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I.  INTRODUCTION

This paper is concerned with the problem of the ductile vs. brittle

response of crystals.  There is in the literature of this subject a 11,

conventional understanding that a solid will either be ductile or truly
"

brittle depending upon the ratio of theoretical shear strength to

theoretical tensile strength.  See Kelly (1966).  We believe that a

correct description of this competition should include actual dislocation

processes  at cracks, since the ductile response of the solid must

produce dislocations in order to yield.

A truly ductile material like pure copper apparently cannot

sustain a cleavage crack, but may fail by plastic instability and

necking on a gross scale.  Stronger materials apparently also exhibit

the same essentially plastic necking phenomenon on a more microscopic

scale through the process of hole growth, although the macroscopic                  0

appearance of the failure is crack-like.  On the opposite end of the

scale, some materials like diamond and mica apparently can undergo pure

brittle cleavage with no discoverable plasticity associated with the

process.  In between these two extremes, there apparently exists a class

of materials where a cleavage crack in the true atomically sharp sense

exists, but is surrounded and associated with an atmosphere of disloca-

tions. (Burns and Webb, 1970; Burns, 1970).  This intermediate case

exhibits many complexities, such as high effective surface energies,

plastic zones surrounding the crack tip, etc., but there is no reason to

suppose that, provided hole growth is not occurring, the crack tip is                '
3 

not sharp on the atomic level.  Of course, experimental proof of this ..
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statement in any given case will be indirect at best, but the theoretical

descriptions of cleavage and of hole growth are sufficiently different

4. as to make one wish to distinguish as clearly as possible between the

separate physical cases.

Kelly, Tyson and Cottrell (1967) were the first to pose this

problem of brittie vs. ductile fracture in an essentially proper way

when they attempted to test the self-consistency of the proposition that

a cleavage crack can exist in a particular type of crystal.  They, in

ef fect, asked:     "If a cleavage crack were created  by some process  in  a

crystal, would the tip spontaneously blunt as the result of shear by the

atoms of the tip region?"  They then postulated that such would be the

case if the highest shear stress in the vicinity of the crack exceeded

'            the theoretical shear strength of the material.  However, this criterion
1 '.

cannot be sufficieni for the crack to blunt, because the shear stress

near a crack is not everywhere constant on the shear plane as it wculd

have to be to cause the atoms to shear past one another uniformly.

Instead, the stress is highly localized in the vicinity of the crack tip.

By geometrical necessity, localized shear on a plane intersecting the

crack tip caused by the high shear stresses there, matched to a non-

sheared region at greater distances on the same plane, where the stress

is below the theoretical strength simply defines a dislocation.  Hence,

a blunting reaction at the crack tip requires the production (or

annihilation) of dislocations.

...                                              I
'97
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Kelly, Tyson, and Cottrell indeed discussed one kind of dislocation

reaction for NaCl.  They calculated the approximate energy to form a

full metastable loop of dislocation near the crack in NaCl, and found

4/
the energy to be prohibitively high.  Others have also discussed dislo-

cation formation near crack tip. (Armstrong, 1966; Kitajima, 1966)

Armstrong has, in particular, estimated the formation energy of a

dislocation dipole loop completely surrounding a circular crack in a

crystal.  However, this type of dislocation interaction does not

correspond to a blunting reaction and does not directly address the

question we pose.

In this paper, we shall propose models for the production of a

dislocation from the tip of the crack in such a way that after the

dislocation expands under the external stress field as concentrated by

the presence of the crack, an atomically sharp crack will have been

blunted by one atomic plane, Figure 1.  This blunted crack will then be              

trapped at the original lattice position until the external stress is

increased substantially (when probably further dislocation blunting may

be possible).  Crystals for which dislocation emission is spontaneous

can be expected to be good candidates for essentially plastic opening of

the crack.  Crystals for which there exists a large energy barrier for

this emission can be expected to be good candidates for brittle cleavage

(but perhaps where the crack has associated with it clouds of disloca-

tions which are formed or captured through other processes in the nearby

lattice).  In order for a dislocation to blunt a crack, it is necessary

for the Burgers vector  to  have a component normal  to the crack plane,   and                         4
*

for the slip plane to intersect the crack line (or crack front) along its

whole length, i.e. the crack line must be contained within the slip plane.
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•                 It is, of course, possible to conceive of a process by which the

crack may be blunted by dislocations which are formed from nearby

sources and which are emitted on precisely the right plane to blunt the

crack tip.  In view of the fact that the stress field in a region

surrounding a cleavage crack will be above the macroscopic plastic flow

stress for the material, one might suppose this could be an effective

blunting mechanism.  However, macroscopic yield is a property associated

only with regions of the size of many microns, even for fairly ductile

materials.  Hencf, for a random position of the crack tip, the proba-

bility of finding a source on the correct plane at a distance from the

crack for which the source can operate is small.

The plan of the paper is as follows.  In the next section, we shall

consider the various forces operating between a crack and a dislocation

in two dimensions.  These forces are 1) the force on a dislocation due
.

to the stress field surrounding the crack, 2) the surface tension force

caused by creating more surface at the blunted crack, and 3) the image

force of the dislocation in the free surface of the crack.  The first

term repels the dislocation, and the latter two attract it toward the

crack tip, giving rise to the possibility of a position of unstable

equilibrium.  In §III we estimate the activation energy for formation of

a dislocation half loop out of the crack under the action of these

forces when an energy barrier exists.  Finally, in §IV we discuss the

physical consequences of our. calculations.

