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ABSTRACT

GoyeL C., R. J. Healy, and J. P. Ryan. 2000. Global distribution of total inorganic carbon
and total alkalinity below the deepest winter mixed layer depths. ORNIJCDIAC-127,
NDP-076. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory,
U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A. 40 pp.

Modeling the global ocean-atmosphere cmbon dioxide system is becoming increasingly
important to greenhouse gas policy. These models require initialization with realistic three-
dimensional (3-D) oceanic carbon fields. This report presents an approach to establishing
these initial conditions from an extensive global database of ocean carbon dioxide (CO~
system measurements and well-developed interpolation methods. These methods are limited to
waters below the deepest mixed layer. The data used for these interpolations include the
recent high-quality data sets from the World Ocean Circulation Experiment (WOCE), Joint
Global Ocean Flux Study (JGOFS), and Ocean-Atmosphere Carbon Exchange Study (OACES)
programs. Prior to analysis, all carbon data were adjusted to established reference material
listed in http://www-mpl.ucsd.edu/peopldadickson/CO2_QC/. The interpolation methodology
employs correlation between C02 system properties and other more widely measured
properties: potential temperature, salinity, and apparent oxygen utilization. The correlations
are computed for each profile, and the coefilcients are interpolated to the 1“ x 10 x 32
vertical-layer grid at a monthly temporal resolution. Finally, the gridded coefficients are
applied to a global monthly climatology of ocean temperature, salinity, and oxygen to compute
total C02 (TCOZ) and total alkalinity (TALK) for the 3-D grid.

This approach offers advantages over spin up of a single profile in defining spatial
variation in COZ system properties because it reduces initialization time and provides a more
accurate carbon field. The results provide an unprecedented “view” of the g~obal distribution
of TALK and TCOZ in the ocean. These results as well as those from the monthly mixed
layer depths can be used in diagnostic and prognostic global ocean models.

The data set of the gridded climatological fields of TC02, TALK and mixed layer depths
is available free of charge as a numeric data package from the Carbon Dioxide Information
Analysis Center (CDIAC, http://cdiac.esd.omLgov/). The interpolated data set includes
seasonal TCOZ and TALK fields as well as the coefilcients used to estimate these
concentrations and the monthly mixed layer depths.

Keywords: Total carbon dioxide, total alkalinity, mixed layer depth, carbon fields, inorganic
carbon, globaI ocean
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1. INTRODUCTION

One of the main objectives of the study of the oceanic carbon cycle is to quanti& the
present and future role of the ocean in the absorption of anthropogenic carbon dioxide (CO~.
In situ data are typically used to quantifi the present anthropogenic C02 concentrations in the
ocean (Brewer 1978; Chen ‘hndMillero 1979; Chen 1993; Wallace 1995; Gruber et al. 1996;
Gruber 1998; Peng et al. 1998; Sabine et al. 1999; Goyet et al. 1999). Global ocean models
are mainly used in a prognostic mode to estimate the future penetration of anthropogenic C02
on the global scale (Sarmiento et al. 199Z Bhaskaran et al. 1995; Washington and Meehl
1996). Yet, accurate global initialization fields of the COZproperties in seawater, such as total
COZ(TCOZ)and total alkalinity (TALK), do not exist.

In order to study the oceanic carbon cycle and to accurately describe and quantify the
TCOZand TALK fields on the global scale, TC02 and TALK were measured with high
accuracy throughout the water column of the major oceans. These measurements were mainly
peflormed over the last two decades during intensive national and international field programs.
Most of the data of these field programs are now freely available to the scientific community.
However, these data need to be interpolated on a regular grid before they can easily be used in
global ocean models.

The purpose of this work is therefore to best interpolate these data on a regular grid for
use in ocean models. The interpolation is based on each measured profile from the base of the
mixed layer to the bottom of the ocean. The data within the mixed layer are not considered
here because they are subject to large spatial and monthly variations that are still difficult to
accurately quantify. The variations of the C02 properties in the mixed layer are controlled by
ocean circulation, evaporation/precipitation, dissolution of calcium carbonate, photosynthesis
and oxidation of organic matter, and COZflux across the ocean-atmosphere interface including
penetration of anthropogenic C02 Many independent studies are currently designed to best
quantifi and parametrize each of these processes and the overall variations of the COZ
properties in the mixed layer (Takahashi et al. 1997; Mlllero et al. 1998).

Below the mixed layer, TCOZ and TALK are controlled by ocean mixing,
formation/dissolution of calcium carbonate, and oxidation of organic matter (Brewer 1978). In
other words, short-timescale processes do not significantly affect TCOZ and TALK below the
mixed layer. Thus it is possible to interpolate the data measured below the mixed layer at
different times of year to acquire a reasonable understanding of the TCOZ and TALK fields.
In ocean areas where anthropogenic COZ is present (mainly in the upper 2000 m), it is also
necessary to specify if and how data from different years are adjusted to a specific year before
interpolation.

