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. This report documents the development of a new finite element model of the positive tone
silylation process. Model development makes use of preexisting Sandia technology used
to describe coupled thermal-mechanicalbehavior in deforming metals. Material properties
and constitutive models were obtained horn the literature. The model is two-dimensional
and transient and focuseson the part of the lithographyprocessin which crosslinkedand
uncrosslinkedresist is exposed to a gaseous silylation agent. The model accounts for the
combined effects of mass transport (diffusion of silylation agent and reaction product),
chemical reaction resultingin the uptake of silicon and material swelling, the generation of
stresses,and the resultingmaterialmotion. The influenceof stresson diEuSon and reaction
rates is also included. Both Fickian and case II -Ion models have been incorporated.
The model providesfor the appropriatemasstransportand momentumboundary conditions
and couples the behavior (stress/strain) of uncrossli,nkedand crosslinkedmaterialsas well
including the underlying device topology. Finite elementmesh generation, problem setup,
and post processing of computed results is sufficientlymature to permit investigation of
a broad parameter space which includes material properties and geometry issues (e.g.,
alternate crosslinlcingdistributions, resist thickness, etc.). The 2D transient model has
been validatedfor simplegeometriesusing independentmaterialpoint simulationsand one-
dimensional transient simulations. A complete 2D transient simulation of the silylation
process is presentedand discussed. Recommendations for future work are presented.
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1 Nomenclature

a
A
A
A.(t)
B
B
c
c,
c
Q

D
D
D
Do
E
F
Fi,j
{F}
f
h
H
IJI
ji

Kg
k
k.
k8
y]

i

m
mip
n
N
~1
P“
Q
q
R
RHS
R
s
s
t
At
u
Ur

UI

%1

us
Vi
v
Vi
61

mean molecular radius
area,proportionalityconstant
silylatingreagent
surfacearea of arbitrary control volume (function of time)
elementgeometry parameterdefinedby Equation (115);
amine product of silylatingreaction given by Equation (1)
unexposed, unsilylatedpolymer resistmaterial
rubbery modulus
elastic modulus tensor
molar concentration of speciesi (moles i / volume)
unexpanded, silylatedresistmaterial
deformation rate tensor
diEusioncoefficient (cf. Equations (21) and (22))
constantpart of diffusioncoefficient (cf. Equations (21) and (22))
expanded, silylated resistmaterial
body force vector, deformationgradienttensor
nodal body force components where i = z, y and j = 1,2,3,4
column vector of body force components defied by Equation (86)
densityscaling factor
hardeningmodulus
Henry’s constant
elementJacobian definedby Equation (77)
mass*ion flux of speciesi
mass transfer coefficient
Boltman’s constant
rate constant for polymer relaxationreaction (Equation (2))
silylationrate constant for silylationreaction (Equation (l))
massmatrix
molecularweight of speciesi
mass
massof species i in control volume centeredabout point p
unit normal vector
stressdirection
elementbfiear shape function deilnedby Equation (57) where 1=1,2,3,4
scalarmaterial constitutiveparameter
rotation tensor
scalarmaterial constitutiveparameter
yield limit
right hand side
rotation tensor
flow resistance
path along a surface
time
time step
right stretch tensor
x component of displacementat node 1,1 = 1,2,3,4
x component of velocity at node I, I = 1,2,3,4
x component of accelerationat node 1,1= 1,2,3,4
y component of displacementat node I, 1=1,2,3,4
velocity of species i
left stretch tensor
WfuAon velocity of speciesi
y component of velocity at node I, I = 1,2,3,4
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VI
v
.

;}

v.(t)
Vp(t)
w
w
w~b

w
z
x
z~

Y
~
YI
Y

y component of acceleration at node I, I = 1,2,3,4

velocity vector (mass average)
accelerationvector
column vector of acceleration components defined by Equation (85)
volume
volume of arbitrary control volume (function of time)
volume of control volume centered about point P (fnnction of time)
spin tensor
finite elementweightingfunction
arb@iry velocity of control volume
coefficient in exponential *ion expressions (cj Equations (21) and (22))
Cartesiancoordinate x
position vector
x coordinate of node I, I = 1,2,3,4
cartesiancoordinate y
mass fraction of species i
y coordinate of node 1, I = 1,2,3,4
yield function

1.1 Greek symbols

a
q
[A]
@

coefficientof thermal expansion
volume fraction of species i
coefficientmatrix defined by Equation (88)
nodal dependent variable defined by Equation (54), silylationswelling
density
intrinsicdensity of species i (mass i / volume i),
stresstensor
column vector of stresscomponents defined by Equation (87)
x component of the traction vector on a plane whose normal points in the x direction
y component of the traction vector on a plaae whose normal points in the y direction
z component of the traction vector on a plane whose normal points in the z direction
x component of the traction vector on a plane whose normal points in the y direction (aZV= cry=)
local isoparametnc coordinate
local isopamnetnc coordinate, angle of molecular chain rotation
massproduction rate of species i
plastic strain rate
deviatoric stresstensor magnitude
absolute temperature
Lard elastic constants
Poisson’s ratio
Langevin back stresstensor, rate dependent yield stress



— ._. . . . ...

1.2 Subscripts and superscripts

m
d
P

9,s
g,co
i
P

r,a
e
P

momentumquantity
filon quantity
point P at the control volume center
evaluatedin the gas at the surface
evaluatedin the gas far from the interface
speciesindex
point P at the control volume center
evaluatedin the polymer resistat the surface
elastic
plsstic
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2 Introduction

This report describes a new two-dimensional transient computational model of a positive tone silylation

process. The model accounts for multispeciesdif?kion of the silylation and product gases, the silylation

chemical reaction, the subsequent swelling and movement of the resist and adjacent materials, and the

evolution of the stress state including the kinematicsfor finite deformations. Although the model is tw~

dimensional, its extension to three dimensions is straightforward. Material properties and constants were

estimatedfrom the literature. The abtity of the model to predict accurate quantitativebehavior will depend

on the collection of more precisematerialproperty data.

2.1 Background

Photolithography and its related chemical processing steps are ~ected to have an essential role in the

development of next-generation semiconductor devices. Extreme UltravioletLithography (EUVL) has been

demonstrated as a viable candidate for fabrication of integrated circuits having feature sizes of 130nm or

less. Due to the strongly absorbing nature of 13.4nmradiation, thin layer imaging (TLI) resisttechnology is

utilizedby EUVL. In TLI, an imagingmask layer is placed over a bottom layer photoresist. The top layer is

then irradiated causing the photochemical transferof the mask image to the top surface of the photoresist.

Henderson et cd. [1] discuss severalTLI processes. The imaged pattern in the top thin layer of resist is then

pattern transferee into the remaining resist thicknessusing an anisotropicplasma etch step.

The post-exposure silylation process, also referredto as top surface imaging (TSI), is one of several viable

processesbeing proposed for TLI (see e.g. reference[1]). Likeother TLI methods, TSI is an excellent match

to EUVL because it allows thick resist layers to be patterned despite the limited penetration depth of the

incident radiation (see e.g. reference[l]).

The critical steps of TSI include exposure, post-exposure bake, silylation, and etch development. These

steps have an influence on process sensitivity, contrast, and resolution. Depending on the chemistry of

the photoresist,either the exposed(negativetone) or unexposed(positivetone) regionscan be selectively

silylated. During the silylation step, gaseous ami,nosilanesare absorbed at the resistsurface and dif7useinto

the imaging layer. A reaction takesplace in the layerthat resultsin an uptake of silicon, localized increases

in volume, and the evolution of a product gas. Volume increaseson the order of one hundred percent

are typical which results in the development of complex stressstates in the resist material. These volume

increasescan influencethe effectivenessof subsequentprmessing steps (e.g. etch development). Attempts to

control swellingof the resistduringsilylationare discmsed by Han et al. [2]. Researcherswho have examined

the behavior of materialsundergoingTSI include La Tulipe et d. [3], Horn, et uZ.[4], Itani, et al. [5], Glezos

et al. [6], Whelan, et uZ.[?, Zuniga and Neureuther[8], Ocola and Cerrina [9], and Henderson et UL[1].

13



2.2 Earlier Work

Early silylation modeling efforts represented silylation solely as a diffusion/reaction process. Weiss and

Goethals [10] utilized a modified version of the Deal-Grove oxidation model [11] to simulate the one-

dimensionalpropagation of a silylationfront as a function of time for negative tone resists. Bauch et al. [12]

studied the silylationprocessexperimentallyand numericallyusinga two-dimensional-Ion model. They

used an equilibrium balance between sorption, resorption and diffusion as a boundary condition at the

gin/resist bo~dary. The influence of resist glass transition temperature on the diffusion mechanismwas

examined by Hartney et d. [13] ad Paniez et al. [14]. They observed that, while Fickian &fFusionmay be

appropriate below the glass transition temperature, Case II -Ion is more likely above it. This point is

discussed in more detail in Section 4. A comprehensive difl!usion-basedsilylation model was proposed by

Pierrat [15]. His model accounted for the reaction of the silylating agent with the resist polymer and the

relaxation rate of the polymer after reaction. The diffusion coefficientof the silylating agent was calculated

as a function of the relaxed polymer chain concentration.

The models described above do not account for swelling of the resist duringsilylation. Such swellingcan

increase diffusion path lengths, induce stresseswhich affect the mode of &ion (Fkkian versus Case 11),

and result in shape changeswhich can influencesubsequentprocessingsteps. A more comprehensivemodel

of the silylationprocess must couple the effects of diffusionand large deformationsin the material. Winters

and Mason [16, 17] proposed a computational.model for heat conduction (diffusion of heat) and material

motion for the purpose of modeling coupled thermal-mechanicalphenomena. The silylation model proposed

here is an extension of their technique. Dimitrienko [18] developed a filly coupled model to determinethe

effect of tilte deformationson internal heat and mass transferin elastomerablating materials.

TOthe authors’ knowledge, the only silylation model to date which couples -ion of the silylationagent

to the subsequentgrowth of the silylatedmediumwas proposed by Zuniga and Neureuther[19]. Their model

accounted for the relaxation of the polymer during silylation, the increase in diffusion rate after silylation

and a slowing of the local silylation reaction due to the stressinduced by swelling. They chose a variable

diffusion coefficient similar to Pierrat’s [15] to account for an increase of diffusion through the ailylated

medium. A silylationreaction rate was proposed that depended on the change of state achieved in the resist

upon exposure and was proportional to the number of bonding sites available for the silylating agent. The

reaction rate was also influenced by the stress generated during silylation. A detailed description of the

constitutive equations and kinematicsof the model was not given.

2.3 Report Overview

In the sectionswhich follow, the detailsof a new two-dimensionaltransientsilylationmodel will be presented.

Model formulation, numerical implementation issues, results, and recommendations for future work are

14



discussed.

Section3 &scribes the silylationprocess and its relationshipto other TSI processing steps. Formulationof

the silylationmodel is presentedin Section 4 including all appropriate equations and boundary conditions.

