ohio. To facilitate spatial analysis of TOC and CO, adsorption capacity of the
shale, digital log data for the shale interval in 722 wells has been reformatted to be compatible
with the LAS digital log format. These logs and stratigraphic data have been imported into the
Petra geologic software program for mapping and contouring.

Initial estimates of CO, sequestration capacity have been calculated using selected data.
An initial estimate of the sequestration volume of the Lower Huron was compiled using areal
distribution and thickness data from Dillman and Ettensohn (1980). Initial calculations indicate
that 91 x 10*? cubic feet (2.6 x 10 cubic meters) of CO, could be sequestered in the Lower
Huron using a Langmuir volume of 67.6 scf/ton (2.1 ms/tonne; raw data from sample 107928-2
(Table 1) and an average thickness of 150 feet over the area of Boyd, Breathitt, Floyd, Johnson,
Knott, Lawrence, Leslie, Magoffin, Martin, Perry, and Pike Counties combined. Assuming 30
percent of this theoretical saturation, approximately 1.6 billion tons (1.5 billion metric tonnes) of
CO; could be sequestered. Using a 1-kilometer grid, a depth to top of shale of 1,000 feet or
greater, a shale thickness of 50 feet or more, and a constant adsorption capacity equal to a
thickness-weighted average of 40 scf/ton (1.2 m*/tonne; raw data from samples 107928-1,
107928-2, and 107928-3, Table 1), estimated initial CO, sequestration capacity of the Devonian
shale in Kentucky is 27.7 billion tons (25.1 billion metric tonnes) (Figure 18).

Preliminary Conclusions

Preliminary data indicate that black, organic-rich gas shales can serve as targets for
sequestration of significant volumes of anthropogenic CO,. TOC data may be used as a proxy
to estimate adsorptive capacity of the shale. TOC content of the shale can be estimated from
density log data. At Kentucky's current rate of power plant emissions, the organic-rich, black
shale in the state could sequester more than 300 years' worth of that carbon. Enhanced
production of natural gas displaced by the injected CO, would contribute to a long-term increase
in the supply of what is considered a "greener" fuel.
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Table 1. Gas storage capacity, total carbon (TC), total organic carbon (TOC), and vitrinite
reflectance data for completed samples.

Langmuir Langmuir
Coefficients Coefficients
CH, CH, CO, CO; TOC
Sample Formation  scfiton PSIA scf/fton  PSIA (Acid*)  Rorandom Sulfur%
107928-1 Upper Ohio 4.6 377.8 375 681.1 0.69 1.55
107928-2 Lower Huron 34.6 443.2 67.6 243.7 2.95 1.48
107928-3 Lower Ohio 4.9 176.2 34.6 253.1 1.60 1.59
121774-1 Ohio Shale 126.5 989.8 3.66 1.1
124789-1 Upper Ohio 740.8 6419.1 3.26 0.78 E
124789-2 Lower Huron = 2077.6 14283.5 4.62 0.81 B
124789-3 Lower Ohio o 1162  957.9 1.78 0.83 8
123486-1 Upper Ohio %‘ 2289 22304 2.44 0.78 g
123486-2 Lower Ohio 3 309.3 2106 4.13 0.82 z
121162-1 Ohio Shale S 164.2  1561.3 2.37 0.85
121464-1 Upper Ohio 52.6 708.9 1.18 1.52
121464-2 Lower Huron 248.7 751.2 3.60 1.52
121464-3 Lower Ohio 108 819 2.31 151
IGSID-
107310-1 Selmier Shale 172.6  1428.1 607.3  1390.3 14.7 2.26
IGSID-
107310-2 Blocher Shale 118.7  2097.6 408.5 1456.5 3.69 1.42
IGSID-
119139-1 Selmier Shale 109.5 1148.7 321 781.5 11.79 > 1.37
IGSID- £
119139-2 Blocher Shale 68.4 1513.2 283 1444.1 5.37 % 1.63
123957-1 Upper Ohio 33,5 2170.8 218.7 1977.5 2.34 o 2.4
123957-2 Lower Huron 43.7 1126.7 271 1742 4.73 25
125651-1 Upper Ohio 36.7 1497.9 90.7 455.4 1.96 2.06
125651-2 Lower Huron 22.7 14453 146.1 978.5 3.05 2.4
125651-3 Lower Ohio 4.5 936.4 79.5 493.4 0.73 1.79
AEP#1-1 Lower Huron 26  1566.7 111.7 810 1.54 1.87
128253-C9 Cleveland
128253-C8 Chagrin :
Pending

128253-C5 Upper Huron Not Analyzed Not Analyzed
128253-C3 Middle Huron
128253-C2 Lower Huron 174.75 993.88
* Samples washed in HCI to remove carbonate (inorganic carbon)
Scf/ton = standard cubic feet per ton
psia = pressure, pounds per square inch absolute
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Table 2. Summary of CO, adsorption capacity in standard cubic feet per ton at selected pressures.