In practice, the distribution of anthropogenic C02 concentrations in the ocean is not
accurately known. Estimates can dHfer significantly (Coatanoan et al. 2000) according to the
various assumptions used. Until these differences are understood and considerably reduced, it
will be very difilcult to estimate pre-anthropogenic TC02 fields on the global scale.
Consequently, in this paper authors interpolate the measured TCOZ and TALK data without
adjustment for the variations in anthropogenic C02 concentration for a given year. Because
most of the data were measured within the past twenty years, such small adjustment to the
different data sets (except for the North Atlantic Ocean) would mainly be within the
uncertainty of the interpolated field. The results provide an estimate of these fields for the
mid-1990s, when most of the accurate measurements were performed.

3
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2. DATA SETS AND METHODS

In order to interpolate the measured TCOZ and TALK da@ the available observations
were assembled (Table 1). Measurements prior to 1990 dld not use the accurate standards
established by Dickson (1997) for calibrating TCOZ Therefore pre-1990 profiles were
adjusted by comparing deep measurements within 1° of latitude and longitude, as described for
the Atlantic Ocean (Goyet et al. 1997), the Pacific Ocean (Feely et al. 1998), and the Indian
Ocean (Sabine et al. 1999).

All the TALK measurements were performed by potentiometry (Dyrssen 1965; Millero et
al. 1998). Most of the TC02 measurements were performed by extractioticoulometry (Johnson
et al. 1985, 1987, 1993, 1998) except for the cruises prior to 1990 where TC02 was measured
by potentiometry. All these measurements are described in detail in the Handbook of Methods
for the Analysis of the Various Parameters of the Carbon Dioxide System in Sea Water (DOE
1994).

Table 1. Summary of data sets used for interpolation of the TCOZ and TALK
fields on the global scale

Field program Reference

GEOSECS* Takahashi et al. 1980
I

INDIGO* Poisson et al. 1988, 1989, 1990

I JGOFS3 I http://www l.whoi.edw’jgofs.html I
I 0ACES4 I NOAA*; http:l/www.aomLnoaa.gov/ocd/oaces I
I TT05 I Data reports, TTO 1986zb I
I WOCEC; SAVE7 I CDJAC; http://cdiac.esd.oml.gov/oceans/home.htrnl I
?3eochemicalOcean Sections
21ndianOceanGlobal Observation
3JointGlobal Ocean Flux Study
40cean-AtmosphereCarbonExchangeStudy
~ransientTracersintheOcean
6WorldOceanCirculationExperiment
‘SouthAtlanticVentilationExperiment
‘NationalOceanographicandAtmosphericAdministration

2.1 Determination of Monthly Mixed Layer Depth Fields

In order to define monthly mixed layer depth (MLD), a weighted average based on two
sources of MLD information was created, one source based on observations and the other
based on a numerical ocean model. The first was the MLD product offered by the National
Ocean Data Center (NODC). Specifically, the MLD fields computed via potential density at
1° x 1° from gridded temperature/salinity (T/S) &evitus and Boyer 1994* Levitus et al. 1994)
were used. This product is available at http://www.cdc.noaa. gov/cdc/data.nodc. woa94.html.
The second source was Fleet Numerical Meteorology and Oceanography Center (FNMOC)

, I
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model mixed layer output at a resolution of 2.5° x 2.5° (Clancy and Sadler 1992). Using daily
FNMOC fields from March through December 1995 and January and February, 1996, monthly
means were computed and then gridded to the same resolution as the NODC fields.

The T/S observations required for the NODC MLD product are highly non-uniformly
distributed over the globe, and much of the ocean is completely unsampled (see Levitus and
Boyer 1994a for methodology of filling the global 1° x 1° grid). As a resulL the MLD fields
contain unrealistic spatial distributions, horizontal gradients, and magnitudes. This problem
with definition of MLD from @dded T/S is known, and a developing approach is to define
MLD from individual hydrographic profiles and to grid resultant MLD estimates only where
observations exist @onterey, G., Pacific Fisheries Environmental Laboratory, Pacific Grove,
Calif., personal communication.). However, such MLD fields are not currently available.
Therefore, a weighting function for the NODC MLD fields was defined based on observation
density. Specifically, we used the monthly average number of salinity observations at NODC
levels withh the upper 50 m. Based on mapped observation density, a cutoff of 75 was
chosen to define where salinity was well sampled and thus where the NODC MLD fields had
a suftlcient observational base. Above thk cutoff, the weighting for NODC MLD was 1 (-7%
of the grid points). Below the cutoff, the weighting for NODC MLD was the average number
of observations divided by 75. Lastly, because some NODC MLD values are extremely and
unrealistically deep where few observations exis~ zero weighting was assigned where NODC
MLD was >400 m. This weighting procedure retained NODC MLD estimates in relatively
well-observed regions and relied on the model @NMOC) MLD estimates for poorly observed
regions (in proportion to the paucity of observations).

Following this definition of the weighted average MLD producL there still remained grid
points where neither input data set provided information. Missing grid points within the
latitude range 65° N to 65° S were filled with a combination of spatial and temporal averaging
(= months and 5° of Iatituddlongitude). Any points not filled by thk procedure were filled
with the mean of all valid monthly MLD values for that grid point. Fkuilly, a 5° x 5° median
filter was applied to the monthly MLD fields to smooth the boundaries where missing data
were filled in the last step.

