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Abstract

Based on the first order running coupling constant a^ Cq )

we derive in the static limit a quark-antiquark potential.

The tachyon pole in ct, (q ) leads to a partially confining po-

tential,while the smooth remainder gives rise to a Coulomb

like interaction. We impose linear confinement by extrapolat-

ing the confining potential linearly for distances r > rQ.

Thus, aside from the quark masses, mc and mfa, our model con-

tains two free parameters: (i) the renormalizatior. mass A,

and (ii) the extrapolation radius r . With A = 441 MeV,

rQ = .378 fm, mo = 1.525 GeV, and mb = 4.929 GeV we reproduce

the observed orthocharmonium and orthobottomium spectrum very

well. This can be viewed as evidence for the validity of the

framework of quantum chromodynamics.
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I. Introduction

Two families of heavy quark-antiquark bound states, the

J/if = (cc) and the T = (bb) resonances, have been discovered.

There is a strong theoretical prediction that at least one

more family may exist wiich has a new type of heavy quark t (1)

as fundamental building blocks. The spectroscopic properties

of these heavy quarkoniim states represent a sensitive test

for quantum chromodynamLcs (QCD)/ the currently accepted

gauge theory of strong Interactions. In contrast to the light

quarks (u, d, s), the nonrelativistic heavy quarks (c, b, t)

directly probe the statLc quark-antiquark potential.

So far, most studies of the J/4 and T systems have been

based on a phenomenologLeal approach to the quark-antiquark

interaction. ~ In particular, the usual Coulomb + linear

potential model,'31 though motivated to some extent by QCD,

does not include the strong vacuum polarization effects aris-

ing from virtual gluons and quarks. This polarizability of

the vacuum is reflected e.g. in the concept of asymptotic
rn \

freedom* or in the momentum transfer dependence of the strong

coupling "constant"

(1)

(2)

where the first term represents the gluon contribution and f

stands for the number of ; massiess) quark flavors contributing

to the polarizability of the vacuum. From scaling violations

(9)in deep inelastic reactions, the renormalization mass .. is

known within the range of 300 MeV v A <v 600 MeV.

The running coupling constant o.,(q*") can be calculated

from the Callan-Symanzik ;• (a.) -function by integrating the re-

normalization group equation. In this approach Eq. (1)

represents only a first order term which includes, however,

vacuum polarization effects arising from virtual gluon and

quark pairs (Fig. 1). While this approximation is adequate

for a.,/- << 1, it is perhaps no longer justified for large

a/s, since then multigluon effects may become relevant. For

the present study, we find it reasonable to have our considera-

tions based on the expression (1), primarily in order to assess

its range of validity. We will show, however, that Eq. (1),

supplemented with the idea of linear confinement, repre-

sents already an excellent starting point for the evaluation

of the charmonium and bottomium spectra.
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Fig. 1

The Coulomb and first order vacuum polarization contributions

to the quark-antiquark interaction. The numbers below the

graphs denote their relative contribution.

We describe the nonr- ia ivistic heavy quark-antiquark

system in terms of ' i e Schrodinger equation ftT=c=l)

(3)

where m_ is the quark mass, H the mass of the bound state

M (4)

and (-E) its binding energy. The spin structure of the quark-

antiquark interaction W(r) has the general form (12)

Y(r ) = Vo(r) + Wi (r)L-S

where L is the orbital angular momentum,

operator

denotes the tensor

(6)

ana

represents the total spin of the quark-antiquark pair.

(7)
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The details oE the spin independent potential WQ(r) are

determined by QCD and shall be given further below. If WQ(r)

can be represented as a sum of a Lorentz vector and scalar

piece

w
the spin dependent parts are found via nonrelativistic reduc-

tion yielding the generalized Breit-Fermi interaction (10)

G*%

(9)

delta

In the present article, we will solve the spin independent

problem and treat the spin dependent parts in first order

perturbation theory, since terms of the same order in v/c

have been already neglected in the central part of the potential.

-6-

2. The Ouark-Antiquark Potential

The quark-antiquark potential that describes one-gluon-

exchange with the vacuum polarisation corrections shown in

Pig. 1 is given in the static limit by

--i&l *&£'*'• *\
(10)

which is the Fourier transform of the Coulomb propagator dressed

with the running coupling constant (1). The singularity in

ciA(q ) can be easily separated

^ ^oCl2) (11)

by introducing explicitly the tachyon pole at spacelifte

momentum transfers q = A

A7-

Thus the nonsingular remainder is

(12)

(13)
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The pole term aQ (cj ) will lead to a partially confining

potential,whereas the nonsingular remainder a^(q ) gives rise

to a Coulomb like interaction with variable effective coupling.