Sample ID Formation PSIA

200 400 600
121774-1 Ohio Shale 21.26 36.41 47.74
121162-1 Ohio Shale 18.65 33.49 4558
121162-1 Ohio Shale 18.65 33.49 4558
AEP#1-1 Ohio Shale 2212 36.93 47.53
Average Ohio Shale 20.17 35.08 46.61
107928-1 Upper Ohio 8.51 13.87 17.56
124789-1 Upper Ohio 22.38 43.45 63.32
121464-1 Upper Ohio 1157 18.97 24.11
123486-1 Upper Ohio 18.84 34.81 48.52
123957-1 Upper Ohio 20.09 36.79 50.91
125651-1 Upper Ohio 27.68 4241 51.56
Average Upper Ohio 18.18 31.72 42.67
107928-2 Lower Huron 30.47 42.01 48.07
124789-2 Lower Huron 28.69 56.60 83.75
121464-2 Lower Huron 52,29 86.41 110.44
123957-2 Lower Huron 2791 50.61 69.43
125651-2 Lower Huron 2479 42.39 55.53
Average Lower Huron 32.83 55.60 73.45
107928-3 Lower Ohio 15.27 21.19 24.33
124789-3 Lower Ohio 20.07 34.23 44.75
121464-3 Lower Ohio 21.20 35.44 45.67
123486-2 Lower Ohio 26.83 49.37 68.58
125651-3 Lower Ohio 2293 35,59 43.63
Average Lower Ohio 21.26 35.16 45.39
IGSID-107310-2 Blocher Shale 49.32 88.02 119.18
IGSID-119139-2 Blocher Shale 34.43 61.38 83.07
Average Blocher Shale 41.87 74.70 101.13
IGSID-107310-1 Selmier Shale 76.38 135.69 183.08|
IGSID-119139-1 Selmier Shale 65.41 108.68 139.41
Average Selmier Shale 70.89 122.18 161.25
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Table 3. Summary of CH, adsorption capacity in standard cubic feet per ton at selected pressures

Sample ID Formation PSIA

200 400 600
AEP#1-1 Ohio Shale 294 529 7.20
Average Ohio Shale 2.94 529 7.20
107928-1 Upper Ohio 159 237 2.82
123957-1 Upper Ohio 2.83 5.21] 7.25
123957-2 Upper Ohio 6.59 11.45 15.19
125651-1 Upper Ohio 4.32] 7.73 10.50
Average Upper Ohio 3.83 6.69 8.94
107928-2 Lower Huron 10.76| 16.41] 19.90
125651-2 Lower Huron 2.76] 4.92] 6.66
Average Lower Huron 6.76| 10.67| 13.28
107928-3 Lower Ohio 2.60 3.40, 3.79
125651-3 Lower Ohio 0.79] 1.35 1.76
Average Lower Ohio 1.700 2.37| 2.77
IGSID-107310-2  Blocher Shale 10.33| 19.01] 26.40
|GSID-119139-2  [Blocher Shale 7.99 14.30] 19.42
Average Blocher Shale 9.16| 16.66) 22.91
IGSID-107310-1  |Selmier Shale 21.20) 37.77| 51.06
|IGSID—119139-1 Selmier Shale 16.24| 28.28| 37.57
|Average Selmier Shale 18.72| 33.02] 44.32
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Figure 1. Distribution of the Devonian shale in Kentucky, showing the occurrence of
deeper and thicker shale with possibly greater potential for geologic sequestration of
CO..

Figure 2. General structure of the Devonian shale, showing presence of shale in the
subsurface (shading).
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Figure 3. Distribution and nomenclature of Devonian shales of Kentucky (Hamilton-
Smith, 1993, p. 3).
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Figure 4. General geologic column showing approximately 3,800 feet of overlying
Mississippian and Pennsylvanian lithologies adequate for ensuring reservoir integrity in
the Devonian shale. Note: Devonian shale is underlain by Devonian carbonates.
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Figure 5. Nomenclature of Mississippian and Devonian shales of eastern Kentucky and
key to names and codes used for intervals sampled.
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Figure 6. Eastern Kentucky Devonian shale natural-gas production (proprietary data),
showing long-term increase. Dotted line is exponential best fit of observed rate-time
data.
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Figu"re 7. Location of selected wells in eastern Kentucky. Small dots are existing gas
wells completed in the shale since 2000. Yellow highlight indicates LAS files. Red
highlight indicates adsorption data gathered by the project. Blue line is line of cross

section.
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Figure 8. Location of the Columbia Natural Resources 24752 Elk Horn Coal Company
well, permit 94539, Knott County, Ky., Carter coordinate 11-K-81, latitude 37.37019° N,
longitude 82.76441° W (NAD 1983).
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Figure 9. Mean random reflectance (Ro random)
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Figure 10. Summary of adsorption isotherms.
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Figure 11. Distribution of observed CO, (green) and CH, (blue) adsorption capacity.
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Figure 12. Average calculated adsorption capacities by formation at selected pressures.
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Figure 13. Section of elemental capture spectroscopy log through the Lower Huron
section of the Columbia Natural Resources No. 24752 ElIk Horn Coal well, Knott County,
Ky., showing relative abundance of species related to mineral and lithologic
identification. Asterisks denote depths where sidewall cores were recovered.
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Figure 14. Typical whole rock X-ray diffraction trace of the Devonian shale (upper part, well id 107928,

M:\DevShSeq\DOEReports\41442R12.doc

Page 31



Kentucky Geological Survey

07/28/05

Devonian Shale Adsorption at 400 PSIA

160
140
. ~
4“ ‘/ é
P //
120 - .- .
2 _ e
r-= 0.80\ LU
(] . -
< 100 e
» Outliers e ;\
P -~
c ‘,—/ 2
E @ s ? = 0.96
- s -
5 80 S ‘—",/—//
3 Rt ¢ 3410HIO
- -~
§ 50 I B 3410HIOU
B ’;A/ A 341HURNL
LK A 3410HIOL
40 A u A‘ .
o ¢ X  341SLMR
IR /a/
b ® 341BLCR
e
20 s I R M W/outlier 1
m — — — No Outliers
0 T T T
0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00