2.2 Interpolation of TALK Below the Deepest Mixed Layer

Below the mixed layer, TALK can be interpolated by piecewise linear regression as a
function of potential temperature@) and salinity (S):

TALK= a+ bf3+cS (1)

One regression was performed in each of the two layers: from the wintertime mixed layer
down to 1000 m, and below 1000 m. The cutoff at 1000 m reflects the mean depth of the
TALK maximum. The coefficients were calculated for each profile, interpolated to the 3-D
grid using the Generic Mapping Tools (GMT) software (Wessel and Smith 1995), and applied
to climatological temperature and salinity (Levitus and Boyer 1994&b; I&itus et al. 1994) to
compute TALK. Uncertainty associated with t.hk interpolation procedure in the Indkm,
Pacific, and Atlantic Oceans is respectively estimated to be *8.4 pmolkg, A1O.2~mollkg, and
*4.6 ~mcJ/kg inthe upper 1000 m, ~d A4.8 pmomg, A9.1 ~molkg, ~d fi.9 ~mol/kg at depths

below 1000 m. The mean uncertainty associated with the TALK interpolation procedure in the
global ocean below the mixed layer is estimated to be &5.5 Wmollkg.
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2.3 Interpolation of TCOZ Below the Deepest Mixed Layer

As shown earlier (Goyet and Davis 1997), below the winter mixed layer, TCOZcan be
interpolated as a function of potential temperature @), apparent oxygen utilization (AOU), and
salinity (S):

TCOZ = a + be + cAOU + dS (2)

The coefficients were calculated for each profile, interpolated to the 3-D grid using the GMT
software, and applied to climatological hydrographic properties to compute TCOZ at the grid
points below the deepest winter mixed layer depth. Uncertainty associated with this
interpolation procedure in the Indian, Pacific, and Atlantic Oceans is respectively estimated to
be *7.9 #mol/kg, &14.5 Lmol/kg, and &8.1 ,umol/kg. The mean uncertainty associated with the
TCOZ interpolation procedure in the global ocean below the mixed layer is estimated to be
*9.4 #mol/kg. The uncertainty is the largest in the Pacific Ocean and reflects the relatively
poor data density in thk large ocean.

3. RESULTS

The results of this work are monthly global fields of TCOZ and TALK, the coefilcients
used to compute these COZsystem properties, and the maximum mixed layer depths used to
define the shallowest depth for these computations. Figure 1 shows the geographical
distribution of the maximum depth of the mixed layer. The deepest mixed layers are observed
in the northern Atlantic Ocean. The Southern Ocean south of 50° S is a large area with deep
mixed layers as a result of the strong atmospheric forcing. The shallowest (< 20 m) mixed
layers are observed at low latitudes.

Figures 2 and 3 illustrate the annual mean concentrations of TC02 and TALK,
respectively, at 500 m, 1500 m, and 3500 m between 60° N and 60° S. These maps clearly
show the differences between the three major oceans. In the Pacific Ocean, TC02
concentrations are generally higher on the eastern side than on the western side (Fig. 2). At
500 m, TCOZ concentrations have the signature of the upper layers and reflect the circulation
patterns. The equatorial upwelling is particularly evident with TC02 concentrations higher on
the eastern side than the western side.

At 1500 m, the highest concentrations are observed in the Pacific Ocean north of 35° N,
while the lowest concentrations are observed in the Atlantic Ocean north of 35° N. At 3500 m,
TC02 concentrations in the Indian Ocean are comparable to those in the Pacific Ocean at
similar latitudes. The lowest TC02 concentrations are observed in the northwestern Atlantic
Ocean. At 3500 m, TCOZ concentrations typically differ by 200 ~mol/kg or more between the
different ocean basins of the Noxthem Hemisphere. In contrast, in the Southern Hemisphere
south of 40° S, the variation of TC02 concentration between oceans is typically less than
50 pmolkg.

At 500 m, TALK is lowest in the Pacific Ocean. However, at 1500 and 3500 m, TALK
is lowest in the Atlantic Ocean. In contrast to TCOZ, the highest TALK concentmtions are in
the northern Indian Ocean.

, I



00000000000 0000000000
Oco o-r No m (O-J-NO co @ d-ml o co (0 d-w
w C9 (9 m COC9 CJ w ml mlcN ------

7

.-. .. —-. — . —. -.. 1-,.1. —H-—. =-- .-. .,.-7- - .+-. m-.v - -,- -.-. —
._. —



o“ 40” 80” +20” 160” 230” 240’ 2’93” 220” o“

60 “
so”

+0’

2Q+

20+

io”

o“

-40”

-20 “

a“

40 “

-s0 ●

-60”

60 “
so “

40 “

20”

20 “

+0”

o“

-+0”

-20’
-m+
40 “

-60 “
-60 ●

o“ 40+ 80” 120’ i60+ zoo+ 240’ 283 ‘ 220” o“

1
2420
=00

,,. -O

: 2260
““’ 23+0

“%’ mo
2200

. 2280

2260
2240

2220

2200
2’ 2180

2160

24+0
2i20

2+00

2380
2360

pmol I&

I

2420
2400

-O

‘X =0
??? 2240

‘--? -O

22no
~k 2280

2260F:!
2+0
2220

& 2200
2<80

2160

2340
2420

aoo

=80
=60

umol la+

1

2420

Moo

2.280
::,:, =0

:,: 2340.......
2220
WO

2260

2260
2240

2220

, ,, 2200
“ 2180

2+60
2+40

2120

2+00
2380

=60

,

pmol lgi

Fig. 2. Spatial distribution of the annual mean TCOZ (~mol/kg) at 500 m (top),
1500 m (middle), and 3500 m (bottom).



