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I. INTRODUCTION

This paper is concerned with the problem of the ductile vs. brittle
response of crystals. There is in the literature of this subject a
conventional understanding that a solid will either be ductile or truly
brittle depénding upon the ratio of theoretical shear éﬁrength to
tﬁeoretical tensilé strength; See Kelly (1966). We believe that a
correct description of this competition should include actual dislocation
proéesses at cracks, since the ductile reéponse of the solid must

produce dislocations in order to yield.

A truly ductile material like pure copper apparently cannot
sustain a cleavage crack, but may fail by plastic instability and
‘necking on a gross scale. Stronger materials appareﬁtly also exhibit
the same essentially plastié'necking phenomenbn on a more microscopic
scale through the process of hole growth, althoqgh the macroscopic
appearance of the failure is crack-like. On the opposite end of the
scale, some materials like diamond and mica apparently can undergo purc
brittle cleavage with no discoverable plasticity associated with the
process. In between these two extremes, there épparently exists a class
of materiaié where a cleavage crack in the true atomically sharp sense
exists, but is surrounded and associated with an atmosphere of disloca-
tions, (Burns and Webb, 1970; Bgrns, 1970). This intermediate case
exhibits many complexities; such as high effective surface energies,
plastic zones‘surrounding the crack tip, etc., but there is no reason to
suppose that, provided hole growth is not occurring, the crack tip is

not sharp on the atomic level. Of course, experimental proof of this
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gtatement in any given case will be indirect at best; but the theoretical
descriptions of cleavage and of hole growth are sufficiently different

as to mzke one wish to distinguish as clearly as possible between the
separate physical cases.

Kelly, Tyéon and Cottreii (1967) were the first to pose this
problem of brittie vs. ductile fracture in an essentially proper way
when they attempted to test the self-comsistency of the proposition that
2 cleavage créck can exist ih a particuiar type of crystal. They, in
effect, asked: "If a cleavage crack were created by some process ian a
crystal, would the tip spontaneously blunt as the result of shear b& the
atoms of the tip region?" They then postulated that such would be the
case if the highest shear stress in the vicinity of the crack exceeded
the theoretical shear strength of the material. stever, this criterion
cannot be sufficient for the crack to blunt, because the shear stress
near a crack is not everywhere constant on the shear plane as it wculd
have to be to cause the atoms to shear past one another uniformly.
Instead, the stress is highly localized in the vicinity of the crack tip.
By geometr;cal necessity, localized shear on a plane intersecting the
crack tip caused by the high shear stresses there, matched to a non-
sheared region at greater distances on the same plane, where the stre:zs
is below the theoretical strength simply defines a d;slocation. Hence,
a blunting reaction at the crackltip'requires the production (or

annihilation) of dislocatiomns.
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Kelly, Tyson, and Cottrell indeed discussed one kind of dislocation
reaction forvNaCI. They calculated the approximate energy to form a
full metastable loop of dislocation near the crack in NaCl, and found
the energy to be prohibitively high. Others have also discussed dislo-
cation formation near crack tip. (Armstrong, 1966; Kitajima, 1966)
Armstrong has, in particular, estimated the formation energy of a
dislocation dipole loop completely surrounding a circular crack in a
crystal. However, this type of dislocation interaction does not
correspond to a blunting reaction and does not directly address the
question we pose.

In this paper, we shall propose models for the production of a
dislocation from the tip of the crack in such a way that after the
dislocation expands under the external stress field as concentrated by
the presence of the crack, an atomically sharp crack will have been
blunted by one atomic plane, Figure 1. This blunted crack will then be y

- trapped at the original lattice position until the external stress is
increased substantially (when probably further dislocation blunting may
be possible). Crystals for which dislocation emission is spontaneous
can be expected to be good candidates for essentially plastic openingvof
the crack. Crystals for which there exists a large energy barrier for
this emission can be expected to be good candidates for brittle cleavage
(but perhaps where the crack has associated with it clouds of disloca~-
tions which are formed or captﬁred through othér processes in the nearby
lattice). In order for a dislocation to blunt a crack, it is necessary
for the Burgers Qe;tor to have a component normal to the crack plane, and e
for the slip plane to intersect the crack line (or crack front) along its

whole length, i.e. the crack line must be contained within the slip plane.
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It is, of course, possible to conceive of a process by which the

crack may be blunted by dislocations which are formed from nearby
sources and which are emitted on preciseiy the right plane to blunt the
crack tip. 1In view of the fact that the stress field in a region
surrounding a cleavage crack will be above the macroscopic plastic flow
stress for the material, one might suppose this could be an effective
blunting mechanism. However, macroscopic yield is a property associated
only with regions of the size of many microns, even for fairly ductile
materials. Hence, for a random position of the crack tip, the proba-
bility of finding a source on the correct plane at a distance from the
crack for which the source can operate is small.