Total Organic Content (%)

Figure 15. Relationship between total organic content and adsorption capacity of shale at 400 psia.
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Figure 16: West (left) to east (right) cross section of Big Sandy Gas Field color-shaded based on density. Low densities (cooler colors)
indicate organic-rich zones.
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CO2 Sequestration in the Devonian Shale
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Figure 17. Gamma-ray density cross plots showing variation by general lithotype: all
wells combined (top) and the CNR #24526 Bush (bottom).
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Figure 18. Preliminary estimated CO, storage capacity per square kilometer (in million
tons) in the areas of deeper (>=1,000 feet) and thicker (>=50 feet) Devonian shale.
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Appendix A: Summary of Adsorption Isotherms
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CO2 adsorbed (SCF/ton)

107928-1 3600-4000 ft. Ohio Shale (upper part)

35.0
30.0
25.0
20.0
.
.
15.0 .
*
10.0
5.0
0.0
0 200 400 600 800
Sample Cell Equilibrium Pressure (PSIA)
Pressure Adsorbed gas (ft* /ton)
(PSIA) In-Situ Conditions (Equilbrium Moisture)
61 2.6
141 6.1
209 8.6
262 11.0
326 131
395 15.0
484 16.7
589 17.9
811 18.6

Langmuir Parameters

In-Situ Conditions (Equilbrium Moisture)

Vol. (ft /ton)
Pressure (PSIA)

37.5
681.1

SUMMARY OF ADSORPTION ANALYSES IMP. UNITS

Isotherm Temperature:

86.0 °F

Goodness of fit of Langmuir regression: 0.88 Density g/cc

Z

*?

?
*y
2.756 (%)
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CO2 adsorbed (SCF/ton)

107928-2 4400-4600 ft. Lower Huron Member

65.0
60.0
55.0
50.0 r
45.0 . *
40.0 *
35.0 *
30.0
25.0
20.0
15.0
10.0 78
5.0
0.0
0 100 200 300 400 500 600 700
Sample Cell Equilibrium Pressure (PSIA)
Pressure Adsorbed gas (ft* /ton)
(PSIA) In-Situ Conditions (Equilbrium Moisture)
47 8.9
109 19.7
172 27.6
252 35.9
315 41.2
383 45.1
469 46.8
572 48.0
803 48.7
Langmuir Parameters
In-Situ Conditions (Equilbrium Moisture)
Vol. (ft® /ton) 67.6
Pressure (PSIA) 243.7 “M
SUMMARY OF ADSORPTION ANALYSES IMP. UNITS ?
Isotherm Temperature: 86.0 °F o
Goodness of fit of Langmuir regression: 0.97 Density g/cc  2.660 (%)
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CO2 adsorbed (SCF/ton)

107928-3 4600-5000 ft. Rhinestreet and

Olentangy Members
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e
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0 100 200 300 400 500 600 700 800
Sample Cell Equilibrium Pressure (PSIA)
Pressure Adsorbed gas (ft* /ton)
(PSIA) In-Situ Conditions (Equilbrium Moisture)
49 5.3
109 9.9
177 135
248 17.4
320 19.5
391 224
483 24.1
590 24.8
806 25.0
Langmuir Parameters
In-Situ Conditions (Equilbrium Moisture)
Vol. (ft /ton) 34.6
Pressure (PSIA) 253.1

SUMMARY OF ADSORPTION ANALYSES IMP. UNITS

Isotherm Temperature:

Goodness of fit of Langmuir regression:

86.0 °F
0.98 Density g/cc

2.749

Z
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?
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CO2 adsorbed (SCF/ton)

121774-1A 3500-3720 ft. Ohio Shale

(Undifferentiated)
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0 100 200 300 400 500 600 700 800
Sample Cell Equilibrium Pressure (PSIA)
Pressure Adsorbed gas (ft* /ton)
(PSIA) In-Situ Conditions (Equilbrium Moisture)
23 2.9
50 6.4
82 9.8
103 11.8
130 14.2
185 18.9
251 24.8
321 31.3
392 37.2
512 48.4
705 68.9
Langmuir Parameters
In-Situ Conditions (Equilbrium Moisture)
Vol. (ft® /ton) 126.5
Pressure (PSIA) 989.8 “M
SUMMARY OF ADSORPTION ANALYSES IMP. UNITS ?
Isotherm Temperature: 86.0 °F o
Goodness of fit of Langmuir regression: 0.91 Density g/cc  2.550 (%)
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CO2 adsorbed (SCF/ton)

RN124789 1A 2680-2990 ft.

100.0
90.0
80.0 [
70.0
60.0
50.0
40.0
30.0
20.0
10.0
0.0
0 100 200 300 400 500 600 700 800
Sample Cell Equilibrium Pressure (PSIA)
Pressure Adsorbed gas (ft* /ton)
(PSIA) In-Situ Conditions (Equilbrium Moisture)
26 3.1
55 6.2
76 8.3
111 12.1
133 15.4
191 22.3
259 29.6
334 37.7
402 43.2
517 54.9
595 61.6
Langmuir Parameters
In-Situ Conditions (Equilbrium Moisture)
Vol. (ft® /ton) 740.8
Pressure (PSIA) 6419.1 “M
SUMMARY OF ADSORPTION ANALYSES IMP. UNITS ?
Isotherm Temperature: 86.0 °F o
Goodness of fit of Langmuir regression: 0.49 Density g/cc  2.597 (%)
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CO2 adsorbed (SCF/ton)

RN124789 S2A 2990-3110 ft.