'IA

5

D                              --



II. FORCES ON A DISLOCATION NEAR A CRACK TIP

Let us suppose that the loads on the body considered act symmetri-

cally about the plane of a straight crack, so that before emission of

the dislocation, only the tensile opening mode of relative crack surface

displacement is present.  If K  is the "elastic stress intensity factor"

(see, for example, Rice, 1968) due to the loads, then in two dimensions

the in-plane shear stress acting at distance p on the slip plane of

Figure 2 is 1
-2

 00 = KI(8*p) sin 0  cos 0/2 (1)

For this equation to be valid, p must be a small fraction of overall

crack length.  The anti-plane shear stress component (i.e., in the

direction of bs) is zero.  The release of potential energy of the body

and load system per unit of new crack area is

1-v    22

G =-E  KI             (2)
(E = Young's modulus, v = Poisson ratio.)  At the fracture load pre-

dicted on the Griffith theory, G = 2y where y is the true surface energy

of the crack plane.  Thus, if the applied load on the body is chosen as

that which would cause fracture if no dislocations were emitted, then

the force (shear stress times Burgers vector) on the dislocation segment

shown in Figure 2 due to the applied load is

f =a b
I sin   0   cos   0/2      cos   * E-     (3)a    Pt e =    Eyb 2 11/2

4w(1-v )J

Here E = 0/b and be = b cos 4 is the edge component.  The screw

component bs does not appear since the applied load induces no shear

stress in this direction.

A
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There will be an "image" force which tends to pull the dislocation

back into the crack.  This may be inferred from direct solution of the

corresponding elasticity problem, as presented in most general form by
1

Atkinson (1966) for anisotropic materials.  A rather different derivation

is presented in the Appendix, for a straight dislocation parallel to the

crack tip in an isotropic material. (The procedure of the Appendix is

based on energy considerations and properties of point functions, rather

than on direct solution of the elastic field equations for a dislocation

near a crack.  The approach is readily generalized to other elastic

interaction problems, and may be of some interest in itself.)  The

resulting image force (Equation A-14) is

Eb      Eb 
f  = -                                            (4)
i           2    -  81T (1+v)p81r (1-v   )p

* This is a remarkable result, because precisely the same expression for

the image force is obtained in the case of a dislocation in a half

space with its core lying parallel to, and at perpendicular distance p

from, the free surface (see, for example, Hirth and Lothe, 1968).  Both

of the above forces are calculated on the assumptions of "infinitesimal"

elasticity, and actual geometry changes at the crack tip due to emission

of the dislocation have been neglected.  The image force term may be

rewritten from Figure 2 as

f  = -Eb'(1-v  sin2  0)
81(1-v2)6                          (5)

i

E = p/b

7
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In Figure 1, as the dislocation is formed, a ledge is left behind,

and as the core comes through the surface, forces due to the formation

of the ledge  must be included. ·A s a function  of the position,   E=p/b,
:

of the dislocation, the ledge energy is given by

2                      -1    2E
V£ =  -  yb cos *  sin 0 tan

3/2           (6)e E
0

In deriving (6), we have used the misfit function for a Peierls model of

the dislocation with a width or core cut off E , which is consistent

with the quantity r /b where rQ is defined by Hirth and Lothe (1968),

p. 212.  The sin 0 dependence is taken to approximately represent the

modification of ledge energy from ybe due to slip plane inclination.

The force is consequently

2   ya cos $  sin 0 3/1fl =- 7 where a=e - Eo/2   (7)2     2
E  ta

*

Note that the 4-1 and 6-2 attraction back toward crack, due to the

-1/2imAge and ledge forces, outweighs the E force resulting from the

applied load when E is small, whereas just the opposite happens when C

is large.  Hence, the equilibrium position of the dislocation is

unstable, and the dislocation will be driven away indefinitely, until

it reaches some obstacle, if it ever attains a distance from the crack

tip greater than the equilibrium distance.

D-
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The critical distance, Ec at which a straight dislocation is in

unstable equilibrium under these three forces is, from (3), (5), and (6),

given by the solution of

...                                                            if-
2

4.

1   1-v sin 4     2       2a 2  +  1     1    12
I           =0

ftot.   -   lib         - TiIE 1-v 2. ne \2w(1-v)&/
1r n B' E +S             J-

(7)

We have used the following abbreviations,

1- = cos *  sin 0 cos 0/2,
B

1
-r =  cos *   sin  0,                                                              (8)
B

42 = Ub/Y,

where P is the shear modulus.  If the value of Ec is less than the core cut

off, we presumably have a case where the method does not apply, and

spontaneous generation is a good possibility.  Equations (3) and (5)

diverge for 6 + 0, but, of course, the forces they represent must
./

actually in toto approach zero as & +0 because of nonlinear core

effects.

We display in Table I the relevant physical data with the values we

have chosen.  The values of y contain the greatest degree of uncertainty,

and we discuss the problems associated with surface energy for our

calculation in SIV.  Table II displays the results of the solution of

Eq. (7) for the various solids, together with suggested values from Hirth

and Lothe (1968) for the elastic cut-off for comparison.  We also list
"

some cruder estimates of the critical distance, Ec  and <c·  In Ec,

we neglect the effect of the ledge in Eq. (7), and then the condition

is given by

9
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i   (1-vsin20) 2  82 1!kE =                   (9)c              817 (1-v)                        y

In the second estimate, we average over the geometrical and crystallog-

raphic effects still present in (9), giving an even cruder estimate,
.