Let us first discuss the pole term a (q ). Interpreting

the singular integral' ' in terms of a principal value

integral

(14)

we obtain a positive definite expression

For distances r « A"1 Uo(r) reduces to

» cCzr.

(15)

(16)

Using our preferred values, f = 3 and A = 441 MeV, the slope

of the confining potential turns out to be

(17)

consistent with the Coulomb + linear potential. This sur-

prising fact makes it possible to suggest a link between the

pole term (15)ar,d confinement. However, our U (r) can only

describe partial confinement, since it oscillates reaching

its first maximum of roughly 550 MeV at about 1 fm. While

the potential (15) is apparently incorrect for large values

of r where, according to lattice gauge theories,^ it

should rise linearly, there is reason to believe its structure

at short distances. In this spirit, we impose linear con-

finement by extrapolating U (r) linearly for distances r > rn

UoCO
(18)

r-ry,)

The extrapolation radius r is a phenomenological parameter

to be determined from the experimental data.

We now turn to the discussion of the nonsingular re-

mainder

.(19)

Using Cauchy's integral theorem, we arrive at

(20)



where

—Are
(21)

This potential is: negative definite and gives rise to a Coulomb

like interaction which is less singular than the Coulomb poten-

tial at short distances.

So far, the quarks contributing to the vacuum polarization

have been assumed as massless. while this approximation is

adequate for the up and down quarks, it is certainly incorrect

for the strange quark. For our purposes, however, it will be

sufficient to have a rough estimate of the vacuum polarization

effects arising from a massive strange quark. Without detailed

justification for this small correction, we therefore replace

the constant B. in eqs. (15) and (20) by a radius dependent

'«ffB

L ± ±
(22)

This form guarantees that only up and down quarks contribute

for r » (2mc)~
1

(23)
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while at short distances r << (2m ) ~ also the strange quark

becomes effective

C24)

The exponential range of B~jf(r) is adjusted to the approximate

range of the vacuum polarization potential arising from strange

quark-antiquark pairs. The total spin independent potential

WQ(r) thus becomes

(25)

where u|}ff(.r) and U^£f(r) is given by eqs. (15), (18) and

(20), replacing B f by B e f f(r).
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3. Numerical Results

3.1 The Spectra

We now turn to the discussion of the numerical results.

The theoretical description of the states above flavor thresh-

old is unreliable due to the presence of the new channel. We

therefore restrict our study to the low-lying states. In

order to investigate the contribution of the quarks to the

polarizability of the vacuum, we evaluate the charmonium and

bottomium spectra for three different potentials, characterized

as follows:

(A) two massless and one massive quark

( mu = md = 0 ; ms = 3 0 0 M e V '

(B) two massless quarks (m = m. = 0)

(C) three massless quarks (m = m d = m =0)

For chaimonium, the three free parameters of the model,

A, TQ, and m c, are determined by fitting the Is, 2S, and IP

levels to the experimental 1 3S 1(3.097), 2
3S 1(3.686), and to

the center of gravity of the I t levels at 3.523 GeV,'13'

respectively, using the potential type A. The fit parameters

A = 441 MeV, r Q = .378 fm, and m - 1.525 GeV, are compatible

with what one may expect from other sources. ' For the

bottomium spectrum we use the potential A with the same values

of A and r Q. The only free parameter left, the bottom quark

mass m b, is adjusted to the experimental 1 S1 (9.46) level

of bottomium yielding m b =4.929 GeV.

-12-

In Pig. 2 we have plotted the quark-antiquark potential

type A. Here the dotted line denotes the Coulomb like

ef f

potential U-̂  (r) and the dashed line corresponds to the par-

tially confining potential u (r). The dashed-dotted line

is the linearised confining potential U (r),while the sum

U ^ f f

r) + U^ f f(r) (solid line) represents the potential

actually used in the calculations.

In Fig. 3 we show the charmonijm spectrum. The excellent

agreement between theory and experiment is largely due to

the fact that the three lowest levels have been fitted. Thus

the only independent tests of the model are the 3 S. (4.040)

level which is unreliable, since it is far above charm thresh-

old, and the ID,(3.772) level which cannot be compared di-

rectly to the calculated center of gravity of the 1 Dj 2 3

levels.