1=
24s0
2440
24=
2420

= 24+0
. p 2400

‘“ 22s0
2280

~ ~:

2260
2240

2220
2310
2200
-o
2280
2270
2260
2250
2240
222n

pmol I&

[=

24S0
2+40
2420

;<T 2+20
24+0

““=: %:
2280
2CW0
2260
22s0
2240

~... 2220
2340
2200
2220
2280
2270
2260
2250
22+0
2220

l.tmol kg-i

1

2460
2440
2+2a

-. 2420
2+10

;,.~ 2400
22s0
2280
2370
22s0
23’50

.& 2240
222Q

. . . 2220
--”’ 22+0

2200
2220
2280
2270
2260
2260
2240
222a

~mol I&

Fig. 3. Spatial distribution of the annual mean TALK @mol/kg) at 500 m (top),
1500 m (middle), and 3500 m (bottom).

9

. .. —..——r.- ,.,,.Y ~ —— --------
$



Overall, the distribution of TCOZ and TALK in seawater reflects the circulation of the
different water masses. Briefly, in the North Atlantic Ocean the waters are young and the
concentration of TCOZ is relatively low, whereas the concentration of TALK is relatively high.
However, because it is a location of deep water formation, the TCOZ gradient from the surface
to the bottom is relatively small, and anthropogenic COZpenetrates to the bottom (Chen 1993).
From the North Atlantic Ocean the water flows to the South Atlantic Ocean and to the
Southern Ocean before going into the North Indian and North Pacific Oceans, where TCOZ
concentrations are the highest.

4. SUMMARY

Understanding the complex, interacting processes that determine global ocean uptake of
atmospheric COZrequires accurate definition of initial conditions and accurate representation of
the processes forcing variation. An approach to defining global, monthly 3-D fields of TCOZ
and TALK below the deepest mixed layer was presented in this report. These fields are now
available to the scientific community through CDIAC. The accuracy of these interpolated
fields is the best available today given the in situ data fields. They accurately reflect the main
characteristics of global water mass circulation. This approach offers advantages over spin up
of a single profile in defining spatial variation in COZ system properties because it provides a
more accurate carbon field and reduces initialization time. As additional data become
available, it will be possible to increase the accuracy of mixed layer depths, TC02, and TA.LK
fields.
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5. HOW TO OBTAIN THE DATA AND DOCUMENTATION

This database (NDP-076) is available free of charge from CDIAC. The data are available
from CDIAC’S anonymous file transfer protocol (FTP) area via the Internet. Please note: Your
computer needs to have FIT software loaded on it (this is built in to most newer operating
systems). Use the following commands to obtain the database.

>ftp cdiac.esd.oml.gov or >ftp 128.219.24.36
Login “anonymous” or “ftp”
Password your e-mail address
ftp cd pub/ndp0761
I@> dir
@> mget (files)
ftp quit

The complete documentation and data can also be obtained from the CDIAC
oceanographic Web site (http://cdiac.esd.oml.gov/oceantidoc.ht@, through CDIAC’S online
ordering system (http://cdiac.esd.oml.gov/pnslhow_order.hti), or by contacting CDIAC.

Contact information

Carbon Dioxide Information Analysis Center
Oak Ridge National Laboratory
P.O. BOX 2008
Oak Ridge, Temessee 37831-6335
U.S.A.

Telephone: 865-574-3645
Telefa.x 865-574-2232

E-mail: cdiac @omLgov

Intemeti http://cdiac.esd.oml.gov/
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7. FILE DESCRIPTIONS

This section describes the content and format of each of the 19 files that comprise this
numeric data package (NDP) (see Table 2). Because CDIAC dkributes the data set in several
ways (e.g., via anonymous FTP and on floppy diskette), each of the 19 files is referenced by
both an ASCII file name, which is given in lowercase, bold-faced type (e.g., ndp076.txt) and a
file number. The remainder of this section describes (or lists, where appropriate) the contents
of each file.

Table 2. Content, size, and format of data flies

File number, name, Logical File size
and description records in bytes

1.

2.

3.

4.

5.

6.

7.