100.0

.
90.0
80.0
70.0
60.0
50.0
40.0
30.0
20.0
10.0
0.0
0 100 200 300 400 500 600 700 800
Sample Cell Equilibrium Pressure (PSIA)
Pressure Adsorbed gas (ft* /ton)
(PSIA) In-Situ Conditions (Equilbrium Moisture)
29 3.9
45 6.7
68 10.4
94 14.0
122 17.4
176 24.4
240 34.0
309 44.4
380 54.0
496 69.8
602 96.9
Langmuir Parameters
In-Situ Conditions (Equilbrium Moisture)
Vol. (ft® /ton) 2077.6
Pressure (PSIA) 14283.5

SUMMARY OF ADSORPTION ANALYSES IMP. UNITS

Isotherm Temperature: 86.0 °F

Goodness of fit of Langmuir regression:

0.04 Density g/cc

2.579

Z

*?

?
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CO2 adsorbed (SCF/ton)

RN124789 3A 3110-TD

100.0
90.0
80.0
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60.0 .
50.0 [
.
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30.0
20.0
10.0
0.0
0 100 200 300 400 500 600 700 800
Sample Cell Equilibrium Pressure (PSIA)
Pressure Adsorbed gas (ft* /ton)
(PSIA) In-Situ Conditions (Equilbrium Moisture)
32 4.2
49 6.0
74 8.2
110 11.4
136 13.6
193 17.9
253 23.6
326 30.4
394 35.6
512 45.7
663 60.3
Langmuir Parameters
In-Situ Conditions (Equilbrium Moisture)
Vol. (ft® /ton) 116.2
Pressure (PSIA) 957.9 “M
SUMMARY OF ADSORPTION ANALYSES IMP. UNITS ?
Isotherm Temperature: 86.0 °F o
Goodness of fit of Langmuir regression: 0.77 Density g/cc  2.679 (%)
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CO2 adsorbed (SCF/ton)

RN123486 #1 3410HIOU 2600-3700 ft.

100.0
90.0
80.0
70.0
60.0 r
.
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30.0
20.0
10.0
0.0
0 100 200 300 400 500 600 700 800
Sample Cell Equilibrium Pressure (PSIA)
Pressure Adsorbed gas (ft* /ton)
(PSIA) In-Situ Conditions (Equilbrium Moisture)
22 2.4
45 4.5
73 7.0
99 9.2
126 12.0
183 17.4
249 23.8
321 29.2
394 34.0
515 42.9
593 54.7
Langmuir Parameters
In-Situ Conditions (Equilbrium Moisture)
Vol. (ft® /ton) 228.9
Pressure (PSIA) 2230.4 “M
SUMMARY OF ADSORPTION ANALYSES IMP. UNITS ?
Isotherm Temperature: 86.0 °F o
Goodness of fit of Langmuir regression: 0.66 Density g/cc  2.631 (%)
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CO2 adsorbed (SCF/ton)

RN123486 S2 3410HIOL 3070-3210 ft.

100.0
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80.0
.
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60.0
50.0
40.0
30.0
20.0
10.0
0.0
0 100 200 300 400 500 600 700 800
Sample Cell Equilibrium Pressure (PSIA)
Pressure Adsorbed gas (ft* /ton)
(PSIA) In-Situ Conditions (Equilbrium Moisture)
25 3.6
49 7.2
82 11.6
116 16.1
146 20.1
196 26.4
256 33.7
321 40.5
390 48.4
508 61.6
571 75.3
Langmuir Parameters
In-Situ Conditions (Equilbrium Moisture)
Vol. (ft /ton) 309.3
Pressure (PSIA) 2106.0

SUMMARY OF ADSORPTION ANALYSES IMP. UNITS

Isotherm Temperature: 86.0 °F

Goodness of fit of Langmuir regression:

0.96 Density g/cc

2.573

Z

*?

?
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CO2 adsorbed (SCF/ton)

121162 OHIO UPPER 3410-3810 ft.

100.0
90.0
80.0
70.0
60.0
50.0
40.0
30.0
20.0
10.0
0.0
0 100 200 300 400 500 600
Sample Cell Equilibrium Pressure (PSIA)
Pressure Adsorbed gas (ft* /ton)
(PSIA) In-Situ Conditions (Equilbrium Moisture)
14 1.6
40 4.3
65 6.6
111 10.5
127 11.9
192 17.0
247 22.2
312 28.6
381 32.6
498 44.5
Langmuir Parameters
In-Situ Conditions (Equilbrium Moisture)
Vol. (ft /ton) 164.2
Pressure (PSIA) 1561.3

SUMMARY OF ADSORPTION ANALYSES IMP. UNITS

Isotherm Temperature: 86.0 °F

Goodness of fit of Langmuir regression:

0.79 Density g/cc  2.669

Z
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CO2 adsorbed (SCF/ton)