Solution of the coupled set of governingequations is discussedin Section 5. Section 6 presentsseveralmodel

verificationstudiesmd resultsfrom a 2D silylation analysis. Concluding remarksand recommendations for

future work are presented in Section 7. A one-dimensionaltransientsilylationmodel based on the model of

Zuniga and Neureuther [19] is documented in Appendix A.
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3 Problem Description

This section will describe the TSI process with an emphasison the silylation step. The nomenclature and

terminology introduced here will be used in the discussionpresentedin later sections. Much of what follows

is a summmy of information presentedby Wheeler, et.ul. [20].

3.1 TSI Processing Steps

A schematicshowing the TSI processingsteps and structurecross-sectionsare shown in Figure 1. Figure 1

(a) shows the cross-section prior to the first processing step. The cross-section consists of three layers,

the substrate (black), an intermediateprocessing layer (grey) and the top surface imaging layer (white).

The processing layer, a hard baked resist typically 400-500 nrn thick, functions as a pharizing layer and

antireflectivecoating for the device substrate. The imaging layer, a“photoactive resist, is typically 300-400

nm in thickness.

Figure 1 (b) showsthe first processingstep which consistsof applyinga mask and irradiating portions of

the imaginglayerwith 13.4 nm radiation. This resultsin photoinduced acid generationbeneath the exposed

surface. The cross-section subjected to acid generation is depicted here as the area enclosed by a dashed

line. In this scenario, mid generationdoes not occur through the entire thicknessof the imaging layer.

The next step, Figure 1 (c), is the Post Exposure Bake (PEB). A typical PEB occurs for two minutes at

a temperature of 44)0K. This heating process causes the acid bearing portions of the imaging layer to be

highly crosslinkedand nearly impermeableto silylation agents. The figure impliesuniform crosslinkingover

the acid bearing region. The actual uniformity and coverageof cmsslinkedregion is uncertain.

Figure 1 (d) shows the silylation step for the positive tone process. Silylation increasesthe silicon content

in certain areas thereby increasingetch selectivity for subsequentprocessing steps. The top surface of the

imaging layeris exposed to a gaseousaminodiaiiane(silylationagent). Ty@al processingconditions call for

low pressures(20-100 torr) and intermediatetemperatures (300-500K) for approximately one minute. The

silylatingagent diEusespreferentiallythrough the unexposed regions of the imaging layer where a localized

chemical reaction occurs causing an uptake of silicon, a change in volume, and the liberation of a product

gas. The magnitude and shape of the volume expansion depends on the reaction/-ion process and the

resultingstressstate in the material. Jn Figure 1 (d) the resultingailylationregion is shown in red. Shallow

silylation depths of approximately 20 nm are generally observed in the exposed areas. Such unwanted

silylationis believed to occur because of acid loss during PEB by volatilizationfrom the surfaceof the resist.

A Chlorine/argonplasma “descum” process is used to remove the thin silylatedlayer in exposed areas. The
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descurnstep removesall residuesand improvesthe reproducibfity and linearityof the process [20]. Figure 1

(e) shows the device cross-sectionafter completion of the descum step.

The final step in TSI is the oxygen plasma etch, shown here in Figure 1 (f). The presenceof silicon in the

unexposed portions of the imaging layer restrictsetch penetrations to the exposed areas.

The objective in TSI is to transfer the irradiated mask image to a thin imaging layer so that subsequent

processescan be restrictedto cross-sectionswhichliebeneatheitherthe exposed or unexposedareas. Fignre1

representsan ‘idealization” of the TSI process in that all processing steps result in process boundaries

which are perfectly orthogonal to a “flat” top surface. In reaMy, the process boundaries may be far from

orthogonal due to aerialimage aberrationssuch as light scattering, nonuniformacid generation, nonuniform

cross-linking,multidimensional-Ion of the silylatingagent, multidimensionalgrowth and deformationof

the layermaterialsand multidimensionaletching. Figure2 illustrat~ this point by showinga cross-sectional

plasma stain made after the silylation process and prior to the plasma etch. The seriesof equally spaced

“bumps” along the top portion of the silylatedresistcorrespond to the unexposed portions where silylation

and volume expansion have taken place. Note also the presence of an unwanted Siiylation “scum” layer in

the exposed regions.

3.2 Silylation Modeling Considerations

The silylationmodel documented here is intendedto representthe part of the TSI process which occurs after

the PEB and before the descum step, see e.g. Figure 1 (d). This model does not predict the location and

distribution of the crosslinkingprofile prior to silylation. Rather, this profile representsan initial condition

for silylation modeling computations. The model carIaccommodate any crosslinkingprofile provided it is

known a priori. The precise location of the crosdinking boundary, the uniformity of crosslinking,and the

effectivenessof the crosslinkedregion in inhibiting diffusionand reaction of the silylatingagent axenot well

known.

Zuniga and Neureuther[19]have postulated that the potential for silylationcan be calculatedas a function of

polymer characteristics,processingand imagingconditions. In theirmodelingthey assumedthat crosslirddng

could be related to energy deposition during imaging. They utilized a numericalsimulation(see e.g. [21]) to

compute the energy deposition and ultimately the crosslinkingprofile.

While the present model is capable of treating =Ion mechanismsranging from pure Fickian to more

complex mechanismswhich depend on local stressStatesand reaction rates, the precise nature of diffusion

duringsilylationis not welllmown. Furthermore,mod~ parametersSU&as *~on coefficientsand reaction

rates have not been measuredfor most of the resistsunder consideration for TSI.

The presentsilylation model couples the complex ei%cts of di.fhsion, volume change and finite deformation



stress development for the silylationand crosslinkedportions of the imaging layer. Furthermore,the model

includes the compliance of the planari.zinglayer and device substrate when necessary,to compute stresses

and deformations over the entire cross-sectionof the device. Accurate model predictionsrequire knowledge

of mechanicalmaterial parametersthroughout the device cross-section. At the presenttime, many of these

parameterscm only be estimatedhorn similarmaterials.

Until precise experiments can be designedto determinediffusionand reaction mechanismsand to measure

transport and material parameters,predictions from this or any other silylation model must be regarded

as qualitative. Nevertheless,the presentmodel should be extremely valuable in assessinga wide rage of

silylation processing scenarios.
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4 Model Formulation

The present silylation model couples the effects of silylating agent and reaction product mass transfer,

silylationreaction, volume change, stressgeneration, and iinite deformation of the device cross-section. This

section describes the formulationof the masstransport equations,the equation of motion (momentum), and

the expressionfor unconstrained(stress-free)volumetricexpansiondue to silylationchemistry. Also included

is a discussionof boundary conditionsand sub-models for materialconstitutivebehavior and mass diflision.

The formulation presentedhere is geometry independent.

4.1 Mass ‘lhnsfer and Chemistry

The silylation process studied incorporatessilicon into the unexposed (and uncrosslinked)areasof the resist

(typically a crescdnovolac) therebyrenderingthose areasresistantto “subsequentetchin~ phenomenainclude

diRMon, chemicalreaction, and large (100%) volume changeof material. The processtakesplace in a closed,

isothermal chamber that is maintainedat a temperature of 70-80 C and filled with a silylating gas (e.g.,

dimethylaminopentamethyldisiie, DMAPMDS) to a pressureof approximately30 Torr (cf. reference [20]).

In the model the silylating gas is assumed to be adsorbed onto the unexposed surface of the resist; once

absorbed the silylating reagent (denoted by A) difl?usesinto the unexposed and unsilylated polymer resist

material (denoted by C), reacts with it forming unexpanded, silylated resist (denoted by D) and releasing

amines (denoted by l?) which diffnse through the material and are desorbed from the resist surhce. The

silylating reaction considered in this study is given by

A+ C%?+D (1)

A second reaction (polymer relaxation), whichaccounts for the swellingof the resistdue to the massaddition

included in the silylatingreaction (1), is given by

D%E (2)

This chemical model has been used by Pierrat [15] and Zuniga and Neureuther[19].

from a material modeling point of view, it is desirable to representthe process in a Lagrangian reference

frame, i.e., a referenceframe moving with the deforming material. The derivation below accomplishesth@

however, mlon of the silylatingreagent,~ and the product species,13,of the silylatingreaction is allowed

to take phe across the system (Co-mg of species C and, afteI chemical reactions (1) and (2), species D

and ~ as Well)boundaries.
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4.1.1 Species Mass Conservation Equations

The approach adopted here for species mass conservation is the arbitrary moving control volume approach

of Whitaker [’2’2]wherethe control vohune velocity is W=b (cf Figure 3). This approach yields the following

equation for mass conservationof species i :

d

/~ v=(t)
pYid-v+

[
* (t)Pi(vi – w~b) . ndd –

/
(&w = o (3)

a Va(t)

When the velocity of species i equals the velocity of the control volume (vi = W=b) this equation becomes:

d

I~ v.(t)
pYidv –

/
lilidv = o

Va(t)
(4)

Site we choose a condition that restricts the unsilylated and unexposed material C to remain within the

moving volume, the control volume velocity, w, is not arbitrary; indeedit must equaJthe velocity of species

C, vc. Reactions (1) and (2) form D and E, and these materialsare also contained within the moving

volume so that:

v~ =v~=v~=w. (5)

The velocity, w, of the control volume is in generalnot the mass averagevelocity, v. We deiine dfilon in

the usual way relativeto the mass average velocity, v:

jj = pYi(vi – v) = pYivi (6)

where

v~=v~–v. (7)

is the W?u.sionvelocity of species i. Note that the sum of the mass -Ion fluxes must be zero, that is:

Eji=o. (8)

Equations (5), (6), and (8) can be combined to yield:

22



j. +jBv—w=
Pc+PD+PE”

(9)

The massconservation equations of materialsC, D, and Z which remainwithin the moving control volume

VP(t) (shown in Figure 4 as a two-dimensional quadrilateralcontrol volume centered about point P) are

given (for mass production rates that me constant over the control volume) by:

Note that although there can be -Ion

dmc,
— = (#l&v-(t)

dt

dm.
~ = tiDpvp(t)

dt

(lo)

(11)

dmE
~ = (&,vp(t).

dt
(12)

of materials C, D, and E across the moving control volume

boundary (e.g., V, s v. – v = w – v # O), there is au equal and opposite flux of these materialsconvected

across the moving control volume boundary by the massaverage velocity, v, resultingin zero net transport

of materialsC, D, and E across the boundary.

There is a flux of materialsA and B across the boundary of the moving controlvolumq the massconservation

equations for A and 1? are given by

din.,

/[

pAf5A(jA+j.)
— = ti.pv~(t) –

dt
j. +

Ap(t) (Pcec + %% + Z&) 1
dmBP

1[
PB~i9(jA +&)

— = tiBpvp(q–dt j. +
Ap(t) (Pcec + PIXD + E&E) 1

. ndA (13)

. ndA. (14)

The quantity j3iis the intriniic density of speciesi (gramsi /(cm3 i )); e; is the volume fraction of species i

(volume i /volume mixture), and jA and j~ are the mass -Ion fluxes of species A and l?, respectivdy.