Ec = 1 Y (10)

It is interesting to enquire how splitting the dislocation will

affect the calculations, since certainly in the face centered metals,

splitting does occur.  In this case, the Burgers vector will be lowered

in magnitude, and the angle, 4, will be changed.  So far as the size of

the Burgers vector is concerned, Eq. (7) is dimensionless, and is not

affected.  The size of the cut-off is sensitive to b, however, and in

fact the value we have chosen is just that appropriate to the split

dislocation in the face centered metals.  Eq. (7) does contain the

crystallography of the Burgers vector through the angle, 4, however, in

a rather complicated manner.  For the whole dislocation, 0=300, and

there are two possibilities for the two partials, 4=0' and *=60'.  For

the first value, the ratio of the various terms in Eq. (7) is only changed

about 5% from their values for the whole dislocation, thus leaving the

results of Table II unchanged.  For the second case, where *=600, the

first term in Eq. (7) becomes about 50% larger than for the whole

dislocation, thereby increasing the value of Ec.  We show a few values

for this partial in Table II.

"
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III. ENERGY CONSIDERATIONS

If the equilibrium point, Ec' is larger than the core cut-off, then

there is an energy hump for the dislocation to jump in order to be

emitted from the crack.  Clearly, in this case, it will be impossible

for a uniform straight line to be emitted from the crack, because for

an infinite length of dislocation, the energy diverges.  Instead, a

local fluctuation in the form of an irregular loop will be formed which,

beyond the saddle point configuration, will expand under the external

stress.  The factors determining the saddle point configuration are the

same as before. 'Image and ledge forces will predominate for small  loop

sizes, while for larger ones the external stress is dominant.

In the elastic three dimensional problem, even in the isotropic

regime, the problem of determining the saddle point configuration and

consequently its energy is intractable in part because the force fields

are variable, and in part because rigorous treatments of three dimen-

sional dislocation problems are not possible when the shape is

complicated.  In fact, although we know the image force for a straight

dislocation parallel to the crack, image terms are known to be complex

when the shape is more complicated, even without the additional

complexity of the crack half surface.  We shall thus proceed by

developing some qualitative insights into the problem, and then make

some simplifying assumptions about the saddle point configuration which

allow us to make meaningful calculations.

..,
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First of all, the stress field due to the applied load is straight-

forward, and yields a normal force,   f ,   on a dislocation element,   d£,

given by the local value of the stress, 22  This force is

f  = (rk) x dl (11)C

The ledge force is always a minor term, except possibly very near

the crack surface.  It will have the primary effect of drawing together

the two ends of the loop where they touch the crack surface.  It will

act just like a pure surface tension on these ends because of the surface

energy required to expose the ledge as the loop expands.

The image force, as mentioned above is more complex.  In problems

of dislocations interacting with normal surfaces, it is a useful first

approximation to simply replace the image terms by the action of an

image dislocation reflected in the surface.  This replacement is not

normally rigorous, but yields a fair approximation.  Since in our case
2.

of the crack, the straight dislocation yields the same result as for a

normal surface, we shall adopt this simple stratagem for the crack.

This means that in order to calculate the energy of a dislocation half

loop configuration which ends at the crack surface, we need do no more

than calculate the energy of a full loop including the reflected image,

and take half of the result.  This energy will then include the image

terms.

/

12

.d



One further very important result follows from the presence of the

image term.  The image term requires that when a dislocation approaches

an open surface, it must cut the surface at normal incidence.  The

predominance of the image term in the immediate vicinity of the crack

surface will require the·same boundary condition on the dislocation at

the crack surface.  This condition, in conjunction with the magnitude of

the stress in the region beyond <c are the crucial determinants of the

total activation energy.

We note one final qualitative characteristic of the two dimensional

force field which is very suggestive for our three-dimensional treatment.

Except for the ledge term in Eq. (7), which is important only very near

the  crack  tip,   the net force   is the difference between  1/E  and   1/VE--,

a very broad function which we have plotted in Fig. 3.  The point at

which this function reaches one half its maximum value is about 1.5 Ec'

and it does not fall below this value again till E becomes approximately

50 <c.  Thus, throughout this very broad range, the balance between these

two major forces is nearly constant. Under a constant normal force, vf
course the equilibrium shape of the dislocation has constant curvature,

and is circular.  For values of E less than Ec' the force becomes

negative, and including the effect of the ledge, the curvature will also

reverse.  Hence the general shape of the saddle point configuration will

be as sketched in Fig. 4.

13



In view of these qualitative background comments, we feel justified

in proceeding with the assumption that the approximate equilibrium shape

is the simple half circle depicted in Fig. 4a.  In view of the broad

maximum in the effective force field, we believe the energy of the

activated state thus computed is a reasonable estimate of the true

energy, and our use of the circular shape probably introduces no major

errors in the calculation.

We thus calculate the total energy of the activated state of the

system, which consists of three parts.  1) The self energy of the

dislocation half loop.  As mentioned before, this energy will

automatically include the image term contribution.  2) The energy of the

ledge.  3) The energy gained by the dislocation loop as it expands under

the influence of the stress surrounding the crack.  In order to determine

the size of the loop of the activated state, we locate the maximum energy

of the loop as a function of the loop radius.