8.

ndp076.txt
a detailed description of the data sec methods
of calculations of carbon fields, the five
FORTRAN 77 data-retrieval routines,
and the thkeen oceanographic data files

coef_talk.for:
a FORTRAN 77 data-retrieval routine to read and
print coef_taIk.dat (File 7)

coef_tco2.for:
a FORTRAN 77 data-retrieval routine to read and
print coef_tco2.dat (File 8)

mldlxl.for:
a FORTRAN 77 data-retrieval routine to read and
print mldlxl.dat (3%le9)

talkdaLfor:
a FORTRAN 77 data-retrieval routine to read and
print talk_*.dat (Files 10-14)

tco2daLfor
a FORTRAN 77 data-retrieval routine to read and
print tco2_*.dat (131es 15-19)

coef_talk.dat
a listing of the a, b, and c coefilcients used to
calculate TALK fields

coef_tco2.dat
a listing of the a, b, c, and d coefilcients used to
calculate TCOZ fields

17

1,904 58,117

45

39

47

44

41

48,387

48,387

1,430

1,160

1,631

1,456

1,285

4,403,002

3,096,806
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Table 2. (continued)

File number, name, Logical File size
and description records in bytes

9. mldlxl.dat: 34,144 4,574,721
mixed layer depths (l”xl” grid) calculated
for each month of the year

10-14. talk_*.dat: 4,973,480 447,612,905
inte~olated TALK fields calculated
annually and for each quarter

15–19. tco2_*.dat: 4,980,110 323,714,083
interpolated TC02 fields calculated
annually and for each quarter

Total 10,085,818 783,466,596

7.1 ndp076.txt (File 1)

This file contains a detailed description of the data se~ methods of calculations, the five
FORTRAN 77 data-retrieval routines, and the thirteen oceanographic data files. It exists
primarily for the benefit of individuals who acquire this database as machine-readable data
files from CDIAC.

7.2 coef_talk.for (File 2)

This file contains a FORTRAN 77 data-retrieval routine to read and print coef_talk.dat
(File 7). The following is a listing of this program. For additional information regarding
variable definitions, variable lengths, variable types, units, and codes, please see the
description for coef_talk.dat in Sect. 7.7.

c**** ***** ***** ***** *************************************************

c* FORTRAN 77 data retrieval routine to read and print the file
c* named ‘coef_talk.dat n (File 7)
c**** ****************************************************************

c*Defines variables*

,

REAL ion, lat, coefl, coef2, coef3, coef4, coef5
m coef6
OPEN (unit=l, file= lcoef_talk.dat$ )
OPEN (unit=2, file= ’coef_talk.txt’ )
write (2, 5)

18



c*Writes out column labels*

5
1
2
3
4

c*Sets

6

7

1

10
1

1

20
1

999

format (2X,’LONG’#4X,’nT’,2X, ‘A_COEFF_OFST’zJ&
‘A_COEFF_OFSTt ,2X,‘B_COBFF_TMp’,2X, ‘B_COEFF_TMP’ ,
lX,’C_COEFF_SIUJ‘,lX,’C_CO=F_sAL ‘,/J3x,’DEG ‘.4xJ
‘DEGI,5X, ‘MLD-1OOOM’,7X, ‘>1000M’z4X~ ‘MLD-1000M’~
7X, ’>1OOOM’,3X, ‘MLD-1OOOM’,6X, ‘>1OOOM’)

UP a 100P to read and foxmat all the data in the file*

read (1, 6)
format (///////////)

CONTINUE
read (1, 10, end=999) lon~ lat, coefl, coef2. c0ef3, Coef4n
coef5, coef6

fozmat (F6.1, 1X, F6.1, 2X, F12.4, lx, F12.4, IX, F12.5,
1X, F12.5, 3.X,F1l.4, IX, F1l.4)

write (2, 20) ion, lat, coefl, coef2, coef3, coef4,
coef5, coef6

format (F6.1, I.X,F6.1, 2X, F12.4, IX, F12.4, lx, F12.5,
lx, F12.5, IX, F1l.4, 3.X,F1l.4)

GOT07
close(unit=l)
close(unit=2 )
stop
end

7.3 coef_tco2.for (File 3)

This file containsa FORTRA.N 77data-retievd routine toread and print coef_tco2.dat
(File 8). The following is alisting ofthispro~. For additional information regmting
variable definitions, variable lengths, variable types, units, and codes, please seethe
description for coef_tco2.dat in Sect. 7.8.

c***********************************************************
c* FORTRAN 77 data retrieval routine to read and print the file
C* ~d “coef_tco2.dat” (File 8)
c****************************************************************

c*Defines variables*

REAL ion, lat, coefa, coefb, coefc, coefd
OPEN (unit=l, file=’coef_tco2.at’)
OPEN (unit=2, file=’coef_tco2.txt’)
write (2, 5)

c*Writes out column labels*

5 format (2X,’LONG’, 4x, ’LAT’,6X,‘A_COEFF’,5X, ‘B_COEFF’,
1 6X, ’C_COEFF’,5X, ’D_COEFF’,/,3x,’DEG’J4xJ’DEG’)

c*set8 up a loop to read and format all the data in the file*

19
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read (1, 6)
6 format (///////////)