4.1.2 Unconstrained Volume Equation

There can be significantvolume change of the resistduring silylation. Estimatesmade by Wheeler et al. [20]

of volume changes of a cre.ol novolac resistsilylated completely using variousailylatingagents ranged horn

12% to 124%; these estimateswere based on the chzmgein the number of atoms in the repeat unit of the

polymer.

23



If the intrimic densities,~i (grams i/cm3 i ), of the species are assumedto be constant and if the volume

fractions of the species sum to one (~ ei = 1), then the species mass conservation Equations (10)-(14) can

be added to give an explicit equationfor the timerate of change of the volume of the moving control volume:

+jB) 1- ndd. (15)

This equation describesthe unconstrainedvolumetricexpansion due to silylation.

.
4.1.3 Chemical Production Rates

The silylationreaction (1) assumesthat one molecule of the silylatingagent A reacts with one repeat unit

of the unexposed and uncrosslinkedpolymer C to form one molecule of product species 13 and one repeat

unit of silylated,unexpanded polymer D. The relaxationreaction (2) impliesthere is a time scale associated

with swellingof the silylated polymer ( [15], [19]). The mass production rates of the species are given by:

k.p.pc
4A = –—

M=
(16)

_ k8pApcMB
“ – M.MC

(17)

~~ = k8pApcM.
M.MC

– kep=

kep.M.
WE=

M.

(18)

(19)

(20)

where the units of k~ are cm3/mole-see and the units of ke are see-l. Zuniga and Neureuther [19] allowed

the silylationrate constant to depend exponentiallyon the stressin the resist. They referred to the work of

Hm-tney[23]who postulatedthat a silylationfrontpropagatesinto the resistby a CaseII diffusionmechanism

([24], [25]) in which the silylation rate depends exponentially on stresswhen that stress exceeds a critical

swellingstress ([26]). We note that in the resultspresentedlater in this study the silylation rate constant k~

is assumedto be constant;ifwarrantedthe presentmodel can be mod.i&d easily to allow a stressdependent

rate constant (cf. Appendix A).
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4.1.4 DiEu&on Flux Expressions

The mass diffusionfluxes discussedabove are given for species A and B by

j. = ‘@v(?n./m) = ‘p~.e (wpE/ME)v(mA/m) (21)

and

jB = –pDV(mB/m) = –pDoe (w%f~’)V(m~/m) (22)

Equation (21) is sixnilarto expressions given in [15] and [19]; for w = O Equations (21) and (22) are

expressionsof Fick’s law (where for lack of data we have assumede@al diffusion coefficientsfor .4 and B).

Pierrat [15]proposed the exponential dependence of the diffuion coefficienton the expanded, silylatedresist

concentration c~, arguing that the filon coefficient should be larger in the silylated areas due to the

swellingand decreasesin densityand glass transitiontemperatureof the polymer that occur in the silylation

process. Note that Crank [271assumed an exponential dependence of the diffurion coefficient on penetrant

concentration to describe non-Fickian dif?usionin polymers.

4.1.5 Initial and Boundary Conditions

The dependent variablesin Equations (10)-(15) me the massesof the species and the volume of the control

volume; thus the initial and boundary conditions depend on volume. For example, for a control volume

centered about point P (cf. Figure 4), miP(t) = pi=(t)VP(t). Since initial and boundary conditions are

usually sptied in terms of concentration, the discussionhere will refer to (mass) concentratiorqconversion

to species massestakes place in the computer code after discretizationwhen the volumes are available.

The initialconditions for the speciesmass conservationequationsin the region where si.lylationis allowedto

occur state that only C is present: pc (x, O) is specified and p. (x, O) = p~(x, O)= p~(x, O) = P=(x, O) = O.

Boundary conditions ~e required for species A and B. For all boundaries other thaa the gas/polymer

interface, the boundary conditions ~e zero normal fluxes of species A and B: j~ . n = .L “n = O-

At the gas/polyner interface two types of boundary conditions are implemented. For the first type, a fhed

concentrationof A and zero concentration of 13are specifie& pA,,~ is specifiedand p~,,~ = O. For the second

type, a steady-state mass balance that includes an equilibrium assumption at the surhe is the specifkd

boundary condition for A; zero concentrationof B is againspeciiied. This second type of boundary condition
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for A is a flux boundary condition that can be explained with respect to the gas/polymer interface shown

in Figure 5.

As the thiclmess (A~) of the control volume containingthe surface shown in Fignre 5 sbrinks to zero, the

mass balance for the silylating agent A is:

where hAr is the mass flux of silylating agent A at the surface into the resist and ?hA9 is the mass flux

of silylatinggas A into the surface from the gas, which can be given by:

rnAg = Kg bAg,w – PA9,8)” (24)

where Kg is the masstransfer coefficient (ii appropriateunits), pAg,mis the partial pressureof A far from

the interface, and pAg,~is the partial pressure of A in the gas phase at the gas/polymer interface. At

the interface, equilibrium is assumed amdthe partial pressurep~~,~is related to the mass fraction YAr*

(YA s p./p) of species A in the resistat the surfaceby (Middleman [28]):

where H is Henry’s constant (a function of temperature). Combining (24) and (25) yields:

( ~KT,8 Mmixt.rer,8
?f2Ag= Kg p.g,w –

MA )

(25)

(26)

which gives an equation for the unknown mass fraction (or concentration) of A at the surface of the resist

in terms of the parametersKg and H and the specifiedchamber pressurep~g,m.

4.2 Momentum

The materialmotion is obtained iiom the conservationof momentum, i.e.,

a(p)
—= V.C+F

t%
(27)

where p, v, ISand F are the materialdensity, velocity, stress,and body forces respectively. The body force

is included here for completeness. The only applicable body force for the sily~lon problem is that due
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to ~avity which is neglected in the numerical implimentation. The inertia term on the left hand side of

Equation (27) is also negligiblesince the materialmotion is quasi-static. For reasonsexplained in Section 5,

a portion of this term will be retainedto facilitatean explicit time integrationfor v, the principal dependent

variable in Equation (27). The material velocity can be related to the stress through the deformation

rate tensor. This relationship varies depending on the kinematicssnd constitutive model employed (see

Section 4.3).

Boundary conditions imposed on the equation of motion are straightforward. At the free surface of the

imaging layer, the velocity field is computed in such a way as to insure the following stress free boundary

condition:

(28)

were n is the unit normal to the surihce.

The interfacesbetweenthe imaginglayer,processinglayer,and devicesubstrate are assumedto be bonded

together and hence part of the interior computed solution, i.e., there is no need to provide boundary

conditions for material interfaces.

At some depth sufEcientlyfar from the freesurface,the materialis immobile suchthat the followingboundary

condition holds:

V=o (29)

Boundary conditions placed on the in-plane and lateral directions of the device cross-section depend on

whetherthe analysisis three-dimensional,two-dimensional,or axisymmetnc. For the two-dimensionalplanar

model developed here, symmetry boundary conditions are assumed.

4.3 Polymer Material Response

This subsectiondiscussesthe polymer constitutive model. The physical deformationmechanisms,model

kinematics, inelastic flow rule, evolution law, and backstressmodels are formulated in the sections which

follow.

4.3.1 Physical Deformation Mechanisms

To deform inelasticaUy,polymers mustovercome two distinct internalresistances.Initially,the flow strength

is controlled by an internal resistanceto deformation-inducedrotation of the individual molecular chaius
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that comprise the microstructure. This resistance corresponds to breaking bonds connecting randomly

orientednearestneighbor polymer chains. Subsequently,Aains undergo aiiinerotation and realignat larger

strains. ASthe polymer deformsinto this more orderlystate, an additional resistmce must now be overcome

corresponding to this increasein conf@rationaJ entropy.

Often, polymer resistsaredescribed by a viscoelasticconstitutivelaw. Further,the recoverableelasticstrains

are almost always small. As such, the material responseis well-representedby a viscous element in parallel

with an elastic spring. Below the glasstransitiontemperature,however, the viscosityof the inelasticelement

is very largewith a correspondinglylargetime constantfor relaxationof anyof the inelasticstrainsl. So while

a viscoelastic constitutive law is often used, the appment permanence of strain below the glass transition

temperature makesa simplerviscoplastic law sufficient.

4.3.2 Kinematics

Glassy polymers can, in general, exhibit both elasticand inelasticdeformation. In what follows, we exercise

the inelastic glassy polymer model developed by Boyce, Parks & Argon and described in detail in [30].

The formulation used here is restricted to small elastic strains while allowingfor arbitrarily large inelastic

deformation. The motion is prescribed by a multiplicativedecomposition of the total deformation gradient

into elastic and plastic parts

F = F“FP = V“RUP (30)

where V and U are the left and right stretch tensors,respectively.

Furtherrestrictingthe elastic deformation gradient to be symmetric

F
●T

=F”=V* (31)

the plastic deformation gradient

F’ = k.u’ (32)
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then describes the relaxed ccdguration upon elastic unloading to a stressfree state without rotation. It

follows that the velocity gradient may be written

1“Because the internal viscosity is relatively high, only a smaUpart of the deformation is recovered at
normal temperaturesso that the plastic deformationshave the appearance of permanence.” [29]



L = @/”-l
[ 1+V”D’+wpV*-l (33)

where Dp and W“ are, respectively,the symmetric and skew parts of the plastic velocity gradient, known

respectivelyas the plastic rate of deformation and the plastic spin.

The Cauchy stress,U, is uniquely defined by the natural logarithm of the elastic deformation gradient

1
c = det(V”)

C“ : @{v”} – (cwA@ + A@)I’j (34)

where the volumetric terms are the thermal and silylation swelling , respectively,and the elastic modulus

tensor is given by

c“=2pII+AIt31 (35)

where p and A are the elastic Lam6 constants and II and I are, respectively, the fourth and second

order identity tensors. The swelling A@ is the net unconstrained volumetric expansion calculated from

Equation (15) For small elastic strains,the development by Hoger [31]can be used to show that

~(V”)]” N D“ (36)

where D“ is the elastic deformation rate tensor. Using the finite deformation kinematics outlined in

Bammann & Johnson [32] and Bammann & Aifantis [33], a rate formulation for the Cauchy stress cam

be written as

&=u —Woe + aW” N C- : [lnV-]” = C- : D-

where
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D“=D– Dp–{aO+@}I (38)

and

w“ =W–wp (39)



The quantity 6 is the unconstrainedsilylationstrainrate and is determinedfrom.

where ~ ia determinedfrom Equation (15).