The self energy of a dislocation half loop as given by Hirth and

Lothe (1968) is
3    2-v           8r

U     = ub r tn - (12)self 8(1-v)         2
e E0

In this equation, r and E  are respectively the radii of the half circle

and radii of the core cut-off in units of the Burgers vector, b.  E  is
0

the same quantity as used for the core cut-off in §II.

To the self energy must be added the energy of the ledge formed as

the loop expands.  We write this in the form

Uledge = 2762 cos *  sin 0 (r-40) (13)

1
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Eq. (13) simplifies the expression for a ledge as we used it in §II.

Here we assume that when the radius r is greater than the cut-off radius,

the ledge is fully formed, and that the energy is linear in the radius

of the loop.

Finally, we compute the energy gained by the half loop in the stress

field of the crack tip.  In terms of Eq. (3) and Figure 5, the energy to

expand the loop from the initial radius, (c' to r is

- -

1
2U =_ Eyb

b2 cos * sin 0 cos 0/20 2
41r (1-v   )

-

r      w                                        (14)

r
dr      de

0       \4 sin 6
0

Noting that

1    1 r 
f de

=  ir       /3\                   (15)
2     \41

0  Nsine         r V)
we then have

U     =   -0.9862    91  2    lib3 ij E    sin 0 cos * cos 0/20            1 1-v T ub

/  3          3                                                       (16)
12          21
<r-4/0/

The total energy change for a crack which has emitted a dislocation

loop is then

15
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/3   3 4 2   2/
U      = lib3 JUo in <-  +   Ul(r-<0)  -    Us    r   - Co/ -act 0

2-v

Uo =  8(1-v)
(17)

Ut - 2    cos *  sin 0

US =
2.092 . fE-       sin   0   cos   *   cos   0/2

T lib
Vi--v

4

From (17), the condition for the activated state is

dU
act. 1/2

-=   0  =  Uo   gn   er/40  +  Ut  +.Us r (18)dr

Schematically, the three terms   in   (17) are sketched in Figure   6.      The

stress term eventually always dominates the other two for large r, but

depending upon the parameters, the self energy plus the ledge term may be

dominant for values near EQ.  That is to say, depending upon the param-

eters, there may be a spontaneous emission of a dislocation loop with no

activation energy, or there may be a finite activation energy to form the

loop whose radius is determined by Eq. (18).

We have solved Eq. (17) for the critical loop size, and calculated

the activation energy for the list of materials given in Table I.  The

results are listed in Table III. Further, the functional variation of

the activation energy with y/ub, Co, and orientation parameters is shown

in Figure 7.  In this plot, the activation energy [Eq. (17)] is plotted

after y is eliminated through Eq. (18).  Here it is convenient to plot

the dimensionless energy

U
act.

uact,
=

2 2 (19)
(2-v)   B    3
8 (1-v)       BT  Wb

16



in terms of

16(1-v) _L 16 B'
S =

58,(2-v)
and   R  =

pb          0   5(2-v)82   CO
' (20)

Indeed, these forms have been chosen because, for typical values of v and

the orientation parameters, they reduce to

U
„    2  act.
-act. 3     ,     S=  ii:     ,     RO -Eo

· (21)
Wb

It is seen that the behavior divides mainly into two kinds:  If the

orientation-dependent core parameter, R , is small, there is a substan-

tial energy barrier to dislocation nucleation for all values of y/ub

(i.e., U    2 0.1 ub3).  On the other hand, if RQ is large there will beact.-

an energy barrier only if the surface energy parameter, S, is smaller

than that at which the curves cross the S axis; otherwise there is

spontaneous nucleation.  The curves for the larger values of R  rise so

steeply that there is essentially a critical value,of S below which the

energy barrier is substantial, and above which there is spontaneous

nucleation, although finer examination shows that there is a narrow range

of R  and S values for which U     is low enough that thermal activation
act.

could blunt the crack for sufficiently long time scales of load applica-

tion.

17
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IV. PHYSICAL RESULTS AND INTERPRETATION

a)  Surface Energy.  Among the experimentally determined values

listed in Table I, the values of y are the ones for which the only

important uncertainties exist.

For tungsten, Cordell and Hull (1969) find that the surface energy

varies from a low value of 1700 cgs at low temperature to 6000 cps at

higher temperature.  The higher value apparently is due to plasticity

induced in the vicinity of the moving crack.  Other values have been

measured by other workers intermediate to these extremes, but we believe

the low value listed represents the bare crack.

NaCl is claimed by Class (1964) in his thesis to have a surface

energy of 115 cgs, and this value is adopted by Kelly (1966).  On the

other hand, we believe the value 250 is more likely.  It is in the range

of the experiments of Gilman (1960), Wiederhorn (1970), and Benson, et al
.

(1955, 1956, and 1959), and is in reasonable agreement with the theoretical

calculations, which for this crystal should not have a large error, see

Tosi (1964) and MacMillan and Kelly (1972).  We list both values, and

results for both, however.

For A1203' we have a range of values in the literature all the way

from 1000 cgs as given by Kingery (1954) for the basal plane to 6000 cgs

as determined in cleavage experiments on the rhombohedral planes by

Wiederhorn (1969).  Wiederhorn also reports that cleavage is not possible

on the basal planes, and in a private communication has noted that the

cleavage surface energy for these planes must in consequence be in excess

of 40,000 cgs!  One wonders if the value reported by Kingery (not measured

in cleavage) is not actually either that for a restructured surface or a

18



composite value for a dimpled surface whose average orientation is [0001],

but not the true basal plane.  Consequently, we use y = 6000 cgs in our

work.