121464 OHIO Upper 3200-3300 ft,

60.0
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40.0
30.0
’ L
20.0
10.0
0.0
0 100 200 300 400 500 600
Sample Cell Equilibrium Pressure (PSIA)
Pressure Adsorbed gas (ft* /ton)
(PSIA) In-Situ Conditions (Equilbrium Moisture)
19 1.6
49 3.6
78 5.0
100 6.1
159 8.9
193 10.5
250 13.7
316 17.2
384 18.9
501 24.2
Langmuir Parameters
In-Situ Conditions (Equilbrium Moisture)
Vol. (ft® /ton) 52.6
Pressure (PSIA) 708.9 “M
SUMMARY OF ADSORPTION ANALYSES IMP. UNITS ?
Isotherm Temperature: 86.0 °F o
Goodness of fit of Langmuir regression: 0.82 Density g/cc  2.694 (%)
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CO2 adsorbed (SCF/ton)

121464 HURNL 4300-4380 ft.

150.0
140.0
130.0
120.0
110.0 | r
100.0 | ¢
90.0
80.0
70.0
60.0
50.0
40.0
30.0
20.0
10.0
0.0
0 100 200 300 400 500 600
Sample Cell Equilibrium Pressure (PSIA)
Pressure Adsorbed gas (ft* /ton)
(PSIA) In-Situ Conditions (Equilbrium Moisture)
14 5.6
33 10.3
52 15.0
99 29.0
113 30.6
159 41.4
218 55.5
289 717
362 82.1
476 101.1
Langmuir Parameters
In-Situ Conditions (Equilbrium Moisture)
Vol. (ft /ton) 248.7
Pressure (PSIA) 751.2 “MQ
SUMMARY OF ADSORPTION ANALYSES IMP. UNITS ?
Isotherm Temperature: 86.0 °F o
Goodness of fit of Langmuir regression: 0.79 Density g/cc  2.716 (%)




CO2 adsorbed (SCF/ton)

121464 OHIO Lower 4580-4980 ft.

100.0
90.0
80.0
70.0
60.0
50.0 *
40.0
30.0
20.0
10.0
0.0
0 100 200 300 400 500 600
Sample Cell Equilibrium Pressure (PSIA)
Pressure Adsorbed gas (ft* /ton)
(PSIA) In-Situ Conditions (Equilbrium Moisture)
27 3.2
42 5.6
84 10.4
99 11.9
123 14.0
176 185
240 24.6
310 29.5
380 34.5
493 48.3
Langmuir Parameters
In-Situ Conditions (Equilbrium Moisture)
Vol. (ft® /ton) 108.0
Pressure (PSIA) 819.0 “M
SUMMARY OF ADSORPTION ANALYSES IMP. UNITS ?
Isotherm Temperature: 86.0 °F o
Goodness of fit of Langmuir regression: 0.93 Density g/cc  2.730 (%)
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Carbon Dioxide Adsorption Isotherm Summary

Well:

Reservoir:
Sample Number:
Sample Type:
Drill Depth, feet:

Temperature, °F:
Average Particle Size, inches:

#3 John Jude Heirs

Devonian Ohio Shale

1ISO054-1

Sidewall Core # 128253-C2

3025.4
86

whole Sidewall Core

Experimental Moisture Content, fraction: 0.0000
Experimental Ash Content, fraction: 0.0000
"In-Situ" Moisture Content, fraction: #N/A
"In-Situ" Ash Content, fraction: #N/A
Notes:
Pressure Carbon Dioxide Storage Capacity, scf/ton
psia As-Received Dry, Ash-Free In-Situ
Measured Calculated Measured Calculated Measured Calculated
0.00 0.00 0.00 0.00 0.00 0.00 0.00
53.15 10.25 8.87 10.25 8.87 #N/A #N/A
133.54 21.20 20.70 21.20 20.70 #N/A #N/A
214.31 29.80 31.00 29.80 31.00 #N/A #N/A
288.59 36.55 39.32 36.55 39.32 #N/A #N/A
379.90 45.90 48.32 45.90 48.32 #N/A #N/A
462.20 52.25 55.47 52.25 55.47 #N/A #N/A
539.21 60.38 61.46 60.38 61.46 #N/A #N/A
616.01 69.73 66.87 69.73 66.87 #N/A #N/A
693.68 76.44 71.83 76.44 71.83 #N/A #N/A
Parameters Carbon Dioxide Langmuir Parameters (U.S. Units)
As-Received Dry, Ash-Free In-Situ
Slope: 0.0057 0.0057 #N/A
Intercept: 5.6874 5.6874 #N/A
Regression Coefficient (squared): 0.8642 0.8642 0.8642
Intercept Variation, psia*ton/scf: 1.0459 1.0459 #N/A
Slope Variation, ton/scf: 0.0024 0.0024 #N/A
Gg_ Variation, scf/ton: 2.0673 78.8028 #N/A
P, Variation, psia: 142.0096 508.1252 #N/A
Langmuir Volume, scf/ton: 174.75 174.75 #N/A
Langmuir Pressure, psia: 993.88 993.88 993.88
Langmuir Eguation: V=174.7*P/(P+993.9) V=174.7*P/(P+993.9) #N/A
Pressure (Midpoint), psia: 400.0 400.0 400.0
Storage Capacity, scf/ton: 50.15 50.15 #N/A

14

y = 0.0057x + 5.6874
R?=0.8642

12

10

Pressure/Volume, psia*ton/scf
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Appendix B: GIS Analysis of the Distribution and Estimated CO2
Storage Volume of the Devonian Shale in Kentucky