For smallelastic strains and, owing to the symmetric choice for F“ [30],

zmd2

U= C”: D-

(40)

(41) -

(42)

4.3.3 Inelastic Flow Rule for Polymer Segment Rotation

The initial resistance to polymer deformation has its origin in the restriction imposed on molecular chain

rotation horn neighboring chains as depicted in Figure 6. Inelastic deformation commences once a free _

energy barrier to molecular mobility is surpassed. This barrier is overcome by thermallyactivated rotation

of chain segments under stress. The result is a Boltzmann expression for the inelastic deformation rate -

magnitude

P=Joexp[*{l-(~):}l‘r (43)

where ~0 is a reference strain rate, SOis the

0 is the absolute temperature, ~ is the 10CSJ

proportiomdity constant given by

athermal flow resistance, i.e. the resistanceat absolute zero,

stressmagnitude, p and q are materialpsrmnetersand A is a

~ 397r<2a3=
16k

(44)

Here &is the net angle of molecular chain rotation, a is the mean molecular radius and k is Boltzrnann’s

constant.
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A typiczdillustrationof this strainrate dependence on stressis given in F@re 7. In this example, an Eying

dashpot element would exhibit negligible strain for stressesbelow the temperature-dependentyield, here

approximately25– 30 x 107dynes/cm2. Above such stresses,the molecularchainsegmentrotation becomes

progressivelyeasierresultingin a strain rate that increasesrapidly with stress.

We assumean associative flow rule with the plastic deformationrate and deviatoric stresscoaxial

D’ = ~PN (45)

(46)

4.3.4 Evolution Law

The response of glassy polymers is characterizedby stress relaxation after yield. The stress relaxation is

modeled by allowingthe internalresistanceto decreasewith continuedstraining. The Vote-type phenomen~

logical softening evolution described in [30] is used here

(47)

where s is the current athermal deformation resistancein the Eyring dashpot, S*8is the steady state value

at large strainand h is the softeningmodulus, i.e. the slope of the yield drop with respect to inelastic strain.

The initial value of this athermalresistanceis given by

o.077p——
‘0– l–v

(48)

The differencebetweenthe initial yieldand the saturation valueof the dashpot resistanceis the valueof the

total stress relaxation in uniaxid extension. In this way, the chamxt~lc time constant for the inelastic

response is determined by the model parameters h and sS*. A @pie.al strain-induced yield drop during

volumetric swellingwill be illustratedin the section describingindividualresponsemodes.

4.3.5 Resistance to Changes in Configurational Entropy

At very large strain, there is a second contribution to resistanceto inelastic deformation. Associated with

large rotations of long chain moleculesis a change in configurationalentropy that corresponds to resistance
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of the bulk polymer to large scale alignmentand ordering of the molecularchains. In [30], a highly nonlinear

Langevinspring elementrepresentsthe lockingbehavior consistentwith a non-Gaussianstatisticalmechanics

description of rubber elasticity. In this formulation, an internal back stress develops in the polymer chain

network as illustratedin Figure 6. This internalstress representsthe ever increasing stress locked in the

iiigned structure, i.e. the stressbeyond which the polymer must be loaded to further strain and align the

chain network so that now the constitutive law becomes

(a - /3)” =C”:D” (49)

The back stressis assumedto remain coaxial with the left plastic stretch tensor, VP, with principaJvalues

given by

(50)

where

F’ = RUP = VPR (51)

and IV is the number of rigid chain links between entanglements. C’R is the rubbery modulus, and L is the

Langevin function given by

(53)

This locking behavior is shown in Figure 8 where the nonlinear behavior of the Langevin function is

illustrated. Effectively, the alignment of polymer chfi requires increasingly larger stresses. Because the

strength of the back stress is proportional to the rigid chain link density, this spring element provides an

appealing means of modeling crosslinkedpolymers through its observed locking behavior.

Because the swellingstrainshave been shown to be of order unity, we describe this elementof the complete

model for illustration. However, as the locking behavior may not be realized by silylating polymer resists

and because it has no counterpartin .wmehstic materialmodels, this elementis not exercisedin simulations

reported here.
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5 Solution Method

This section describes the numericalimplementationof the silylationmodel for twcdirnensiona.1(2D) tran-

sient problems. The equationsformulated in Section 4 me reduced to a set of fist order ordinary difkrential

equationa that can be explicitly integrated in time. The computational space is discretized into 2D La-

grangkm finite elementsand all conservationequationsare solved simultaneouslyon the same moving mesh.

The model has been formulatedso that each elementcontainsa volume of solid mass that may or may not

undergo a chemical transformationdepending on the materialtype and whether it is crosslinked. During a

simulation, no solid mass is permitted to cross the boundaries of an element. The element may, however,

deform and grow in volume due to silylation. All masstransport across the boundariesof an elementis due

to difli.Monand convection of the silylation agent and rea,ctionproduct.

Figure 9 shows a typical four node quadrilateralelementin the globid 2D planar (z – y) coordinate system.

Each elementis assumedto have a uniformand constantthicknessof unity in the z direction (the plane strain

assumption). The goal in finite element discretizationis to obtain a set of ordinary difkential equations

for the dependent variablesat each node in the mesh. The dependent variables include the nodal masses

of all five species, the unconstrained (stress-free)nodal volume expansion rate, the z and y components of

nodal velocity, and the z and y nodal displacements. Equations for nodal masses and volume expansion

rate are obtained from a control volume finite elementdiscretizationof the massconservationequations (see

Section 5.1). Equations for nodal velocities are obtained from a traditional Galerkinone-point-quadrature

finite element discretizationof the momentum equation (see Section 5.2).

Typically, nodes are sharedby severaladjacent elements.Thus the elementcontributionsto a nodal variable

equation mustbe superimposedin order to determinethe completeequationfor each nodal variable. Adding

these contributions is commonly referred to in the fite element literature (e.g. [34]) as the “assembly

process.” After the assemblyprocess is compete, explicit timeintegrationfor the nodal masses,unconstrained

nodal volume rate, and nodal velocities can then take place.

The stress rate in each element is computed at the single Gauss-point horn the deformation rate tensor

and the Gauss-point interpolated unconstrained volume expamion rate (see Section 5.3). The stress, z

displacement,and g displacementare obtained horn a straightforwardexplicit time integration of the stress

rate, z velocity and y velocity. Explicit time integrationand time stepping is discussedin Section 5.4.

Before proceeding to Sections5.1 md 5.2, it is usefulto introducea few concepts. The four node quadrilateral

elements used in the numericalimplementation of the silylation model employ the following equation for

spatial interpolation:
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4

r? = ~ QINZ (54)

1=1

where 1 is the node number, IVis the bilinearshape function, and @ is the nodal dependent variable (mass,

volume rate, or velocity).

The global z – y coordinate system shown in Figure 9 is transformed into the isoparametric local ( - q

coordinate system shown in F@ure 10. Mapping of points between the z —y and ~ —q coordinate systems

is accomplished using the following equations:

(55)

(56)

where the btiear shape function NI is

and Z1 and 91 are the x and y coordinates of node I. The values ~1and ql are the coordinates of node I in

the f - q pkmeshownin Figure 10. Dependingon the node number, these valuesare either –1 or 1.

5.1 Mass !Ih.nsfer and Chemistry

The species mass conservation Equations (10)-(14) and the unconstrained silylation volume expansion

Equation (15) described in Section 4.1 have been discretized and solved on lD and 2D domains using

two diflerentnumerical methods. In the absence of stress, Equations (10)-(15) have been solved on a lD

domain using an implicit ODE integrator,DVODE [35],which is a double preckion variablecoefficient ODE

solver for stiff or nonstiff problems. The solution (not shown) compares well with the solution of the model

formulation described in Appendix A. The 2D formulation described here has been solved on a ID domain

in the absence of stress;again the resultsagree well (cf. Section 6) with those obtained horn the solution of

the ID formulation.

Equations (10)-(15) have been discretizedon a 2D domain using the control volume iinite element method

(cf. [36], [37’J).This method has been applied to ablation problems with moving control volumes [38]. The

control volume finite element metlmd (CVFEM) applies 1A conservation principlesto the finite element

method. Figure 11 shows a four node quadrilateralelement that is divided into four regions labeled SCV1

through SCV~ these regionsare associatedwith local nodes 1 through 4 of the element. Each of these nodes
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corresponds to point P of the control volume shown in Figure 4 (note that if the node is on a boundsry,

it will not be at the center of the control volume); e.g., if node 1 corresponds to point P then SCV1 is

part of the control volume VP(t) associated with node P, and other parts of the control volume VP(t) lie in

adjacent elements (not shown in Figure 11). The conservation Equations (10)-(15) are discretized on the

control volume; however the matrix is assembledon an element by element basis as done in linite element

method applications. As an example, the elementmatrix equationfor the conservationof massof unsilylated

polymer resistmaterial C can be written as

[Mc]{ac}= {Z)c}

where

and

{}

?&l

{6.} = ~
3

?&
4

{}

(&lV&q

{b.} =
WC2v&V2
ticsv&?3 “

WC4 V-4

(58)

(59)

(60)

(61)

Although the left hand side of Equation (58) is written in element matrix form, it is not sssembled into

a global matrix because the solution method is explicit and the left hand side of Equation (10) is simply

the time rate of change of mass of C. The right hand side of the elementmatrix equation, Equation (61),

is assembledfrom the element level into a global matrix for the mass of C at the nodes by summing the

contributions of all the elementsto each node. Siiar expressionsapply for materialspecies D and 1? .

For the mass conservation Equations (13) and (14) of species A and 1? and for the unconstrained volume

Equation (15), fluxes across control volume boundaries must be evaluated. Referring again to the element

shown in F@re 11, the surfaceareasof the control voh.rnesacross which fluxes are determinedare labeled

ssl through ss~ the midpoints of these lines are designatedas integrationpoints ipl through ip4; the fluxes

are evaluated at the integration points. For example, for the subcontrol volume SC!Vl of Figure 11, the

contribution of the mass difFusionflux, given in Equation (21), of speciesA to the total mass diffusionflux

of speciesA (for the controlvolumecenteredat node 1) is

35



where

and

I
j. .ndA =

/
,,1j. - mid –

J
j. .ndA

Scvl SS4

J
j. “ndA = jAzliPIAYl – jAvlipI&

Ssl

/
j~ - ndA = jA=li@AyA – jAVlip4AxA

.%4

h Equations (63) and (64), Azl = z= – ZmPl, A~l = ~C –

(62)

(63)

(64)

!hr@, Lz4 = % – %n~,

and A~A = Y=– y~PA, where the coordinates of the points (x=,vC), (~rnpl,~rnpl), and (~mp4, gmp.4) are

determinedusing Equations (55) and (56).

The mass diffusionflux components of species A at the integration points are then given by (cf. Equation

(21)):

jA = –pDOetwpEiME1
= ipl ipl

jA = –@e(WPE/ME)

v ipl ipl

jA = –P~oe(wpE /ME)

= @ @

jAv = –_p~oe(WE/ME)

@ w

where the shape function derivativesare given by:

[g]=[r[g]
.-I+$ ;]
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(66)

(67)

(68)

(69)

(70)



and ]JI is the determinantof the Jacobian of the transformation,given by Equation in the next section.