The real test of quantum chromodynamics comes with the

bottomium spectrum shown in Fig. 4. Our calculations agree

very well with the observed bottomium spectrum and thus con-

firm the reliability of the first order QCD potential. Here

the experimental 2 3S 1 (10.02) and 3 3S 1 (10.38) levels are be-

low bottom threshold and represent therefore a conclusive test

of our model. In fact, this potential that includes both

concepts, asymptotic freedom and linear confinement, does a

much better job than e.g. the Coulomb + linear potential. We

recall here that the original Coulomb + linear potential

fails by about 150 MeV in the description of the 2S and 3S

bottomium states.
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The spectra calculated with the potentials type A, B,

and c are compared in table 1 and 2. The massive strange

quark influences only the low-lying levels,as can be deduced

by comparing the spectra type A (massive strange quark.) and

B (no strange quark). This is not a surprise, since the

potentials, A and B, differ only in the short-range strange

quark contribution. However, if one replaces the massive

quark (type A) by a third massless quark (type O.all levels

are shifted by an appreciable amount. Thus for the charmonium

and bottomium statesrthe major quark contribution to the

polarizability of the vacuum comes from the (massless) up and

down quarks and the (massive) strange quark affects only the

low-lying levels up to about 10 MeV for charmonium and 40 MeV

for bottomium.
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state

3S

2S

IS

2P

IP
I

ID

M[GeV]
i experiment

I(4.040+.010)

; 3.686±0.003

j 3.097±0.002

3.523+.005

(3.772±.OO6)

A

4.090

3.686*

3.097*

3.951

3.523*

3.806

B

4.093

3.690

3.110

3.951

3.524

3.804

C

4.132

3.706

3.088

3.983

3.531

3.829

Table 1

The charmonium spectrum calculated with the

potential ft, B, and C (* s fit).

state

;

4S

i 3S

2S

r
3P

; 2P

; IP

1 2D

' ID

I F

experiment

10.38±0.04

10.02±0.02

9.46±0.01

|

1
i

1

M(GeV]

A i

10.628

10.370

10.039
*

9.460

10.543

10.275

9.921

10.456

10 .176

I 10.366

1

B

10.63Z

10.376

10.050

9.498

10.546

10.279

9.931

10.457

10.179
I

1
110.366

i

1

C ,

• • 1

1

10.655
10.384

10.037

9.441

10.565

10.282

9.911

10.472

10.17 6

10.376

1

Table 2

The bottomium spectrum calculated with the

potential A, B, and C (* = fit).

.
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3,2 Spindependent Terms

We now turn to the discussion of the current data on the

spindependent interaction. The spinorbit and tensor splittings

of the p-levels. in charmonium are well established. Using Eq.(5)

we obtain in first order perturbation theory

H (>?,) = H (\3?) - w, (IP) 4 a. vi
H (|3?N)= H . (26)

from the experimental P-levels 13P2(3.554), 1
3P1(3.5O8),

and 1 P (3.413? J'one can deduce the center of gravity of the

triplet P states (Table 1)

V (27)

and the expectation values of the spin-orbit an'.', tensor inter-

action (Table 3)

CW,(iP)» 35 HeV

i "i u1 ; • (28)

Similarly, we h.ive for the D-states in first ordor

H (1aI>) - W, (is} + ,2 W2.(0>)

-20-

From the observed 1 D^(3.772) level and the theoretical estimate

M(13D) = 3.806 GeV one concludes

3 W, (n>) + <2 W 2 (ID) = 34 MeV (??) . (30)

However, this relation is unreliable, since it depends critically

on the unchecked value of M(l D).

The hyperfine splittings of the Is, 2s and ID states are

given in first order by

- M
- MIN

Here the experimental situation is less clear. If we interpret

the states at 2.830(7), 3.4541?) and 3.590 GeV(??)as the para-

charmonium states I SQ, 2 S Q, and 1 Dj, respsctively, WQ obtain

for the expectation values of the spin-spin potential

(20)
C6.8 HeV(?)

s& MeV (?)