Note: Grid data sets are indicated in matrix notation using the courier type face, i.e.,
[grid datal

Geographic information system (GIS) software was used to perform an analysis of the
thickness and distribution of the Devonian black shale in Kentucky. The initial goal is to
calculate the number of tons of shale in place by county for those areas with drilling
depths to the shale of at least 1,000 feet and a shale thickness of at least 50 feet. These
cutoffs were selected to ensure reservoir integrity (deeper than the expected depth of
surface fracturing) and gas reservoir potential. With the number of tons of shale being
determined, a series of factors to calculate the sequestration potential in tons of CO,
are derived based on measured CO; storage capacity and shale density. For GIS,
ESRI's ArcView 3.2 and Spatial Analyst were used. The Kentucky Geological Survey
uses a server running SQL-2000 for data storage. Data are accessed with tables linked
to a graphic user interface implemented using Microsoft Access 97. Access queries
were composed to compile point data sets consisting of the locations and values of
Devonian shale stratigraphic tops and thickness. The formation tops data were
maintained as drilling depth to the top of the formation rather than elevations with
respect to sea level. Open database connectivity (ODBC) services are available from
ArcView. The Access query results were added to the GIS as tables using the SQL
Connect facility and then converted to shape files.

SELECT dbo_well identification.record number AS recno,

dbo geographlc location.north latitude AS lat,

dbo_geographic location. west_longltude AS lon, dbo formation tops.pick fm,

dbo geographic location.surface elevation AS elev, dbo formation tops.fm top,
dbo formation tops.fm base, [fm base]-[fm top] AS thick

FROM ((dbo geographic_location INNER JOIN dbo geographic region ON

dbo geographic location.location index = dbo geographic region.location index)
INNER JOIN dbo well identification ON dbo geographic location.location index =
dbo well identification.location index) INNER JOIN dbo formation tops ON

dbo well identification.record number = dbo formation tops.record number
WHERE (((dbo formation _tops. plck fm)="3410HIO" Or

(dbo_formation tops.pick fm)="341CHAT" Or
(dbo_formation tops.pick fm)="341NALB") AND ((dbo formation tops.fm top) Is
Not Null) AND ((dbo formation tops.fm base) Is Not Null) AND (([fm base] -

[fm topl)>0) AND ((dbo_ formation tops.type of top)="s") AND

((dbo_geographic location.ns feet)>0) AND ((dbo geographic location.n or s) Is
Not Null) AND ((dbo geographlc location.ew feet)>=0) AND

(dbo_geographic location.e or w) Is Not Null) AND

(dbo _geographic location. carter section)>0) AND

(dbo_geographic location.carter letter)s>=" A") AND

(dbo_geographic location.carter number) Is Not Null));

(
(
(
(

Sample SQL query composed with the Access GUI for compiling Devonian shale
stratigraphic and location point data.
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Existing polygon shape files of the Kentucky counties, faults, and the subsurface
distribution of the Devonian shale in Kentucky ([Subsurf]) were employed in the
analysis. The shape file of the subsurface distribution of the shale was converted to a
grid for use in the spatial analysis. Each cell of this grid contained a value of 1 (true) if
the shale existed in the subsurface over the area of the cell. All other cells were set to
null, the no data value. All grids were computed with 1,000-meter (1 kilometer) cell
dimensions. Analyses were performed using the North American Datum of 1927
(NAD27) with the projection set to UTM zone 16.

Subsurface distribution of the Devonian shale (blue, shaded) with stratigraphic data
points.

Subsurface distribution of the Devonian shale (blue, shaded) with stratigraphic data
points for the Lower Huron Member of the shale.

For deriving drilling depth and thickness maps, grids were interpolated from point data
using the inverse distance weighted (IDW) nearest neighbor method. The interpolated
data were processed to establish which grid cells fit the selection criteria of 1,000 feet or
deeper drilling depths and a shale thickness of at least 50 feet.
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Interpolate grid, [Depth], using drilling depth from point file
Interpolate grid, [Iso], using thickness data from point file
Map Query [Depth]>=1000 = [Deep]

Map Query [Iso]>=50 = [Thick]

Calculate [Deep]* [Thick] = [TempO01]

Calculate [TempOl]* [Subsurf] = [Temp02]

([Temp02] = 0.AsGrid) .SetNull ([Temp02]) = [DeepThick]

Method for deriving a grid dataset indicating the distribution of shale at least 50 feet
thick and 1,000 feet deep.

To restrict the volume calculations to the limits of the distribution of thicker and deeper
shale, the [Iso] and [DeepThick] grid data sets were multiplied together to produce
anew grid, [Target].

To limit the number of calculation steps required to derive volume and sequestration
potential estimates, conversion factors were derived to convert the thickness (isopach in
feet) data in [Target] to million tons of shale and then directly to CO2 tons. Tons of
shale in place is a function of shale volume and density, thus:

Tons,,,,, = volume™* density
and
. . . .
MMTons, . = thickness > area > density
1000000

Assuming thickness in feet, al kilometer cell size, a density in g/cc million tons of shale
in place can be calculated:

thickness * 2-S048M *(1000m ) * density *1.102
MMTons .., = ft Eq. 1.
1000000
where: thickness = thickness of shale in feet
1000 = cell size in meters
density = bulk density from compensated density log
1.102 = density conversion factor to convert from grams per

cubic centimeter to tons per cubic meter
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For a specified density, the constants in equation 1 can be combined to obtain a direct
conversion factor that is a function only of shale thickness. Substituting different shale
densities, a factor, CEMMTons, would be one of:

2.5 g/cc (log estimated density for Lower Huron) =0.840
2.6 g/cc (log estimated density for upper part of shale) =0.873
2.65 g/cc (log handbook typical shale density) =0.890

To calculate million tons of shale per cell, the ArcView grid calculation would be:
[Target] *CfMMTons .AsGrid = [MMTons]

Different conversion factors could be derived for standard reservoir analysis (as
opposed to assuming adsorbed gas). Distributions of porosity, water or oil saturation
data, and others could be gridded and used to derive oil or gas in place estimates.