Similarexpressionsholdfor the massdiffuion fluxcomponentsof B at integrationpoints ipl and ip4as well

as for the mass -Ion flux components of A and B at integrationpoints ip2 and ip3. The area integrals

and source terms on the right hand sides of Equations (13), (14), and (15) are thus evaluated, yielding a

right hand side vector for each element. The elementright hand side vector is then summed over all nodes

in the problem to yield the global right hand side vector, which is the discretizationof the right hand side

of Equations (13), (14), and (15) for each control volume in the problem. The discretized equationa for

the conservation of mass of species A, B, C, D, zmd E at each control volume are then integrated in

time as discussed in section 5.4. The discretized equation for the unconstrainedvolume is not integrated

in tim~ rather it is the time rate of change of the unconstrainedvolume (the discretizedright hand side of

Equation) that is required by the materialmodel and discussedfurther in section 5.3.

5.2 Momentum

Chain rule di.flerentiationof the inertia term in Equation (27) yields

]V+p+=v”a+l?. (71)

As discussed in Section 4.2, the material motion is quasi-static (negligible inertia). However, to facilitate

the time integrationfor velocity, v, only the first term in Equation (71) is neglected, resulting in

P+= V.a+F. (72)

The method of weighted residuals (see e.g. [34]) is applied to Equation (72) in order to obtain expressions

for the contribution of each element’s the nodal velocity components. The process begins by casting the

momentumequationinto the so-called “weak-form”by multiplyingits residualby a set of weightingfunctions,

W, and integratingthe result over the volume of an element, i.e.,

/
(p+- F- V.c)WdV=O. (73)

v

The method of weighted residualsseeks to approximate the dependent variables (nodal velocities) using

simple functional forms like that expressedin Equation (54). The functions are selected in such a way as to

minimize the residualin Equation (73) thus approximatingthe solution over the element domain.

For the planar problem solved here, a special form of the method of weighted residuals rekrred h as

Galerkin’s method is used. Jn Galerkin’s method, the weighting functions are chosen to be the same as
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the shape or interpolation functions in Equation (54), i.e. W = N. Furthermore, for an assumedelement

thicknessof unity, cW = dA, where A is the elementarea. Thus for the planar problem:

/
(p+- F- V.a)NdA=O

A
(74)

Integrationof the first two terms in the above equation is straighforward,but the last term requiresspecial

treatment because of the spatial gradient operator V. The last term is integrated by parts using Green’s

theorem. This resultsin two integralsfor the third term: m area integral and a line integral,where the liie

representsthe perimeter of the element, i.e.:

PNdA-LFNu+l””vN’q””fids’o (75)

The line integralsprovide a means of applying the appropriateglobal boundary conditions. They vanishfor

all elementswhich do not have a physicalboundary (i.e., all intenor elements). The vector n representsthe

outward pointing normal to the line S (elementside on a physical boundary). Hence in Equation (75), the

last term representsthe iniluenceof boundary traction and pressureon the boundary elements. As discussed

in Section 4.2, this term is zero for the elementsalong the free surface for the silylationproblem.

Integration of Equation (75) proceeds in the &- q coordinate system (Figure 10 aad Equations (55)

through (57)) by noting that

dA = dxd~ = IJldfdq. (76)

where IJI is the determinantof the Jacobian transformationmatrix, i.e.,

It cau be shownthat the determinant of the Jacobianis directlyrelated to the elementarea,

IJI= ;

where the element area is expressed in terms of the elementnodal coordinates as

(77)

(78)

(79)

Substituting~ - q transformationsinto Equation (75) and neglectingthe boundary integralsyields,
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+1 +1

11
+1 +1

/1

+1 +1
pvN IJIo!@q – FN IJId~dq +

//
a . VN IJIqdq = O. (80)

-1 –1 -1 –1 -1 –1

Integration of the terms in the above equations is performed numericallyat a single Gauss point for which

&= q =0. The ‘one point quadrature” assumptionis a popular simplification(see e.g. [16, 39,40, 41]) that

permitsp, F and a to be taken as constant over the elementand moved outside of the integral. The element

stresstensor, a, is the time integratedvalue of the elementstressrate tensor which is determinedfrom the

deformation rate tensor and the unconstrainedvolumetricstrainrate. The elementdeformation rate tensor

is, in turn, computed from the nodal velocities. The remainingfunctions Wide the integralssuch as ~1 are

easily integrated since, e.g.,

Nz(g,q) = NI(O,O)= ;.

where I=1234>>).

After some algebra, Equation (80) takes the form,

~[~{+} = ~{F} + :[AI{o}.

The mass matrix [M] is given by

[M] =

10101010
01010101
10101010
01010101
10101010
01010101
10101010
01010101
10101010
01010101

(81)

(82)

(83)

The “lumped” matrix approximationis made for the mass matrix, i.e., each row of the mass matrix is

summed and the result placed at the diagonal. Hence,

[Ml = 4[q

where [~ is the identity matrix. ‘

(84)

The column vectors {+}, {F} and {a} and the matrix [A] iu Equation (82) are given by
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[A] =

u
U1
VI
U2

{+} = g

V3

ii4

V4

{}

rs==

{CT}= ~

O*:

~2–Y4 O x4–x2 O-

0 X4 – X2 ~2–’#4 O
?J3-Y1 o ZI— Z3 o

0 xl –X3 ‘y3-gl o

y4–!/2 O Z2–Z4 O
0 X2 ‘x4 34–Y2 O

m-w o Z3– Z1 o

0 x3 — q l/1-?J3 0.

(85)

(86)

(87)

(88)

Equations (82) through (88) represent a set of eight ordinary diilerential equations that determine the

contribution of each element to the nodal accelerations UI and til where 1 = 1,2,3,4. Once the total

contribution is determined horn the fm.iteelement assembly process.,Ex and 51 are integratedwith respect

to time to yield the nodal velocities tiI and tiI. The nodal velociti~ are then integratedwith respect to time

to yield the nodal displacementsUz and vI. For the silylation problem the body forces Z?zamdFV due to

gravity are neglected.

SpatiaJintegration of elements at a single Gauss point (i.e. the one point quadrature used here), though

computationally efficient, can lead to the calculation of spurious energy modes. If these modes are not

supressed, a severe and usually fatal mesh distortion lmown as “hourglassiig” may occur. The term

hourglassingwas coined because of the shape taken by adjacent tiected elemmts in structuralcalculations.

The problem ariseswhen a single gauss point is used to calculate the deviatoric part of the stess. When

this is done, it is possible for certain element deformations to produce no stress. Such deformations are

commonly referedto as ‘zero energy modes.”
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A number of procedures have been developed to eliminate hourglassing

present work, the method of Flanagan and Belytschko [43, 44] was used.

its implementationinto the silylationmodel will not be presentedhere.

5.3 Polymer Material Response

(see e.g. [42, 43, 44]). In the

Details of their procedure and

AS is typical for constitutive laws involving inelastic deformation with a evolving microstructure, the

equations for the material point stress and state variables form a coupled system and must be solved

simultaneously.To do this, both Equations (42) and (47) are discretizedin time and coupled using Equation

(43) for the plastic strainrate.

5.3.1 Coupled Newton-Raphson Algorithm

A hid stressstate is computed by assumingthat the strainstep is entirely elsstic. Using (37) and (38)

Itrial
0 =c’n+C” : Q’ -Dp -{cz~+&}qAt (89)

and

U’n+l= u‘t’id – ~pc” : NAt (90)

Use of the associativeflowrule allows(90) to be reducedto an equation for the stress magnitude alone in

terms of the as yet unknown plastic strain increment

Jn order to satisfy the consistencycondition for yielding at the end of the time increment, horn (43)

,p=,oq[-Ayl{l-(-)5}]
Finally, the strain softening state variableevolution depends upon the pk@c strain increment

(91)

(92)

(93)
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Now Equations (91) and (93), coupled through the plastic strain rate magnitude, are formed into residuals

whkh must ultimately vanish. This is accoxnplishedusinga Newton-Raphsoniteration schemewhich, after

some manipulation, results in the matrix equation

where

are the components of the Jacobian matrix and

‘2’=’Oq[-A~l{l-(-)’}1

(94)

(95)

(96)

(97)

(98)

(99)

is the plastic strainrate iterate. Equation (94) is solvediterativelyfor the incrementsin stress,flow resistance

aud plastic strain.

5.3.2 Radial Return Algorithm

While the Newton-llaphson algorithmis generallyvery fast, it can e.xhibkd.i.f%cultieswhen the local Jacobian

vanishes. For strainsoftening polymers, this can happen during the @lc-pWlc transitionwhere the local

material stifbwss tends to zero. At the expense of somewhat less accurate simpl@ng assumptionswhich
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vanishwith decreasingtime step size, a simplerradialreturnalgorithm does not suikr this drawback. While

a general radial return algorithm would necessitate iteration owing to the nonlinear constitutive law, we

examine a simpler case for illustrationhere. For glassy polymers below the glass transition temperature,

~ ~ 1 s. ~ t~ ~it, a s~gle iterate r~ retm is possible. TO fo~tiate this algorithm, however, a

quasi-yieldfunction must be deiined by invertingthe flow rule.

Writing (43) in terms of the stressmagnitude requiredto produce strain rate 5P for ~ = 1,

‘-{s+w$))=o (loo)

Now (100) takes on the form of a yield function

Y=T–R (101)

where the yield resistance,R, has two contributions: a part, s due to flow resistanceinherentin the material

structureand a rate dependent contribution

Taking an elastic strain step4

‘trinl_– Sn– h~lDIAt

The yield condition (101) is then checked. If Y <0, the step is elastic and the solution

(102)

(103)

(104)

Tn+l = 7-triat (105)

Sn+l= Sn (106)

3Forthe representativepolymer PMMA, for irrstzmce,the ratio ~ = ~ .
41thas been shown [32] that, for large in-lc strain problems of this type, it is a good approximation

to replace 7P with [Dl in the yield condition and the state variablerecovery terms.
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is accepted. If Y >0, then the consistency condition Y = Omust be enforced in order for the stresssolution

to remain on the inverted yield surface. This results in an expression for the appropriate plastic strain

increment

+11 _ &ial
&P = ~PAt = -b

2p+h

which is then used to update the stressand the flow strength

trialTn+l = 7- – 2/..LAyp

Sn+l = Sn+ hA~p

(107)

(108)

(109)
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5.4 Time Integration

Solving for the dependent variablesin the silylationmodel is accomplished

ential equations in time. The general form for each of these equationsis

g= RHs. “

by integrating first order diEer-

(110)

where @ representsGauss point stressor nodal velocity, mass, or unconstrainedvolumetric expansion rate.

The shorthand notation “HIS” is used to indicate the right hand side of the equation which in general is a

function of other dependent variables.