7 CONTINUE
read (1, 10, end=999) Ion, lat, coefa, coefb, coefc, coefd

10 format (F6.1, 3.X,F6.1, 2X, F1l.4, 1X, F1l.5, 1X, F12.6,
1 3.X,F1l.5)

write (2, 20) ion, lat, coefa, coefb, coefc, coefd

20 format (F6.1, 1X, F6.1, 2X, F1l.4, 1X, F1l.5, 1X, F12.6,
1 1X, F1l.5)

GoTo 7
999 close(unit=l)

close(unit=2 )
stop
end

7.4 mldlxl.for (File 4)

This file containsa FORTRAN 77 data-retrieval routine to read and print mldlxl.dat
(File 9). The following isalisting ofthis program. Foradditional information regarding
variable definitions, variable lengths, variable types, units, and codes, please seethe
description for mldlxl.dat in Sect. 7.9.

c********************************************************************
c* FORTRAN 77 data retrieval routine to read and print the file
c* named “mldlxl.dat” (File 9)
c********************************************************************

c*Defines vari&les*

REAL Ion, lat, ma%, jan, feb, mar, apr, may, jun, jul
REAL aug, sep, oct, nov, dec
OPEN (unit=l, file=smldlxl.datt )
OPEN (unit=2, file=’mldlxl.txt’ )
write (2, 5)

c*Writes out column labels*

5 format (4X,‘LONG’,5X, ‘LAT’,2X, ‘NLD_~’,2X, ‘lZLD_JAN’,
1 2X, ’MIJ_FEB’,2X, ’MLD_MAR’,2X, ’MLD_I@R’,2X, ’NLD_NAY’ ,
2 2x, ’Mm_JuN’,2x, ’NLD_JuL’,2x, ’MLD_AuG’,2x, ’NLD_sEP’ ,
3 2X, ’NLD_OCT’,2X, ’MLI_NOV’,2X,’NLD_DEC’,/,
4 5X, ’DEG’,5X, ’DEG’,8X,13 (’M’,8x))

c*Sets up a loop to read and format all the data in the file*

read (1, 6)
6 format (//////////)

7 CONTINUE
read (1, 10, end=999) ion, lat, ma%, jan, feb, mar,

1 apr, may, jun, jul, aug, sep, oct, nov, dec

,

10 format (F8.2, 1X, F7.2, 1X, F8.4, IX, F8.4, 1X, F8.4,
1 1X, F8.4, 1X, F8.4, 1X, F8.4, 1X, F8.4, 1X, F8.4, 1X,
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2 F8.4, lx, F8.4, Ix, F8.4, lx, F8.4, IX, F8.4)

write (2, 20) ion, lat, max, jan, feb, mar~
1 apr, may, jun, jul, aug, sep, oct, nov, dec

20 format (F8.2, IX, F7.2, lx, F8.4, lx, F8.4, IX, F8.4,
1 1X, F8.4, lx, F8.4, 1X, F8.4, IX, F8.4, 1X8 F8.4, lx,
2 F8.4, 1X, F8.4, lx, F8.4, IXr F8.4~ 1X, F8.4)

GoTo 7
999 close(unit=l )

close(unit=2 )
stop
end

7.5 talkdat.for (File 5)

This file contains a FORTIMN 77 data-retrieval routine to read and print taIk_*.dat
(Files 10-14). The following isalisting oftilsprof%m. Foradditional information
regarding variable definitions, variable lengths, variable types, units, and codes, please see the
description for talk_*.dat in Sect. 7.10.

c**** ***** ***** ***** *************************************************
c* FORTRAN 77 data retrieval routine to read and print the files
c* ~d Utalk_*.datm (Files 10.14)
c********************************************************************

c*Defines variables*

REAL ion, lat, dep, mid, talk, tm, sax, coefa, coefi
REAL coefc
OPEN (unit=l, file=’talk_*.dat’)
OPEW (unit=2, file=’talk_*.=’)
write (2, 5)

c*Writes out column labels*

2
3
4

c*Sets

6

7

1

10
1

1

20
1

5 format (3x,’LoNG’,4x, ’LAT’,3x,‘DEPTH’,5X, ’MLD’,6xr
1’TU’Z 4X~ ‘TEMP’~2x~ ‘SALNTY’,4X, IA_COEFF1,4x,

‘B COEFF’,4X, ‘C_COEFF’~/~4XJ ‘DEG’J4xJ ‘DEG’J7xJ ‘M’c
7X;’M’,3X,’UMOL/KG’ ,5X, ’DEG’,2X,‘PSS-78’,5X, ‘OFFSET’,
7x;,*185&1s~1,/)

up a loop to read and format all the data in the file*

read (1, 6)
format (///////////)

CONTINUE
read (1, 10, end=999) lonr lat~ dep~ mld~ talk~ -s
salt coefa, coefb, coefc

format (F7.1, lx, F6.1, 1X, F7.1, 3.X, F7-1, =, F9.11
UC, F7.3, lx, F7.3, lx, F1O.3, lx, F1O.3, 1X, F1O.3)

write (2s 20) lonf lat~ depr mid. talk~ tIUPf
salt coefa, coefb, coefc

format (F7.1, 3.X,F6.1, =, F7.1, 3.X,F7.1, 3.X,F9.1,
lx, F7.3, lx, F7.3, lx, F1O.3, lx, F1O.3, 3.X,F10.3)
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GOT07
999 close (unit=l)

close (unit=2)
stop
end

7.6 tco2dat.for (File 6)