In Zn, Maitland and Chadwick (1969) have measured a range of values

from 100 cgs (confirmed by other previous authors), to 575 cgs, depending

upon the technique used for making the measurement.  Because of weaknesses

in the analysis as applied to the experiments yielding the lower value,

they believe the value of 575 cgs is to be preferred.

But experimental difficulties do not exhaust our problems with the

surface energy.  One must also be certain that the surface energy as

measured experimentally and the surface energy as we use it are synony-

mous.  In our work, the correct y is derived as the energy necessary to

break bonds at a crack tip.  Even in a pure cleavage event where no

dislocations are produced, this process may not correspond to the thermo-

dynamic surface energy because of relaxation effects which are possible

on some crystal surfaces, such as Si, where the surface is entirely

restructured.  For this reason, the value chosen for Si is derived in

a cleavage experiment, and for diamond is calculated from the value of

the carbon-carbon bond.  Unfortunately no cleavage surface energies are

available for Ge.  We also note a further point of rigor:  In very hard

crystals where lattice trapping is important, the y measured to grow a

crack is different from the y measured to heal a crack, Hsieh and

Thomson (1973).

19



b)  Two Dimensional Results.  The results in Table iII suggest that

the face-centered crystals, with the possible exception of Ni which has

a borderline Ec, are unstable to dislocation formation, since the critical

distance, E , is less than the core radius, E . Since all the elastic
C                                     0

forces become impossible to define inside the core radius, and since the

repulsive forces are dominant for all distances larger than the core, we

believe a crack in these crystals cannot sustain the large shear forces

at its tip without forming the dislocation spontaneously.  Na, of the

body-centered crystals, probably also spontaneously emits the dislocation

because of the small size of E , and also because we believe that in this
C

case E  is not so small as 2/3, as is assumed for the other body-centered

cubics.  In all other cases, Ed is sensibly larger than the core size,

and we believe this gives rise to an energy hump the dislocation must

negotiate as it is formed.

We have listed in Table II two other cruder estimates of Ec.  In the

first, we neglect the ledge term and in the second average over the

geometry.  Both are pretty fair approximations to the more accurate

values for the brittle materials in the lower half of the table. The

ledge term is seen to be important for the softer crystals, as one would

expect.

, The dimensionless ratio, Fb/y, related  to  our  4( has already entered

into Armstrong's (1966) discussion 'of the brittle vs. ductile competition,

and· we   see   that   it is indeed explicit   in  our  own work. However,   in   our

theory, as one progresses down the list of crystals in Tible II, it is

the opposite tendency of the growing value of wb/y and the decreasing

value of the core cut-off which makes the difference between the ductile

face-centered cubics and the more brittle body-centered cubics.
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We note in Table II the positions of iron and nickel between the

obviously ductile and obviously brittle solids.  We give two calculations

for iron.  In one, the crack line runs along a cube direction, [100], and

in the second, the crack line runs along [110].  The second is actually

that observed by Tetelman and Robertson (1963) in silicon iron, but it is

the former which has the interesting low value of Ec.

We have listed the results for a split dislocation for a noble metal

and for nickel. (Aluminum has small or no splitting.)  The results shown

are for only one of the partials.  In the case shown, the partial has

unfavorable geometrical factors, since it is not oriented to cause the

crack to open effectively.  In this unfavorable case, the critical radii

are slightly increased, but not enough to change our general results.

c)  Three Dimensional Results.  The three dimensional results for

the estimated activation energy as given in Table III confirm the two
L

dimensional findings.  We find a negative activation energy for the face-

centered cubics, which again means that since all energies are cut off at

the core radius, by the time any dislocation is well formed, it is under

the primary influence of the repulsive forces.  Again, Na would seem to

have an essentially spontaneous emission, not only because of the small

value of the calculated activation energy, but also because we have

probably underestimated the true dislocation core size of this very soft

crystal.
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The main surprise when comparing the two- with the three-dimensional

results is the very large values obtained for the activation energy of

the brittle crystals, even though Ec is usually a small number.  One might

suppose that it would take only a small energy to push a local segment of

dislocation past <c, say in NaCl, over a small front of the crack tip,

and that the repulsive force would then be able to dominate the picture

sufficiently to expand the fluctuation indefinitely.  However, the

reason this is not So is that the dislocation must meet the crack surface

at normal incidence.  Otherwise, the forces there will collapse the

fluctuation no matter what happens to that portion lying over the hump

beyond Ec.  In order for the dislocation to meet the surface

perpendicularly, a full half loop of dislocation must be formed in the

region of repulsive forces, which is costly in dislocation line energy.

Thus we find a very strong tendency for crystals to be either
4

completely ductile , or completely brittle, so far as dislocation

emission is concerned.  Iron and nickel are the only interesting cases

where our calculations suggest that the activation energy may be

sufficiently low that thermal fluctuations could play a role.  With the

various uncertainties in our calculations, we are unfortunately not

able to pin down the values in these cases sufficiently to make a

definite prediction.
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Except for iron, sodium, and the face-centered cubics, we feel

confident in predicting that no spontaneous or thermally assisted

blunting of a crack tip can occur in the other crystals investigated.