A simple “upwind” differencein time is used to approximatethe time derivative, i.e.,

@n+l _ gya

At
= RHS. (111)

where n + 1 refersto the value at the new time step and n the previous time step. Whether the integration

is explicit or implicit depends, of course, on how RHS is evaluated. If it is evaluated at n +1, then the

integration is implicit and a nonlinear algebra problem must be solved. If it is evaluated at n, as in the

presentmodel, the integration is explicit, resultingin the following simpleexpressionfor @n+l,

Q“+l = @n + (At)RH7 (112)

Explicit integrations are conditionally stable which requires careful selection of the time step At. The

Courant stabtity limits for the mass transport (-Ion) and mechanical calculations are functions of

element geometry (shape and size) and the properties of the material. For quadrilateralelementsit cm be

shown that

(113)

At~ =
T

@2

(A+ 2/L)B
(114)

where& and At~ are the stablediflusionand mechanicaltime steps,respectively.In the aboveequations‘D

is the diffusioncoefEcient,Aand p are Lam@=Ic constants,A is the elementarea (given by Equation (79))

and B is an elementgeometric parametergiven by,

~ = (?42– !/4)2 -1-(?/1– !/3)2+ (21 – Z3)2 + (Z2 – 34)2

2
(115)
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GenerallyAtd is orders of magnitude larger than Atm. Hence, the time step is controlled by the mechanical

part of the problem. In quasi-static mechanical calculations such as this one, an =bitrary scaling of the

mechanicaldensity can be usedto bring the stable mechanicaltime step more in linewith the stable dfilon

time step. Hence for the purpose of computing materialmomentum, the density can be increased by some

arbitraryscaling factor, ~d, where jd >>1. The effect of this density scaling is to add artficial inertia to the

momentumequation. Care must be takento insurethat densityscalingdoes not compromisethe quasi-static

behavior of the momentum equation. When this occurs, the solution exhibits obvious nonphysicalbehavior.

In order to avoid excessivelylong computational times, some measureof mechanicaldensityscalingwas used

for all silylationcalculationspresentedin Section 6.

5.5 Mesh Generation and Post Processing

A Fortran77 computer programwaswrittento solvethe 2D silylatiotiequationspresentedhere. The program

readsa keyworddriven problem descriptiontie usingthe parsinglanguagedeveloped by Perano and Kaliakin

(see e.g. [45, 46]) and generates a two-dimensional computational mesh using the Sandia developed mesh

generatorAP [47]. During the solution phase a seriesof time-state filesare written, typically one time-state

file for each second of simulatedtime. Post processingof these time state files is also performed using AP.

This relativelymature pre and post processing interface makesit possible to set up, solve and post process

a wide variety of 2D silyation problems quickly and accurately.
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6 Results

Calculations made using the previously described models are presented in this section. The first two

subsectionsdeal with model verificationfor simplegeometriesincluding transientbehavior at a singlepoint

and transient behavoir in one spatial dimension. The remaining subsection discusses the fully coupled

transientbehavior of the silylationmodel (2D Model) in two spatial dimensions.

6.1 Constitutive Model Material Point Simulations

The polymer constitutive model consists of the coupled system of Equations (42), (43), and (47). They are

parametrizedby a set of materialconstants {p, A,TO,sO,sSS,A, h,p, q}. Theseparametersare generallyeither

derivedfrom other physicalquantitieswhose values~e knownfor a classof materials(e.g. seeEquation (44)

for A) or fit to experimentaldata. A complete set of parametershave been fit for the amorphous polymer,

polymethylmethacrylate (PMMA) elsewhere [30]. These are used here to illustrate features of the model

behavior for a materialpoint under three distinct homogeneous deformationpaths. We exercise the model

for constant strain rate uniaxialextension to show that it recreatesthe intermediatestrain tensiledata. We

then use the model to simulateone-dimensional free surface swellingcha.rzwteristicof the behavior of the

silylating layer far from the substrateedge. Lastly,we artificiallyrestrict the model to elastic deformations

only to illustratethe effect of non-volume conservingflow on the degree of free surface swelling. For all the

discussionswhich follow, the material properties correspond to a constant temperature of @ = 90 ‘C e Q9

and are given by

dyne
/.L=lxlo10 ---&-

A=3.33X109 ~

30 = 1.0 x 1011 S–l

dyne
So = 8.8 X 10s ~

(116)

(117)

(118)

(119)

(120)
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A = 1.7X 10–5
K–cm2

dyne
(121)

h=9x10g ~

P=!l=~

(122)

(123)

6.1.1 Uniaxial Extension

The viscous inelastic softening responseprior to polymer locking behavior can be paraneterized entirelyby

scalar state variables in the model. These can be estimated by fitting the model to uniaxial deformation

paths. Here, we adopt the set of material parameters in [30] listed above. These have been chosen, for

illustrativepurposes, to reproduce the uniaxial tensile data for PMMA [30]. The responseof PMMA pulled

in uniaxialextension at a rate of unity is shownin F@re 12 along with the responsereported by Boyce et al.

[30]. Only the softening portion of the response is included in the model presentedhere. Fbrther, the rate-

dependent yield and post-yield softening response are functions of the applied deformation rate magnitude

IDI, the hardening modulus h, and the steady state inelastic flow strength S8,. The mechanical response

depends on these model parametersas illustratedin Figures 13,14, and 15 respectively.A similarlyisolated

integrationof the model equations is compared in FQure 16 with its implementationin the twmiirnensional

finite elementcode.

6.1.2 Free Surface Swelling

Because we interihce the material model with a displacement-basedfinite element code, the constitutive

subroutineis generallydrivenby a strainhistory discretizedin time. This is straightforwardwhen kinematic

or Dirichlet boundary conditions are imposed on the finite element mesh. When Neumann, flux or stress

boundary conditions are imposed, iteration is generally necessaryin order to converge on the appropriate

strain step necessary to satL@ this boundary condition. This is the case for the onedimensional silylation

experiment described in Appendix A where the free surface of the silylating layer is traction-free. In order

to test the constitutive algorithm for this case, an iterative loop was added which imposed a stress free

boundary condition in one-dimension. To do this, an elastic strain step is presumedfor the out-of-plane

swellingresponse

(124)



This strain step is applied, resulting in a non-zero normal component of the stress at the layer surface.

The strain step is iteratively adjusted until the normal stresscomponent vanishes. At each increment, the

correspondingcompressivein-plane layer stressesaccompanying the induced silylation swellingare given by

AOII = AU33= –2pAe22 (125)

The deviatoricresultant in-planecompressivestressassociatedwith a constant rate of swelling,~, is shown

in Figure 17. Note that the responseis similarqualitativelyto the cinematicallydriven response describedin

the previous Section. After yielding, the polymer inelasticflow strengthevolves in accordance with Equation

(47). This state variable evolution is depicted in Figure 18 for one-dimensionalfree surface swelling.

6.1.3 Idealized Elastic Swelling

As a final case study, we restrict the mechanical constitutive model to purely elastic behavior. For this

example, the free surface expansion can be computed in closed form as a means of verifying the numerical

implementation. Such a case will only be physicallyplausible for very smalldeformations. To simulatethis

behavior, however, the yield strength, .s0, can be artificially increasedto ensure that no plasticity occurs.

For this limitingcase, the incrementalrelations (124) and (125) can be replaced by total quantitiesand the

free surhce strain will be given by

and the accompanying lateral compressivestressesin the silylation layer are

(126)

(127)

both in agreementwith the one-dimensionalmodel presentedin Appendix A. The dependence of free surface

swellingon Poisson’s ratio is shown in F@ure 19. For swellingsto large strain, the fully elastic-plasticfree

surface motion is closely approximated by the elastic limit as v + ~. The isolated model integration is

shown in this limit in F@.re 20 along with the twdirnensional finite elementmodel implementation.

6.2 Comparison of ID and 2D Model Results

A simple one-dimensionaltransient problem was formulated for the purpose of comparing the 1-D modd

discussedin Appendix A and the more general2D silylationmodel. It is assumedthat a layer of unsilylated
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and uncrosslinkedresist1 x 10–5 cm thick is applied to a perfectly rigid surface. The resistand the surface

it is atthed to are tite in the plaae orthogonal to the thicknessdirection. At t=O a fied concentration

of the silylation agent is imposed on the free surface of the resist. As time proceeds the agent diflkses into

the resistfrom the free su.rfcweand reactswith the resist, causingsilicondeposition and swellingof the entire

resist layer. Material parametersand boundary conditions are selectedsuch that an unstressedlayer would

double in thicknesswhen the layer becomes fully silylated.

Figure 21 illustrates the mesh and application of boundary conditions for the transient 1-D problem. A

single row of 100 elementswas used in the 2D simulation. (Correspondingly, 100 grid points were used in

the model described in Appendix A). The lower two nodes of the bottom element (at z = L(t)) are fixed to

the rigid surface and no mass tramsferis permitted across the elementface. Symmetry boundary conditions

are imposed on the right and left boundaries of the element row to simulatethe “i.dnite layer”. Constant

valuesfor the concentrations of species A and E are imposed on thefree surface. The coordinate z shown in

the figure is the nondimensionaldistance (i.e., actual distance divided by current length L(t)) from the free

end.

It should be noted that the model of Appendix A does not account for the presence of a silylation reaction

product speciesB. Furthermore,the constitutivemodel usedin Appendix A relatingstressto strainis a simple

elastic model and therefore not realisticfor real silylation problemsundergoing large strains. Nevertheless,

the model is useful for ver@ing coupled momentum/dif7usionbehavior in ID.

Dimensionalparametersused in the 2D model are related to the dimensionlessparametersof the lD model

according to the following:

k.p.
T

‘Et

p_ PA

PA=

(128)

(129)

(130)

(131)

(132)
pz MC

B=——
~CM.
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where,

k8pA
r~ = ~& = 1.()

A

Pc
— = 0.0113207mol/cm3

co= MC

(133)

(134)

(135)

(136)

(137)

Note that if the silylation reaction rate does not depend on stress, then b = O in Equation (180) and

kl = k. = ks. Also note that the d.ifl&ion coefficient, D, in Appendix A is equal to DOin Equations (21)

and (22).

In Equations (128) through (136), ~ is dimensionlesstime, and P, Q, ~, and ~ are dimensionlessdependent

variables. The remainingdimensionlessparametersdepend on materialpropertiesand boundary conditions

and remainconstant throughout the calculation. The dimensionalpropertiesusedin the 2D calculation were

determinedfrom the constantsspecifkd in Equations (128) through (136) and can be summarizedas follows:

pA = 39.62 g/cm3 (138)

Pc = 1.2 g/cm3

p. = 2.6717g/cm3

p.= 1.3359g/cm3

(139)

(140)

(141)
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MA = 175 g/mol (142)

M= = 106 g/mol

M. = 236 g/mol

M.= 236 g/mol

p.= = 19810g/cm3

k,= 175 cm3/(mol –s)

DO= 2 X 10-12 cm2/s

LO= 1 x 10–5 cm

(143)

(144)

(145)

(146)

(147)

(148)

(149)

ke = 1.981 S–l (150)

Comparisons of predictions horn the ID and 2D models are shown in Figures 22 ad 23. Figure 22 shows

the growth of the silylation layer as a function of time for two diflerentPoisson ratios, v = 0.3 and v = 0.5.