This file contains a FORTRAN 77 data-retrieval routine to read and print tco2_*.dat
(lWes 15-19). The following is a listing of this program. For additional information
regarding variable definitions, variable lengths, variable types, units, and codes, please see the
description for tco2_*.dat in Sect. 7.11.

cc*** ****************************************************************
c* FORTRAN 77 data retrieval routine to read and print the files
c* named “tco2_*.datn (Files 15-19)
c********************************************************************

c*Defines varkbles*

REAL ion, lat, dep, mid, trco2, tmR, aou, sal
OPEN (unit=l, file=’tco2_*.dat’)
OPEN (unit=2, file=’tco2_*.txt’ )
write (2, 5)

c*Writes out column labels*

5 format (3x,’LoNG’,4x,’LAT’,3x, ‘DEPTH’,5x, ’MLD’,6x,’TC02 ‘,
1 4X, ’TEMP:,5X, ’AOU:,2X,‘SALNTY’,/,4X,’DEG’,4X,’DEG’,7X, ‘M’,
2 7x,’M’,3x,’uMoL/KG’,5x, ‘DEG’,lx,’uMOL/KG’,2X, ‘PSS-78’,/)

c*Sets UP a loop to read and format all the data in the file*

read (1, 6)
6 format (///////////)

7 CONTINOE
read (1, 10, end=999) ion, lat, dep, @d, trco2, tmQ,

1 aou, sal

10 format (F7.1, lx, F6.1, lx, F7.1, 1X, F7.1, 1X, F9.1,
1 1X, F7.3, 1X, F7.3, 1X, F7.3)

write (2, 20) Ion, Iat, dep. mid, trco2, tmp, aou, sal

20 format (F7.1, 1X, F6.1, 1X, F7.1, 1X, F7.1, 1X, F9.1,
1 3.X,F7.3, 1X, F7.3, 1X, F7.3)

,

GoTo 7
999 close(unit=l)

close(unit=2 )
stop
end
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7.7 coef_talk.dat (File 7)

This file provides the coefilcients a, b, and c used to calculate TALK from the potential
temperature (T) and salinity (S). Each line of the file contains a longitude, latitude, offset
coefilcient a (between depths MLD and 1000 m), offset coeftlcient a (below 1000 m), T
coefficient b (between depths MLD and 1000 m), T coet%cient b (below 1000 m), S
coefficient c (between depths MLD and 1000 m), and S coefficient c (below 1000 m). The
file is sorted by longitude and latitude and can be read by using the following FORTRAN 77
code (contained in coef_talk.for, File 2):

1

10
1

REAL ion, lat, coefl, coef2, coef3, coef4, coef5
RE2KIcoef6

read (1, 10, end=999 ) Ionl lat~ Coeflz Coef2~ coef31 coef4#
coef5, coef6

format (F6.1, lx, F6.1, 2X, F12.4, 1X, F12.4, 3.X,F12.5,
1X, F12.5, 1X, F1l.4, lx, F1l.4)

Stated in tabular form, the contents include the following:

Variable Variable Variable Starting Ending
type width column column

lon Numeric 6 1 6
lat Numeric 6 8 13
coefl Numeric 12 16 27
coef2 Numeric 12 29 40
coef3 Numeric 12 42 53
coef4 Numeric 12 55 66
coef5 Numeric 11 68 78
coef6 Numeric 11 80 90

The variables are defined as follows:

lon is the longitude for which coefllcients were calculatecL

lat is the latitude for which coefficients were calculated;

coefl is the offset coefficient a (for depths between MLD and 1000 m);

coef2 istheoffset coei%cient a (for depths below 1000 m);

coef3 istheT coefllcient b (for depths between MLD and 1000 m);

coef4 is the T coefficient b (for depths below 1000 m);

coef5 is the S coefilcient c (for depths between MLD and 1000 m); and

coef6 is the S coei%cient c (for depths below 1000 m).
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7.8 coef_tco2.dat (File 8)

This file provides the coefilcients a, b, c, and d used to calculate TC02 from the T,
apparent oxygen utilization (AOU), and S. Each line of the file contains a longitude, latitude,
offset coefficient a (below MLD), T coefficient b (below MLD), AOU coefllcient c (below
1000 m), and S coefficient d (below MLD). The file is sorted by longitude and latitude and
can be read by using the following FORTRAN 77 code (contained in coef_tco2.for, File 3):

REAL ion, lat, coefa, coefb, coefc, coefd

read (1, 10, end=999 ) ion, lat. coefa,

10 format (F6.1, 1X, F6.1, 2X, F1l.4, 1X,
1 1X, F1l.5)

Stated in tabular form, the contents include the following:

coefb, coefc, coefd

F1l.5, 1X, F12 .6,

Variable Variable Variable Starting Ending
type width column column

lon Numeric 6 1 6
Iat Numeric 6 8 13
coefa Numeric 11 16 26
coefb Numeric 11 28 38
coefc Numeric 12 40 51
coefd Numeric 11 53 63