' ' (32)

Here we have used the observed orthocharmonium states I S ,

(3.097), 23s1(3.686) and theoretical 1
3D(3.8O6) state. None

of the supposed para charmonium states is really well-established,

and therefore, the experimental values for the matrix elements
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(32) should not be taken too seriously. However, if the inter-

pretation of the 2.S30 and 3.454 states is correct, the quark

model is in trouble because of the necessary large Hl-transition

rates from the J/i> and ty' to these states. Moreover, if th^ new

state at 3.590 GeV is really a 1 D- state,there is apparently

a state independent contribution to the matrix elements 132)

which is hard to explain within the framework of Eq.(9).

Our calculated matrix elements are shown in Table 3 for

charmonium and Table 4 for bottomium based on the potentials

A, B, and C. Here the spin independent potential W is assumed

to be of vector type

Yo=

(33)

While the theoretical tensor splitting W2(lP) is more or less

consistent with the experiment, we are left with a serious dis-

crepancy in the spinorbit splitting w.(IP). Of course, w^tlp)

could be fitted to the experimental value by introducing a

scalar component in the confining potential

Vo =

'° (34)

at the expense of a still smaller tensor splitting W2(lp).

Going even a step further, one can allow for an anomalous chtomo-

magnetic moment in order to fit both, W,(lp) and W,(lP) < 1 5 !.
l z

' experiment

K, ' h", K, K, K. K, h", W, W, «

1

3S 0 0 i. 0 0 •• 1 5 . 4 0 C - 1 4 . ^ 0

2S 0 0 . 5 8 . 0 ? ' ; 0 O ' ^ O . O 0 0 1 S . J C

I S i 0 , 0 6 6 . S ? i l 0 0 J36. f r ' 0 : ; 3 . S"' 0

IP f 35 . 1 0

5 9 . 3 6 . 5 ' fr.S ! ^ f r . ~ 6 . 1 t>

" 6 . 1 s . : ; s . 1 * - ; . < i - . - s .'i s - ? . \ s . ^ - i o . ^

!= 11.3??

Table 3

The experimental atui theoretical expoct.it i^r. valvu'P o:

the spin dependent potentials tor charr.ioniun !m MeV'.
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State

4S

3S

2S

IS

3P

2P

XP

2D

ID

IF

A

Wl ! W2

0

0

0 .

0

13.9

16.9

24.4

7.3

8.9

S.2

0

0

0

0

1.7

2.1

3.1

.8

1.0

W3

3.0

3.8

5.4

13.4

1.2

1.4

2.0

.8

1.0-

.5 .7

1

R

Wl W2 W3

0

0

0

0

12.8

15.6

22.0

6.9

8.5

!

o
 

o
 

o
 

o

1.6

1.9

2.7

2.8

3.5

4.9

11.6

1.1

1.4

1.9

.7 .8

! .9 1.0

5.1' .5 .7

1 l

c.
Wl H2 W3

o !

;' o

; 0

0

:

14.8

; 18.0

25.7

8.0

9.7

5.8

0 .
I

0 j

0 j

0

1.8

2.2

3.2

.9

1.1

.6

3.2 .

• 1 . 0 •

5.7 ;

13.6 !

1.3 !

1.6

2.2 j

.9 '

1.1

.8

Table 4

The theoretical expectation values of the spin

dependent potentials for bottomium [in MeVJ.

At this staoo, however, whorr the s;u norbi t spl i 11 i n<: is '. h<v

only established discrepancy b-'twon theory and oxprnr.ont , tin

introduction of two arbitrary paranei crs is har.Uy iur.t i f itd,

since it woul a drast ieally roducc the predict in a power <- f the

theory . An al ternat ivo OKplanaf ion of the *1 J srv^.p^incy is 1 hat

the potentials V {r) and W^ (r) di t'iVr approci ably in t he doir,a i r,

. 3 fir. '-• r ' .5 fir,. Clearly spin effects are quit e sen!>i t i vo t_o

the detailed structure of the vector part of thv pot ont. ial V^fr)

in this reqion.

From the matrix elements aivon in Tabie 4 and Kiis. (26) and

(29) we can deduce the energy levels of the IP and ID states in

orthobottomiuin

)i,0= (9. 860> 3.303 ,9.944) G eV

H (133>M,3> (\O.I47 ,1 or,,

However, as we have noticed earlier in this section, we should

not trust this prediction too much, except for the fact, that

the splittings are much smaller than for charmoniuin.
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3,3 Leptonic Decays

An interesting check of the jiiodsl are the leptonic decay

widths usually calculated through the van Royen-Weisskopfl"

formula

£•!>
(37)

Here a denotes the fine structure constant, e« is the charqe of

the quark in units of e*and TJ-- (o) is the n s - state wave

function at the origin. It has been shown that this equation

is subject to large radiative corrections vrhich tend to suppress

the leptonic widths drastically. In fact, Eq.{37) should read

:*. 55

(V<)= .17

riMSvVMi.- It'. ~h :;• .•-. 1 y : '-.t1 ^ : .•: '*.̂  ..-: : '•.•• ; \."