It can be shown that the final layer thicknessescorresponding to v = .3 and LJ= .5 are 1.62 x 10-5 cm

and 2.00 x 10–5 cm respectively. The latter value follows from the observation that all elastic deformation

for the case where v = .5 must be volume conseming. In each case, the 2D model correctly predicts the

ihal layer thickness. The ID model of Appendix A predicts slightly lower valuesof layer thic.lmessthan the

2D model throughout the transient. These di.ikrencestend to disappearwhen more grid points are used in

the lD model. The dashed blue line shown in Figure 22 illustratesthe effect of including plasticity in the

material response. The 2D model prediction of the layer thickness for v = .3 shows that when plastkity

is included, the growth of the silylation layer is nearly vohrme conserving. This is the case because only
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a small portion of the total deformation is elastic. The volume-preservingplastic deformation comprises a

substantiallylarger percentageof the total deformation.

Figure 23 compares ID and 2D model predictions for mass concentrationsand stress distributionsat three

diflerent times during “elastic” silylation with v = .5. Figure 23 (a) shows the mass concentration of the

silylation agent at 2.5,10, and 60 seconds. Results ue plotted using the nondimensionallength z(t). Siar

comparisons for the mass concentration of unsilylated resist and silylated resist are shown in (b) and (c).

In A case the comparisonsare excellent. The lateral stressdistributions (a== and C=Z) are compared in

Figure 23 (d). Eachmodel predictsa finalcompressivelateralstressof 1.05x 1010dynes/cm2. Transientstress

distributionsalso compare favorably,although the 2D model predictsa small compressivestressthrough the

layer thicknessduring the propagation of the silylation front.

6.3 Transient 2D Silylation - Nominal Calculation

In this subsection the resultsof a 2D transientsilylation simulationwill be presented. The objective is to

simulatethe materialbehavior observed during a process similarto that shownin Figure 2. Figure 24 shows

the computational mesh for the nominal 2D silylationproblem. A resist4 x 10–5 cm in thicknessis bonded

to a rigid surface (fixed surface). Part of the free surface has been crosslinkedto a depth of 6 x 10-6 cm.

The planes of symmetry shown in Figure 24 are used to simulatea seriesof silylation lines parallel to the

z axis. The distance between any two adjacent silylation centerlinesis 4.8 x 10-s cm. In this simulation,

crosslinkedbehavior is modeled by reducing the di&usivity,’DO,of the silylationagent in crosslinkedelements

by three orders of magnitude relativeto the uncrosslinkedelements. Except for the dif?usioncoefficient, all

other crosslinkedand uncrosslinkedmaterial properties are assumed to be identical. These properties are

summarizedas follows:

E = 2.25x 1010dyne/cm2

v = .125

so = 8.8x 10s dyne/cm2

h = 9.0x 109 dyne/cm2

A = 1.7x 10-5 K – cm2/dyne

sSS= 7.7x 108 dyne/cm2

c1= 0.0

to = 1.0x 1011s–l

M. = 175. g/mol

(151)

(152)

(153)

(154)

(155)

(156)

(157)

(158)

(159)
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A4B = 45. g/mol

34= = 106. g/mol

MD= 236. g/mol

M. = 236. g/mol

~.4= 39.62 g/cm3

pB = 100.0 g/cm3

p= = 1.2 g/cm3

p~ = 1.2 g/cm3

p. = 1.2 gfcms

k, = 2.0 S-l

k. = 175 cm3/(mol –s)

w = Ocm3/mol

CrosslinkedDO= 2.0 x 10–15 crn2/s

UncrosslinkedDO= 2.0 x 10–12 cm2 s/

(160)

(161)

(162)

(163)

(164)

(165)

(166)

(167)

(168)

(169)

(170)

(171)

(172)

(173)

Initiallythe resist is assumedto be unsilylated; i.e., it is composed entirelyof speciesC. At time zero the fiwe

surface is exposed to the silylation agent, species A, and mass transport, chemistry,and material swelling

proceed for a simulated time of 60 seconds.

Boundary conditions for mass tramfer may be summarizedas follows:

.4t the free StiaCe: CA= .05,~E= .95

At the right s~etry boundary No masstransfer

At the left sprnetry boundary No mass transfer

At the bottom fked boundary Nomass transfer

Boundary conditions for momentum may be summarizedas follows:

.4t the free surface Stressfree, see Equation (28).

At the right symmetry boundary: d = O

At the left symmet~ boundary: d = O
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At the bottom fixed boundary: u = 6 = O

F@we 25 shows cross-sectionsof silylation agent (species A) concentration and material swellingfor time

states corresponding to O, 1, 3, 5, 10, 30 md 60 seconds. To aid in visualization,resultshave been mirrored

across the left s-etry boundary which correspondsto the y axis and the centerlineof a typical silylation

cross-section. At t=O seconds, the resist is unsilylated except for the imposed concentration of A at the

free surface. As early as t=l second, evidence of species A -Ion, silylation reaction, and the onset

of material swelling is clearly vk+ble in the uncrosslinkedregion. As time proceeds the silylation agent

continues to diifuse preferentiallyinto the uncrosslinkedresist causing a localized material swellingsimilar

to that observed in Figure 2. In this particular simulation, the effect of crosslinkingwas modeled using a

reduced diffusion coefficientfor the crosslinkedmaterial. As a result,masstransport, chemistryand material

swelling in the crosslinkedregion were localized to a very thin layer along the free surface. This layer is

most visible at t=60 seconds and resemblesthe swa,lled “scum” layerobservedover crosslinkedregionsafter

silylationexperiments.

Figure 26 shows concentration profiles of the silylation reaction product (species B), the unsilylated solid

(species C), the unexpanded silylatedsolid (speciesD) and the expmded silylatedsolid (speciesE) at the end

of the simulation (t=60 seconds). As expected the highest concentration of the silylation reaction product

(species B) occurs above the reaction front. The contour plot of unsilylatedsolid (species C) clearly shows

the depletion of species C above the reaction front. The blue core representinglow concentrations of C

shows that the reaction front is beginning to move under the crosslinkedportion of the resist. Because of

the relatively short relaxation time for the conversionof speciesD to E (k, = 2.0 s–l ), significantamounts

of D are confined to a relativelynarrow band (shown in green in the D concmtration plot) near the reaction

front. The portions of the resist which have completed the conversion to the expanded silylated solid are

clearly visible as a yellow band in the concentrationplot for species E.

Stressesdeveloped during the silylation process ultimately determinethe amount of swellingand the final

shape of the material. Figure 27 showscross-sectionalcontours of stressat 60 seconds. Included are contours

for the through-thicknessstress,avv, the lateralstress,cr.=,and the shearstress,cr=g.Note that the individual

in-plane deviatoric stress mmponent, cr~z,reachesvalues beyond the rate-dependent yield strength. This

indicates that substantial inelastic flow can occur at swellingrates typically seen in the silylation process.

We point out for clarMcation that this is true if the polymer plastic properties are reasonably represented

by those for PMMA. When there is substantialinelasticflow, volume conservation dictates that the amount

of swellingwill be only marginally affected by the stressresponse. The stressesand ldnematic constraints,

i.e. the geometry of the crosslinkedregion, however, can play a substantialrole in the overall shape change

of the material.

The relationshipbetweencrosslinkedand uncmsdinkedregionsat the conclusionof the simulationis shownin
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FQ_ure28. Elementsof the crosslinkedpolymer are distinguishedsolely by their reduced difFusioncoefficient

relativeto the uncrosslinkedmaterial. Elementsin the crossli,nkedregion are shown in blue and elementsin

the uncrosslinkedregion are shown in red. The originalshapes of these regions prior to silylation are shown

in Figure 24. As expected, nearly all materialswellinghas been confined to the uncrosslinkedregion. Some

swellingis evident in the crosslinkedareaalong thefreesurface (the “scum layer”) and in the intenor interface

between the crosslinkedand uncrosslinkedregions. This was to be expected since, in this modeling scenario,

the crosslinkedregion was assigned a finite (but low) Hlon coefficient and the silylation reaction was

permitted to proceed unimpeded when the si,lylationagent was present. Here, the crosslinkedpolymer has

been assignedthe same constitutive parametersas the uncrosslinkedpolymer. Figure 28 shows that in this

case, silylationextends to the materialbelow the crosslinkedregion. The resultingswellingcausessubstantial

upwardmovementof the crosslinkedmaterial. The simulationsuggeststhat such movementis likelyto occur

whenevercrosslinkingis suilicientlyshallowand silylationtimes are long. It may be expected, however, that

theseresponsefeatureswould be sensitiveto changesin the inelasticmechanicalpropertiesof the crosslinked

region. For future reference, it may prove worthwhileto implement the locking Langevin spring element in

the large strain model (this may representcrosdi.nkedbehavior as described in Section 4.3.5) or perform a

parameterstudy over a range of stii7ereffective elasticmodti for the crosslinkedpolymer.
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7

This

Concluding Remarks

report documents the developmentof a new two-dimensionaltransient finite element model of the

positive tone silylation process. The 2D model focuses on the part of the process in which crosslinkedand

uncrosslinkedresist is exposed to a diflusiig silylation agent. The model accounts for the combined effects

of mass tram.port (silylation agent md reaction product), the chemical reaction leading to the uptake of

silicon and material swelling, the generationof stresses, and the resulting material motion. Both Fickian

and Case II Hlon models are incorporated. The model provides for the appropriatemass transport and

momentum boundary conditions and couplesthe behavior of uncrosslinkedand crosslinkedmaterialsas well

as the compliance of any underlying device topology.

The 2D model behavior has been veriiiedusingindependentmaterialpoint simulationsand a one-dimensional

transient finite difference model. Finite element mesh generation, problem setup, and post processing

of computed results is sufficiently mature to permit the 2D model to be used in the investigation of a

broad parameter space which includes materialproperties and geometry issues (e.g., alternatecrosslinking

distributions, resist thickness,etc.).