The variables are defined as follows:

lon is the longitude for which coefficients were calculated,

Iat is the latitude for which coeftlcients were calculated;

coefa is the offset coefficient a (for depths below MLD);

coefb is the T coefllcient b (for depths below MLD);

coefc is the AOU coet%cient c (for depths below MLD; and

coefd is the S coeftlcient d (for depths below MLD).
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7.9 mldlxl.dat (File 9)

This file provides a mixed layer depths (1° x 1° grid) calculated for each month of the
year. The file is sorted by !ongitude and latitude and can be read by using the following
FORTWIN 77 code (contained in mldlxl.for, File 4):

1

10
1
2

REAL ion, lat, ma%, jan, feb, mar, apr, may, jun, jul
REAL aug, sep, oct, nov, dec

read (1, 10, end=999 ) ion, lat, ma%, jan, feb, mar,
apr, may, jun, jul, aug, sep, oct, nov, dec

format (F8.2, 1X, F7.2, lx, F8.4, 1X, F8.4, 1X, F8.4,
1X, F8.4, 1X, F8.4, 1X, F8.4, 3.X,F8.4, lx, F8.4, 1X,
F8.4, 1X, F8.4, lx, F8.4, 1X, F8.4, 1X, F8.4)

Stated in tabular form, the contents include the following:

Variable Variable Variable starting Ending
type width Column Cohlrnn

Ion
Iat
max
jan
feb
mar
apr
may
jun
jul
aug
sep
Ott
nov
dec

Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric

8
7
8
8
8
8
8
8
8
8
8
8
8
8
8

1
10
18
27
36
45
54
63
72
81
90
99
108
117
126

8
16
25
34
43
52
61
70
79
88
97
106
115
124
133

The variables are definedas follows:

lon is the longitude for which MLDs were calculated;

lat is the latitude for which MLDs were calculated;

max is the year maximum MLD;

jan-dec is the calculated MLD for each month of the year.
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7.10 talk_*.dat (Files 10-14)

These files provide the interpolated TALK fields calculated annually and for each quarter
(talk_ann.daL talk_djf.da~ talk_mam.dat, talkjja.da~ and talk_son.dat). The files are sorted
by longitude and latitude and can be read by using the following FORTR4N 77 code
(contained in talkdat.for, File 5):

1

10
1

REAL ion, lat, dep, mid, talk, tmR, sal, coefa, coefb
REAL coefc

read (1, 10, end=999) ion, lat, dep, mid, talk, tnw.
sal, coefa, coefb, coefc

format (F7.1, 1X, F6.1, 3.X,F7.1, 1X, F7.1, 1X, F9.1,
1X, F7.3, 1X, F7.3, 1X, F1O.3, lx, F1O.3, 1X, F1O.3)

Stated in tabular form, the contents include the following:

Variable Variable Variable Starting Ending
type width column column

Ion
lat
dep
mld

tmp
Sal
coefa
coefb
Coefc

Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric
Numeric

7
6
7
7
9
7
7
10
10
10

1
9
16
24
32
42
50
58
69
80

The variables are defined as follows:

Ion is the longitude for which TALK was calculated;

lat is the latitude for which TALK was calculated;

dep is the depth for which TALK was calculated (m);

mld is the maximum Iayer depth(m);

is the total alkalinity @mol/kg);

tmp is the temperature (“C);

sal is the salinity;

7
14
22
30
40
48
56
67
78
89

. I
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coefa

coefb

coefc

is the a coefilcient (offset);

is the b coefficient to temperature and

is the c coefllcient to salinity.

7.11 tco2_*.dat (Files 15-19)

These files provide the interpolated TCOZ fields calculated annually and for each quarter
(tco2_ann.da4 tco2_djf.dag tco2_mam.da6 tco2fia.da~ and tco2_son.dat). The files are sorted
by longitude and latitude and can be read by using the following FORTMN 77 code
(contained in tco2dat.for, File 6):

REAL ion, lat, dep, nld, trco2, txuR,aou, sal

read (1, 10, end=999 ) ion, lat, dep, mld~ trco2~ tmp~
1 aou, sal

10 format (F7.1, 1X, F6.1, 1X, F7.1, lx, F7.1, 3.X,F9.1,
1 lx, F7.3, lx, F7.3, 3.X,F7.3)

Stated in tabularform, the contents include the following:

Variable Variable Variable Starting Ending
type width column column

Ion Numeric 7 1 7
lat Numeric 6 9 14
dep Numeric 7 16 22
m.ld Numeric 7 24 30
tco2 Numeric 9 32 40
tmp Numeric 7 42 48
aou Numeric 7 50 56
sal Numeric 7 58 64

The variables are defined as follows:

Ion is thelongitude forwhich TCOz was calculatd,

Iat is the latitude for which TCOz was calculated;

dep is the depth for which TCOZ was calculated (m);

mld is the maximum layer depth (m);

tco2 is the total carbon dioxide (pmol/kg);



tmp

aou

sal

isthetemperature ~C);

is the apparent oxygen utilization (,umoVkg); and

is the salinity.
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