Converting tons of shale in place to estimated tons of CO, sequestered requires an
additional factor based on the gas content per ton of shale from CO, adsorption data.
Using a gas content of 1 standard cubic foot of CO, per ton and 17.25" thousand cubic
feet (Mcf) CO, per ton of CO,, there will be 57.97 tons of CO, per million tons of shale.

3

ft
TonsCO, = ton&*loooooo*

ton
Mt Moo, 5797 Eq. 2
1000t3, 17.25Mcf

shale

The sequestration volume in tons of CO, can now be considered a function of
thickness, shale density, and adsorbed gas content, or:

TonsCO, =57.97* CfMMTons *thickness * gascontent

Multiplying the 57.97 and CfMMTons provides a single factor that varies only with
density:

Factor = 48.69 at density equals 2.5 g/cc
Factor = 50.61 at density equals 2.6 g/cc
Factor = 51.59 at density equals 2.65 g/cc

In lieu of gridding gas content data, multiplying a measured gas content by one of these
factors yields a final selection of factors for use in converting shale thickness data
directly to tons of CO, sequestered. For example, using a gas content of 40 scf/ton, a
shale density of 2.6 g/cc, and a 1000-meter cell size, the tons of CO; per cell is 2024.3
per foot of shale thickness, thus:

[Target] * (2024.3) .AsGrid = [CO2Tons]

117.25 Mcf CO; per ton CO;, is the conversion factor used by the U.S. EPA. Conversion
is derived from gas laws and is valid for 60°F and 1 atmosphere pressure.
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As additional gas content data are acquired, examining the distribution and gridding the
data as appropriate will be used to refine the sequestration volume calculations.

The values calculated for each cell require summation for specific regions to obtain
totals. With the county polygon theme active, the ArcView Summarize Zones procedure
(available from the Analysis menu command) was used to summarize the data by
county. The field defining the zones was the county name and the [CO2Tons] grid
theme was selected for summarizing. A table of summary statistics was computed that
could be joined to the original county table for mapping and additional analysis.

[ ] County boundaries
Surface faults
Million Tons CO2

B o.1-05
[ 0.5-09
B 09-13
I 13-17

1.7-2
2-24
[ |24-28
I 28-3.2
B 32-36
[ ] No Data

Shale in Subsurface @S
True (1) 7y
No Data

CO2 storage capacity per square kilometer in million tons.

Summary by county of potential sequestration totals (gas content 40 scf/ton, shale
density 2.6 g/cc, cell size 1,000 meters):

Name Basin
BELL 160
BOYD 160
BREATHITT 160
CARTER 160
CLAY 160
ELLIOTT 160
FLOYD 160
GREENUP 160
HARLAN 160
JACKSON 160
JOHNSON 160
KNOTT 160
KNOX 160
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Count
949
420