The authors recommend that future work in the area of silylation modeling be directed toward exercising

the presentmodel over a range of parameterspace to determinewhich properties and phenomena have the

largest affects on the silylation process. In addition, studies should be undertakento determine relevant

materialproperties. In order for the model to become a predictive design tool, it is recommendedthat it be

verified against a set of well controlled silylationexperiments.
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A APPENDIX - A One-Dimensional Model

A logical first step in simulatinga process such as silylation is to develop a one-dimensionalmodel. This

can be used to obtain a basic understanding of at least some aspects of the process with a minimum of

computational effort, and it can also serveas a validationtool for multidimensionalcodes that will eventually

be used to describe the process in detail. The model to be presentedhere is similar to that developed by

Zuniga and Neureuther [19], but there are some difFerenc~ in implementation. In partitiar, the bulk

(convective) flow arisiig from the volume change of the solid is now accounted for explicitly in the species

conservation equations, and simple analytical relationsfor the amount of swellingand the induced stresses

are derived. However, since the stress-strainrelationsare based on the linearizedequationsof elasticity,the

model is strictly valid only for small deformations.

If it is assumedthat the gas phase is well mixed aud nonreacting, then the modeling effort can be confined

to the solid, According to Zuniga and Neureuther,thereare four chemicalspeciesof interest: the (dissolved)

silylatingagent P, the unreactedhydroxyl group Q, the silylatedbut unexpandedgroup U, and the expanded

group E. In what follows, the latterthreespecieswillbe assumedto includethe associatedpart of the polper

chain, so that all of the solid material is accounted for. Clearly, only species P is bee to difhse, and it can

react with Q according to

P+ Q~U+...

Here kl is a second-order rate constant, provided that mass-action kinetics is appropriate. While there

may be mobde reaction products in addition to the fixed group U, they will not be important as long ss

their volumes are negligible md the reaction is irreversible. In any case, the newly formed U is eventually

converted to E with a characteristicrelaxationtime tr:

The primary task is to determine the tim~dependent concentration profiles for the four species and, of

particular interest, the total amount of swellingas a function of time.

The differentialequationsgoverningthe processcan be obtained by applying the generalmaterialbalance [48]

to each species. In molar units and in one dimension,

(174)

where t is time, z is the spatial coordinate (measuredperpendicularto the gas-solid interface), v is the mass-

average velocity, Q is the molar concentration of species i, Ji is its diilusion flux, and ~ is its volumetric

production rate by chemical reactions. Letting CP- P, and so forth, one has

61P ~~ap _pav aJp—= ——
at ax

— – klPQ
8X ax

(175)
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au au au u
T#vz= -“%+k~pQ–z

FollowingZuniga and Neureuther,we approximate the difksion flux by

Jp = –D ~wE ~

(176)

(177)

(178)

(179)

where w is a parameter that allows the dif7usivity of species P to vary with the extent of swelling, D is

simply the -lvity in the initial state. In addition, at fixed temperaturethe rate constant kl is assumed

to vary with the local stressa according to

kl = b eb” (180)

Equation (175) then becomes

(181)

and there are similarmodifications to Equations (177) and (178).

Since there are now four differentialequations but six unknowns (P, E, Q, U, v, and c), two additional

equationsare needed. These can be obtained by relatingthe stresslevel and the overall molar concentration

of the f%iedspecies to the extent of the swellingreaction. The first step is to introduce a parametera, which

is the ratio of the molar volumes of species E and U in a completely unconstrained system; it is assumed

that the molar volumes of Q and U are identical Then, in the absence of stresses,the fractional increasein

volume at any point (neglecting the effect of the dissolved gas P) is

E(a – 1)

‘= Q+U+E
(182)

~ The quantity@playsthe sameroleas a thermalexpansionin the equationsofstatics. Forthe one-dimensional

system being consideredhere, there is no stressin the z-direction, while there are no strainsin y and z. The

equations of equilibrium [49] then show that the axial strain is

l+V
C==@

3(1 – v)

and the transversecompressivestressis

(183)

(184)
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where Y is Young’s modulus and v is Poisson’s ratio. FkomEquations (182) and (183) it can be shown that

the molar concentrationsof the fixed solid species are related by

Q+u+E(Y+E(a-l)y ::;)=@ (185)

where @ is the initial molar concentration of Q. For the special case v = ~ this reduces to

Q+tJ+EcY=q (186)

which is identicalto the result that would be obtained for a completely unconstrained system.

Now, the initial conditions to be used with the differentialequationsare

Q=%, P= E= U=O, and v=O at t=O (187)

Ltiwise, if the gas-solid interface is defied to be the position z = O,then two boundary conditions are

P=P. and v=O at z=O (188)

Here P. is assumedto be given by the volubilityof the gaseoussilylatingagent in the solid, i.e., equilibrium

prevailsacross the interface. Analysis of the fit-order partial dii?erentialequations (176)–(178) showsthat

all of the associated characteristicbase curves originate on the line t = Oin the t= plain+ therefore, the

initial conditionson E, Q, and U are sufllicientto determinethesefunctionswithout any boundaryconditions

being speciiied. However,a secondboundary conditionis needed for P. If the thickness of the silylation

layer is denoted by L, and if the solid substrate at z > L is impermeableto the difbing speciesP, then an

appropriate condition is
aP
~=0 at x=L (189)

Finally, because the swellingrea&ion causes the silylationlayer to thicken over time, L varies and must be

determinedas a function oft by means of the kinematic condition

dL
— = v(L, t)
dt

(190)

together with the initial condition

L=LO at t=O (191)

The set of governingequationsand auxiliaryconditionsis now complete. However,in orderto assistin dealing

with the moving boundary at z = L(t), it is convenient to introduce the new spatial variable z = z/L(t),

so thatthe problem is now defined over the intervalO< z <1. With this trtmsformation,Equation (181)

becomes

=E(v-z~)=-~E+=
and similarresultsare obtained from Equations (176)–(178).
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It can be seen that the mathematicalmodel involveseleven diilerentparameters,namely D, W, kO,b, t,, a,

co, v, Y, p., and Lo. In order to reduce this number somewhatand to makethe solutions more general, one

can write the system in dimensionlessform using the following variables:

The new equations need not be given here, but sufiice it to say that they involve seven dimensionless

parameters(as could have been anticipated from the BuckinghamPl Theorem [50]):

(194)

All of the sample solutionsto follow will be characterizedin terms of these dimensionlessgroups.

The most straightforwardway to solve the system is via the method of lines. The first step is to replace

all spatial derivatives with ii.nitedifferenc~, thii leads to a mixture of algebraic equations and time-

dependent ordinary di.flerentialequations. Upwind diflerencing is used in order to assure stability. The

differential/algebraic system is then integrated in time using the packaged solver DASSL [51], which is

ideally suited to problems of this kind.

.4 sampleset of solutionswill now be presentedfor an arbitrarilychosen set of pammeters. The quantities~

and ~ are both taken as unity, so that the diffusivity of the silylating agent increaseswith time while the

rate constant for the silylation reaction decr~es. The valuesof the swellingfactor a and Poisson’s ratio v

are 2 and 0.5, respectively; these should be fairly realisticfor the polymeric materialsused in this process.

The concentration ratio ~ and the parameter T,, which is a ratio of characteristictimes for the swelling

and silylation reactions, are set equal to unity. Finally, the parameter 6, which is a ratio of characteristic

times for silylation and diflusion, is assigneda value of 0.01. The relativelyslow -Ion should lead to the

appearance of a fairly well-defied reaction front that moves into the materialas time progresses.

The resultsof the computationsare shown in Figures29-36. In all but the last two figures,spatialprofilesare

plotted for fixed momentsin time separatedby AT = 0.5. Figure 29 showsthat the concentration of P in the

solid builds up only slowly,because the silylatingagent cannot &fFusevery far before being consumed by the

relatively fast chemical reaction. This situation is alleviated only when the fixed reactant Q is consumed.

Concentration profiles for the latter are shown in Figure 30, where the aforementioned reaction front is

evident (although not particularlysharp). In Figure 31 one seestypical behavior for a reaction intermediate

at any position, the concentration of U initially risesas a result of the silylation reaction, but it eventually

erodes as U is converted to E. Since the concentration of U is generally small even at its peak, it is not

surprisingthat the profles for E in F@re 32 are complementary to those for Q in Figure 30. However,

it should be noted that the maximum concentration of E is 0.5 rather than 1.(), ss a result of the swelling

factor a =2.

The dimensionlessvelocity profilesare shown in Figure33. To reiterate,thesenonzerovelocities ariseentirely
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as a result of the swellingreaction. Since the boundary at z = Ois fixed, the maximum velocity at any time

must always occur at the other boundary z = 1 (z = L(t)), even if the reaction front has not yet reached

that point. However,the value of the maximumvelocity is a nonmonotonic function of tim.q this is obvious

from the fact that it must start at zero and then eventuallyreturn to zero when the process is complete. F’or

the case at hand, the velocity at z = 1 appeazsto reach a maximum at about I- = 2.5.

The stress profiles in Figure 34 bear a strong resemblanceto the concentration profiles for species E in

Figure 32. This would be very obvious if one wereto plot the absolute valuesof the stresq the actual values

are of course negative because the stress is compressive. As noted above, this causes the rate constant for

the silylation reaction to decreasewith time, and this (together with the increased diffu&ity of P) leads to

a readion front that is not as sharp as it would otherwisebe.

Finally, Figures 35 and 36 show (as solid curves) the overall layer thickness1 as a function of time. The

time span in Figure 35 is the same as in Figures 29-34. Since the value of 1 at T = 10 is still less than

1.4, the process is obviously very far from completion (1 = 2.0), in accordance with Figure 32. Figure 35

also gives results for a difIerentvalue of Poisson’s ratio, namely v = 0.3, which is appropriate to a wide

variety of elastic solids. The volume increasein this case is considerably smalleq this is expected, because

the compressivestresseswill have a largereffect on the volume the more v deviates horn the value of 0.5 for

an incompressiblesolid.

The behavior of l(~) over the entire course of the process is shown in Figure 36. There are four identifiable

although indistinct regimes: a short induction period (more obvious in Figure 35) due to the preliminary

formation of U; a period of rapid, unconstrainedexpansio~ a period of slowergrowth after the leading edge

of the expansion front reachesthe impermeableboundary; and a iinal stage of no growth after the reactions

are complete. The uMrnatevahe of 1 at T = cm can be obtained from Equation (185) by reakzing that the

layer thicknessis inverselyproportional to the total concentrationof Q, U, and E at any time. This gives

1=
=I+(l+v)(a-l)

3(1 – v)
(195)

For v = ~ the result is simply lW = a, as expected. For v = 0.3 and a = 2 one finds lm = 1.619, which

agrees well withthe asymptoticvaluein Figure36.

Many more piwuneter studiescould be undertaken,but it should be rememberedthat the resultsme largely

fictitious due to the assumptionof purely (and linearly) elastic behavior. Therefore, as noted earlier, this

model should be used primarily to check the functioning of the multidimensionalcodes.
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(a) Cross-section prior to TSI

(c) Post exposure bake

,.

(e) Plasma descum (f) Plasma etch

Figure 1: TSI processingsteps.
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\unsilylated resist
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silicon wafer substrate ~

Figure 2: Cross-sectionalplasma stain of silylationprior to etch
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Figure 4 A two-dimensionalquadrilateralcontrol volume centered about point P.
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