Even with the uncertainties in the y and the other approximations made,

crystals like LiF and NaCl (to say nothing of the hexagonal metals)

seem immune enough to this process.  This conclusion means that if

blunting does occur it must be because of dislocations produced outside

the tip region, and which are then attracted toward, and collide with it.

Our conclusions are at variance with the often quoted claim that

cracks cannot remain sharp (and the crystals thus be brittle) if the

shear stress at the crack tip is larger than the theoretical shear

stress of the homogeneous crystal.  As we stated in the introduction, a

shear stress at the value of the theoretical shear strength will cause

the crystal to break down only if the stress is homogeneously applied

across an entire plane running through the crystal.  If the stress is

cnly applied locally on that plane, then atoms where the stress has

dropped below the maximum value will not be displaced from their lattice

positions, and atoms where the force is maximum will not necessarily be

displaced even though the stress is above the theoretical shear strength

because of the resistance offered by atoms in the undeformed region of

the plane.
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Our conclusions suggest that so far as spontaneous emission is

concerned, atomically sharp cleavage cracks are by no means a minority

occurrence in materials.  When the condition ub/y>7.5-10 is approximately

satisfied, we have reason to expect the crack to remain sharp, though

geometrical factors and variations in core size make this condition

only approximate.  This condition, in the cases investigated, is

satisfied for all but the·face-centered cubic metals, and certain

borderline body-centered metals.

Our conclusions leave the precise morphology of cleavage cracks

ultimately undetermined, however, because they do not address blunting

reactions due to dislocations which might be attracted to the crack top

from the surrounding crystal.  Processes which lower the cleavability

by increasing the effective cleavage surface energy through the action

of dislocation atmospherds trapped by the stress field of the crack are

also not addressed here.  On the other hand, our work does allow an

evaluation of environmdntal effects which can be understood in terms of

a lowering of y.  By increasing the ratio wb/y, these could presumably

make possible atomically sharp cracking, even in solids such as fcc

crystals which normally show ductile response.  Then the 'cleavage' is

not necessarily fast-running, but can proceed only as fast as reactions

take place to bring about the requisite lowering of y at the tip.  It is

possible that some environmentally assisted crack growth can be understood

in this way.
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TABLE I

Physical Parameters of Crystals

Crystal Cleavage Slip y 11*10 v  b  n=11

System System Cgs Angstroms

Face
Centered
Metals

--            (1)
Pb (001) (111) 440 0.727 0.387 3.49 2.401
Au [110] [lor] 1418(2) 2.37 0.412 2.87 2.190
CU 4.05 0.324 2.55 2.4731688 (2)
Ag                                                                   1135 (2) 2.56 0.354 2.88 2.549
Al 840(1) 2.51 0.347 2.85 2.918
Ni 1725(3) 7.48 0.276 2.49 3.286

Body
Centered
Metals

Na (001) (oil) 237 (1) 0.243 0.201 3.66 1.937
Fe [100] [111] 6.92 0.291 2.49 2.9541975(4)
W                                      1700(5) 16.0 0.278 . 2.74 5.078
Fe* (001)/[iio] (110)/[111] 1975(4) 6.92 0.291 2.49 2.954

Ionic
-

LiF (001) (011) 480(6) 4.40 0.187 2.848 5.109
NaCl [100] [011] 250(7) 1.63 0.248 3.988 5.099

(115)(8)           "         (7.518)
MgO - - -- 1200(9) 11.57 0.173 2.974 5.355
Al 0 (1012)/[1210] (0001)/[1120]  6000(10) 23.3 0.200 4.75 4.29523

Diamond
Cubic

-

Si (111) (111) 1200(4) 6.05 0.215 3.83 4.394
Ge [011] [IIo] 600(1) 4.92 0.200 4.00 5.727
C 5400(12) 50.9 0.068 2.52 4.874

Hexagonal
Metals

Be (0001) (ijkO) 1620(1) 15 5 0.333 3.58 5.849
Zn Ioool] [0001] 575 (9) 3:3.83 0.333 4.94 5.736
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TABLE II

Two Dimensional Results

Crystal Core Critical Approximate
Cut-Off Distance Values

6            (c            <          0
w/0 ledge ub/lOY

Pb              2 1.1 0.88 0.58
Au               2 0.85 0.65 0.48
Cu               2 1.00 0.77 0.61
Ag               2 1.09 0.85 0.65
Al               2 1.4 1.1 0.85
Ni              2 1.7 1.3 1.08

Na 2/3 1.2 0.54 0.375
Fe 2/3 1.9 1.3 0.87

W  * 2/3 4.0 3.9 2.6
Fe 213 2.7 1.9 0.87

LiF 0.25 3.2 2.9 2.6
NaCl 10.25 < f 3.4 2 j 3.21 j 2.6/

1(0.25)f 1(7.0)5 1(7.0)f 1(5.6 )f
MgO 0.25 3.4 3.2 2.9

A1203 0.25 2.3 2.1 1.8

Si 0.25 2.2 2.0 1.9
Ge 0.25 3.7 3.3 3.3
C 0.25 2.4 2.2 2.4

Be 2/3 4.5 4.1 3.4
Zn 2/3 4.3 3.9 3.3

Partial dislocations   b = [2ii], 0-600
1

41-2-

CU               2 1.4 0.91 0.35
Ni              2 2.3 1.6 0.62
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TABLE III

Three Dimensional Results

Crystal Activation Radius of
Energy Activated Loop

(Electron Volts) (in units of b)

Pb
Au
CU

Ag                    Spontaneous Emission - No activated state
A1
Ni for r > Lo.