The correction factor P(mn) can be evaluated to first order ip.

o, giving

"" '** < 3 9 >

where a. {-niQ ) denotes the strong coupling constant at t mo-

like momentum transfers q = -m , since the correction is

rather large/we may conclude that the first order result is

unreliable. Thus, at the present stage,F(m ) is best kept as a

free parameter to be determined from the charmonium and hott'j:--

ium data.

In tables 5 and 6 the leptonic decay wi dths a re shown tor

•i . $ ' . r-



state

4S

3S

2S

IS

n n ^ -

experiment

. 4 i . 2

1.3±.2

A

. 3

. 3

. 5

1.3*

B

. 2

. 3

. 5

1 . 1

c I

3 ,
1

. 3

. 5

1 . 3

Table 6

The leptonic widths of the bottomium states

calculated using eq. (38) with P(mb) = .67 (* = fit)

to

and -j^. ir! thi- ra.U.<: H V O f-.i--

;h,ir th-.' "ro.i.

beV

•he r,i'os !v
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We now turn to the magnetic dipole transitions. The theo-

retical description of the forbidden transitions is uncertain

due to coherent relativistic effects. We therefore restrict

ourselves to the allowed magnetic transitions

••«o-*&«
3

(46)

Assuming that the 11S() and 2
1s0 states are at 2.951 and 3.606 GeV,

respectively, as predicted by our model, we obtain

= s.S
(47)

which is still larger than the accepted experimental upper lir>.it

of 1.1 keV for this transition. The theoretical 2S-transition

rate of

ktV

is not in contradiction with the experiment.

4. Final Re-arks

bound states in the t rancher'*; c: '̂.i.ir.r;:- c.".ro:"-ody;-.a:'. i o;=. .'..:'

cor. fir™, s the reliability of the ytrturba; w o appro.?, c:; t o

and asymptotic freedcr, but also -cs tab 1 ishes a strict .-.ua:1.: i-

tarive relation between z':\c pararvt eis o: the theory and oxre:

-asses, r.'.̂ =i. ;?25 and r.,̂ -4. ̂ -^ ^oV, a? we 11 a*= ; ho r:-.er.or:e:'.o-

loc icai extrare 1 at ion rad ins r ̂~. 3"" S i™. see" reasot'.ab '. e . "he

strength parameter

:.s -.ost sensitive to t;

•?. lucp.s are indeed the .-.iû ? Lvso:> ot a SV •.N . ̂ , ., ' >:aa^e the*-1: y

'.vi th. N . --!. As far a? the '.uark oor.t f ib.it ior. is ocr.oe; :u-v:.,
c o l o r

our c a l c u l a t i o n s a r e o o r . s i s t e n t •.*• i t h ;• rret^ o;;:ai \ :" 1 a-/c vv<: t.wo

~ass ' . e s s up and down cuarke a:\vi a - . \ f .s ivo ^ t : ,\:v:e .:r.a: \ -1:

:"^^300 MoV. However, i t i s al ?o : o s s ; b ' . e to :e;-i ooluor t he

chavr'.on iui" a:iJ. bo t toni•..:•'. dat a neo 1 eot ir.-: t h.e s ' : ar.^i- o. v.i: \ va-

OUUP. ;:o l a r i.'.at u ' : ; . I'n l" act , vit? v:;«.: ' - -5'" - >VV , ; "̂ . 4t- J ' '•"•,
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The electric dipole transition rates and the leptonic

widths are in reasonable agreement with the experimental data.

However, the detailed spin structure of the quark-antiquark

interaction as well as the Ml transition rate to the para-

charmonium ground state still remain to be understood.

Concluding we would like to emphasize that, if the top

quark exists, the toponium spectrum will be a crucial test for

the model. Assuming a top quark mass of m X 15 GeV, toponium

will probe much more the domain that can be described by per-

turbative QCD and that is presumably less sensitive to phenome-

nological modifications at large distances.
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