1293
329
1236
292
1040
339
1211
275
657
918
1017

Min
0.24
1.03
0.38
0.34
0.24
0.29
0.27
0.99
0.31
0.21
0.86
0.78
0.20

Max
1.52
1.70
1.05
1.26
0.48
1.14
1.79
1.38
1.17
0.34
1.67
1.42
0.47

Mean
0.51
1.39
0.60
1.05
0.35
0.92
1.42
1.24
0.76
0.25
1.28
1.06
0.31

MMTonsCO2
486.8
583.9
775.2
346.6
433.2
267.2

1,474.4
421.7
918.6

69.4
839.8
969.9
318.5
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Name Basin Count  Min Max Mean MMTonsCO2
LAUREL 160 1146 0.16 0.38 0.22 255.7
LAWRENCE 160 1089 0.20 1.85 1.37 1,490.6
LEE 160 232 0.22 0.50 0.35 81.6
LESLIE 160 1066 0.38 0.79 0.55 590.8
LETCHER 160 894 0.21 1.70 1.13 1,012.2
MAGOFFIN 160 793 0.63 1.20 0.92 730.8
MARTIN 160 631 1.23 2.32 1.76 1,113.1
MCCREARY 160 703 0.10 0.24 0.15 107.8
MENIFEE 160 16 0.37 0.42 0.39 6.2
MORGAN 160 710 0.25 1.19 0.70 496.8
OWSLEY 160 497 0.13 0.44 0.34 168.0
PERRY 160 892 0.37 1.04 0.71 630.4
PIKE 160 2056 0.82 3.60 2.17 4,467.3
POWELL 160 7 0.31 0.34 0.32 2.2
ROCKCASTLE 160 4 0.19 0.21 0.20 0.8
ROWAN 160 2 0.54 0.54 0.54 1.1
WHITLEY 160 1161 0.16 0.70 0.22 261.1
WOLFE 160 525 0.20 0.81 0.45 237.1
Appalachian 160 Total 19,558.9
MARSHALL 250 29 0.39 0.56 0.48 13.9
Jackson Purchase 250 Total 13.9
EDMONSON 300 670 0.12 0.40 0.24 157.5
HARDIN 300 220 0.13 0.18 0.16 35.3
HART 300 178 0.11 0.20 0.15 26.4
MEADE 300 106 0.18 0.22 0.20 21.6
PULASKI 300 58 0.14 0.18 0.16 9.3
WARREN 300 424 0.12 0.38 0.20 84.0
Cincinnati Arch 300 Total 334.2
BRECKINRIDGE 315 1426 0.10 0.26 0.19 274.8
BUTLER 315 1130 0.11 0.41 0.28 320.3
CALDWELL 315 898 0.27 0.67 0.48 430.0
CHRISTIAN 315 1870 0.11 0.58 0.25 470.0
CRITTENDEN 315 968 0.31 0.90 0.66 634.1
DAVIESS 315 1255 0.12 0.46 0.32 404.1
GRAYSON 315 1277 0.12 0.49 0.27 343.6
HANCOCK 315 516 0.15 0.54 0.29 150.5
HENDERSON 315 1233 0.11 0.64 0.45 560.8
HOPKINS 315 1464 0.14 0.64 0.41 595.7
LIVINGSTON 315 696 0.42 0.67 0.60 415.6
LOGAN 315 966 0.12 0.25 0.19 183.1
LYON 315 620 0.28 0.59 0.46 284.8
MCLEAN 315 671 0.14 0.56 0.39 259.9
MUHLENBERG 315 1266 0.12 0.59 0.34 425.4
OHIO 315 1549 0.16 1.09 0.37 573.4
TODD 315 879 0.10 0.31 0.18 156.9
TRIGG 315 848 0.16 0.34 0.24 200.6
UNION 315 953 0.57 0.81 0.69 657.7
WEBSTER 315 878 0.17 0.68 0.51 445.1
Illinois Basin 315 Total 7,786.5

Grand Total 27,693.5
Years sequestration available at 80,000,000 tons CO2 per year 346.2
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The values shown in this table are provided to illustrate an application of the estimation
method described in this appendix. The numbers are subject to revision and do not
represent final conclusions of this project. Additional CO, adsorption capacity data will
be acquired to refine the estimates. Consideration will be given to other adjustments to
the total that might include evaluating areas likely to have little or no sequestration
potential even though they are mathematically included in the area of deep and thick
shale. These areas will be excluded. For example, based on experience in oil and gas
field exploration and development, Marshall, Pulaski, and Rockcastle counties are areas
of marginal potential that have a relatively small likely-hood of being developed for
carbon sequestration.
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Appendix C: CNR 24752 Elk Horn Coal

Recno: 125651

Permit: 94539

Name: Columbia Natural Resources 24752 Elk Horn Coal Corp
Loc: Knott County, KY, 1250 FSL 620 FWL 11-K-81

Lat: 37.3701 N (NAD27)

Lon: -82.764533 W

TD: 3004 feet

Log measured from KB @ 1011

07/28/05

Era Formation Code Top (feet) [Condition|Fluoresce|Comments Shipped
Mssp Little Lime 332LTLM 1698
Pencil Cave 332PCCV 1735
Big Lime 332BIGL 1739
Borden 337BRDN 1954
Sunbury 339SNBR 2249
Berea 339BREA 2283
Devonian |Ohio Shale 3410HIO 2346
Cleveland Sh Mbr  |341CLVD 2346
Core 10]341CLVD 2370]Intact No dry, faint odor Yes
Three Lick Bed 341TLBD 2452
Core 9|341TLBD 2455(Intact No light gray Yes
Core 8|341TLBD 2465|Intact No odor, dark oily black, |Yes
slick, sticky feel, but
not wet
Upper Huron Mbr  |341HURNU 2488
Core 7 |341HURNU 2530]Intact No slight odor, dark oily |Yes
black as in core 8
Middle Huron Mbr  |341HURNM 2543
Core 6 |[341HURNM 2630(Broken No slight odor, waxy feel, |No
but not wet
Lower Huron Mbr  |341HURNL 2726
Core 5|341HURNL 2730]Intact No dry, somewhat mottled|Yes
Core 4 |341HURNL 2760|Intact No dry, somewhat mottled|Yes
Core 3 |341HURNL 2780|Intact No dry, approx. 0.5cm Yes
pyrite clast, possible
faint odor
Core 2 |341HURNL 2835|Broken No oily, strong odor No
Olentangy 3410LNG 2838
Corel |3410LNG 2900|Broken No oily, strong odor No
Core samples are identified by their respective measured depth from KB (i.e., Top value in bold)
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3
2 =21
RN: 125651
1 341HURNL
2,780'
0 i i e el e Y OO0 = |}
0 1 2 3 4 5

Sidewall core number 3 (0.25-inch grid).. This sample included a pyrite clast but is otherwise
typical of the inta% cores as submitted for analysis.

RN: 125651
! 341HURNL
2,835

0 1 2 ;4 5

Ll
3

0

Sidewall core number 2 (0.25-inch grid). This sample exhibits an oily sheen characteristic of cores
collected that were saturated with light hydrocarbons. This core is typical of the broken samples.
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L CNR 24752 Composite log suite through the (Devonian) Lower Huron
i ot showing locations of recovered cores (red arrows, right track of Litho-Density log).
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