Na 0.02 1.5
Fe 2.2 5.1
W 329 50.7
Fe*                   19                           17

LiF                   58                           32
NaCl j 621  f 33 1,

1(240)j 1( 95)f
MgO     '             205                           37
Al 0 852                           2023

Si                   111                           20
Ge                   260                           42
C                     351                            27

Be                   180                           23
Zn 107 21.2
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Appendix: Image Force on Dislocation near a Crack Tip

To compute the image force, consider Figure 8 in which a straight

dislocation line lies parallel to a crack front, with the slip plane

intersecting the fracture plane at distance a ahead of the tip.  We are

ultimately interested in the case a=0, but by considering a as variable

we can use energy methods to compute the force.

Suppose that the body containing the crack is subjected to three

generalized boundary forces QI, QII' and Q each of which if exerted
III'

singly upon a dislocation free body would cause only a Mode I, II, or

III crack tip singularity, respectively.  Let qI' qII, and qIII be the

associated generalized displacements.  These are defined so that

i Q.1'  d'.1'

is the work of boundary loadings per unit thickness into the plane of the

figure.  The sum on J extends from I to III.  Hence, if we let U be the

strain energy of the body per the same unit thickness,

dU = E  QJ dqJ + G da - f dp, (Al)
3

where the respective contributions to energy changes come from load-point

displacements dqJ, crack advance -da, and dislocation glide dpi G is the

crack extension force (or energy release rate) and f is the force on the

dislocation.

The last equation may be rewritten as

d(U - I QJ qJ) = -E qjdQJ + G da - f dp.
33

Further, since the terms on the right constitute an exact differential,

we may write the Maxwell relation

/12\ (3fj
/ ap/ =   -Caa 1

(A2)
\ /1,Q \    /P,Q
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This is a fundamental relation for it allows us to compute the force on

the dislocation solely from a knowledge of elastic fields induced by

each  of the forces   QJ.      To see.this, recall   that the crack energy

release rate is given by (e.q., Rice, 1968)

2          1-v 2 2  1+v 2
v= E (K +K )+- K (A3)I II E    III  '

where the K's are stress intensity factors for the three modes.  These

are due both to the boundary forces QJ and to the interaction of the

dislocation stress field with the crack, and take the forms

KJ = kJ(a) QJ + LJ(a,P), J=I,II,III (A4)

Here each kJ is the Mode J stress intensity factor induced per unit of

the corresponding boundary force.  Each is assumed to be known for all

crack lengths and hence can be considered as given function of a.  The

unknown functions LJ are the stress intensity factors induced by the

dislocation.  The force on the dislocation is given by

f = be[tI(a,P) QI + tII(a,P) QII1 + bs tIII(a,P) QIII + Z(a'P) (A5)

Here be is the edge and bs the screw Burgers vector component; t I and

tII are the shear stresses induced on the glide plane, at the disloca-

tion position, in the edge direction per unit boundary force QI end QII'

respectively; t is the shear stress in the screw direction inducedIII

per unit force Q These shear stresses are to be considered as knownIII'

functions of crack length and dislocation position, and hence of a and p.

The unknown force term g is that due to the dislocation itself, i.e.,

the image force, and our object is to compute it.

By substituting for G and f as above in the Maxwell relation (A2),

we obtain
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2               3LI                 3L                       3L2(1-v ) II 1 III

E       [ (kIQI + LI)  30-- +  (kIIQII + LII)37- + 1-v(kIIIQIII+LIII)  30

3tI         atII          3t=-b -Q -b --Q -b III Q    _ 1&e 3a I e 3a    II    s aa III   3a

This must hold for all values of the Q's.  Hence by equating coefficients

of each QJ,

3L      -Ebe     atj               3L        -Eb       3tJ                                   III        s        III
-------=

ar   ,    for
J=I,II: (A6)

3P          2 (1-v2)kJ
,  ap   = 2(1+v)kIII 3a

And by equating sides when each QJ = 0,

2  -
1& = _ 1-v    a._ (I.2 + I.2  + -1- I,2 ) (A7)
aa      E    39   I    II   1-v  III

The calculation of the image force now involves simple integrations:

(i) First, we note that the right sides in (A6) involve known functions

of a and p ; each LJ is determined by integrating these at fixed a from

the  P   o f interest   to a large value   of  B,   say   to   oo or   to the specimen

boundary, at which the L's may be taken as zero.  (ii) Thus the right

side of (A7) is determined, and g is obtained by integration from the a

value of interest (zero in our case) to a large value of a at which g

may be taken as zero.

Now, since we are interested in a dislocation rather near to the

crack tip, it will suffice to consider a semi-infinite crack in an

infinite body.  Also, the solution for the L's and g cannot depend on

the particular nature of the load systems denoted by the Q's.  Indeed,

the right sides of (A6) are universal functions, the same for all load

systems inducing a given crack tip mode (see Rice, 1972).  Hence, for

simplicity, we can choose load systems which act so far from the crack
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tip that the characteristic inverse-square-root elastic stress distribu-

tion gives the entire stress field, and that the k's are virtually

constant, for all crack distances a of interest.  Let (aij)J denote the

stress field for a given loading mode, J; this will be of the form

kJQJ
(a    )    = -   [F      (6)]J ' i,j=X,y,Z. (A8)ij J  V'F  i j

Here the F's are functions of 0, particular to each mode, that are

tabulated e.g. by Rice, 1968, pp. 216-217.  From these the shear stresses

on the dislocation, per unit boundary loads, are identified from

Q+ = YY J XX J(a   ) . -  (a   )
3-3          2                    xy Jsin 20 +  (a   )- cos 20  ,

for J = I, II, and

Q         = (c ) COS + - (a ) sin 0 .IIItIII yz III xz III

Upon substitution from (A8), these give

tI = kI (8*) sin 0 Re [e ' (4 -a E    )]
-1/2            16 -1/2 -3/2

-1/2 210 -1/2 -1/2 -3/2t =k (81T) Re [2e E 1 + sin 0 Im [ei*(E - ag    )1  (A9)II   II

-1/2 6  -1/2t =k (27T) Re [eiT E    ] ,III III

where i is the unit imaginary number, Re and Im denote real and imaginary

parts, and where

E =: r e =a+p e .
ie           it

Hence the first of (A6) becomes

DL        Eb                                              -3/2   I         e             -1/2       3       it  -1/2
<kI(8A) sin   0   -     Re[ e      (E = - 2(1-v2)kI  <                 Ba              - ag    )] 

3 Ebe sin 0
=      1/2    2   Re [ei0 (6    - aE    )]

-3/2 -5/2

8(2 ) (1-V )
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i$Multiplying by dp and recognizing that e  dp = dc, so that integration

on p becomes integration on E inside the brackets, we have

3 Eb sin$L = Re I-2 E-1/2 +   ar-3/21I        1/2
8(21T) (1-v2)

(A10)

-E be                     8                 38m                1/2  [3 sin 0 cos 2 - sin (0-0) cos 2-] ,
4 (1-v2) (2wr)

where the constant of integration is chosen  so  that LI vanishes  at  p= m .

In a similar way we find
rE b

e                                                      38
L   =II                .1/2 [2 cos 0 cos    - sin 0 sin   + sin(0-e) sin 2-]4(1-v2)  (2Ar)

-E bs              e                                     (All)L = COS -
III 1/2        2

2(1+v) (2Ar)

Now that the L's are known, we have determined the effect of the

dislocation on the stress intensity factors K I (A4) and, further, we can

substitute into (A7) to determine the image force.  Since each of the

L's is proportional to r , (A7) is of the form
-1/2

h =--3- FQ(0,0,1aa ap L r  j'
1-v 2 2

1  L2 ) (A12)

2

where  Q(0,0) = -E-  r(LI + LII + 1-v  III  '
But by using the relations

3          3     sin 8  3    3             3    sin($-9)  3
3a- = cos ear  -    r     Te 'ap = cos(0-0) ar -      r 38

between partial derivatives, one may readily derive the identify

_ 1. IQ( 0,6)1 = _L  sin (6-e)   Q(8,0) 1Dp      r       Ba    sin e r J
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This lets us integrate (A12) immediately.  We must, however, append a

'constant' of integration, which may depend on p (= r sin 0/sin $), and

which assures that g +o a s a+co. This means that g+o a s r.-,8+0

in such a way that r sin 6 remains finite.  Integration of (A12) subject

to this condition gives the image force

g =                                                 (A13)
sin(0-6) Q(8,0) - sin 0 Q(0,0)

r sin 8

where Q is defined from (A10,11) via (A12).

In the text of the paper we were concerned with the case a=o, so

that 0=0 and r=p.  In that case
Eb Eb22

g=-Q(0,0)=-      e S
- (A14)

' 8 (1-v2)p 81T(1+v)p  '

where the latter form comes from identifying Q(0,0), which is found to

be independent of 0.  Remarkably, this is the same image force as for

a dislocation line at distance p along its slip plane from the boundary

of a half-space.  In fact, the result for this latter case is also

obtainable from (A13) by letting the crack tip pass far beyond the site

of the dislocation,  a- m . This means  that we let  0-4,T  ,  r. co while

keeping r sin e finite (it equals p sin 0).  By direct evaluation one

finds that Q(1,0) = 0, so that the image force from the half-space

boundary is also given by (A14).
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FIGURE CAPTIONS

-         Figure 1.  An atomically sharp crack is blunted when a dislocation is

emitted from the tip when the Burgers vector has a normal component to

the fracture plane.

Figure 2.  Geometry of the dislocation, crack configuration in two

dimensions.  be and bs are perpendicular and parallel components of the

Burgers vector relative to the crack.

Figure   3. The function  f  =  -A/0  + B/VE- plotted   to  show its broad

maximum.

Figure 4.  Schematic representations of saddle point dislocation

configurations.  At distances greater from the crack than <c' the

curvature is positive, while at less than Ec' the curvature is negative.

The dislocation always has normal incidence at the surface because of

the preponderance of the image term near the surface.  a) Ec is small

and the region of negative curvature is negligible.  b) Intermediate <c.

c) Large Eco

Figure 5.  Configuration for calculating the work done under the crack

stress by the expanding dislocation.  The work integration has the lower

limit shown when r=E .0

Figure 6.  Schematic variation of the three terms in Eq. (17) as a

function of the radius.

Figure 7.  Dependence of activation energy for dislocation nucleation on

S4=:y/wb) and Ro<=Eo); exact definitions of S and R , and normalization of

energy, are given in text.

Figure 8.  Configuration of crack and dislocation for computation of the

-        image force.
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