The plan of the paper is as follows. Igithe next section, we shall
consider :he various forces operating between a crack and a dislocation
in two dimensions. These forces are 1) the force on a dislocation due
to the stress field surrounding the crack, 2) the surface tension force
caused by creating more surface at the blunted crack, and 3) the image
force of the dislocation in the free surface of the crack. The first
term repels the dislocétion,'and the latter two attract it toward the
crack tip, giving rise to the possibility of a position of unstable
equilibrium, .In S§III we estimate the activation energy for formation of
a dislocation half loop out of the crack under the action of these
forces when an energy barrier exists. Finally, in §IV we discuss the

physical consequences of our calculationms.




I1. FORCES ON A DISLOCATION NEAR A CRACK TIP

Let us suppose that the loads on the body considered act symmetri-
cally about the plane of a straight crack, so that before emission of
the dislocation, only the tensile opening mode of relative crack surface
displacemen; is present. 1If K, is the "elastic stress intensity factor"
(see, for example, Rice, 1968) due to the loads, then in two dimensioqs

the in-plane shear stress acting at distance p on the slip plane of

Figure 2 is

Gp¢ = KI(8ﬂp) 2 sin ¢ cos ¢/2 . (¢H)

For this equation to be valid, p must be a small fraction of overall
crack length., The anti-plane shear stress component (i.e., in the
direction of bs) 1s zero. The release of potential energy of the btody
and load system per unit of new crack area is
a2
1-v 2
6 - F— K (2)

(E = Young's modulus, v = Poisson ratio.) At the fracture load pre-

dicﬁed on the Griffith theory, G = 2y where y is the true surface energy
of the crack plane. Thus, if the applied load on the body is chosen as
that which would cause fracture if no dislocations were eﬁitted, then
the force (shear‘stress times Burgers vector) on the dislocation segment
shown in Figure 2 dué to the applied 1oad is

1/2 M
fo = °D¢ be = [——E—H sin ¢ cos ¢/2 cos wg //z 3

4m(1-v?)

Here £ = p/b and be = b cos ¥ is the edge component. The screw

component bs does not appear since the épplied load induces no shear

stress in this direction.




There will be an "image" force which tends to pull the dislocation
back into the crack. This may be inferred from direct solution of the
corresponding elasticity problem, as presented in most general form by
Atkinson (1966) for anisotropic materials. A rather different derivation
1; presented in the Appendix, for a straight dislocation parallel to the
crack tip in an isotropic material. (The procedure of the Appendix is
based on energy considerations and properties of point functions, rather
than on direct solution of the elastic field equations for a dislocation
near a crack. The approach is readily generalized to other elastic
1nteraction problems, and may be of some interest in itself.) The

resulting imége force (Equation A-14) is

Ebz Eb§
f = - - (4)
i 8n(1—v2)p 8w (14+V)p

This is a remarkable result, Because precisely the same expression for
the image force is obtained in the case of a dislocation in a half

space with its core lying ﬁarallel to, and at pérpendicular distance p
from, the free surface (see, for example, Hirth and Lothe, 1968). Both
of the above forces are calculated on the assumptions 6f "infinitesimal"
elasticity, and actual geometry changes at the crack tip due to emission
of the dislocation have been neglected. The image force term may be

rewritten from Figure 2 as

. -Eb” (1-v sin2 b)
Sﬂ(l-vz)g

f

. (5)

E=p/b



In Figure 1, as the dislocation is formed, a ledge is left behiad,
and as the core comes through the surface, forces due to the formation
of the ledge must be included. - As a function of the position, & = p/b,

of the dislocation, the ledge energy is given by

-1 2¢ -
3/2
e Eo

_ VL = %- Yb cos ¢y sin ¢ tan (6)

In deriving (6), we have used the misfit function for a Peierls model éf
the dislocation with a width or core cut off So, yhich is consistent
with the quantity rO/b where r, is defined by Hirfh_and Lothe (1963),

P. 212. The sin ¢ dependence is taken to approiimately represent the
modificatipn of ledge energy from Ybe due fo slip plane inclination.

The force is consequently

£ = - 2 yx cos Y sin ¢
L T 52'+ o2

where a = e3/2 50/2 (7 '

- Note that the E-l and 5-2 attraction back toward crack, due to the
/2

image and ledge forces, outweighs the E—l force réshlting from the
applied load when § is small, whereas just the opposite happens when £
is large. Hence, the equilibrium position of the dislocation is

unstable, and the dislocation will be driven away indefinitely, until

it reaches some obstacle, if it ever attains a distance from the crack

tip greater than the equilibrium distance.




The critical distance, Ec at which a straight dislocation is in

unstable equilibrium under these three forces is, from (3), (5), and (6),

given by the solution of

1 1-v sin’y  _2 o

4nE 1l-v “nZB. €2+u2

£ - ub -

We have used the following abbreviations,

-]-'-a cos ¥ sin ¢ cos ¢/2,

B

-B-]-'r= cos ¥ sin ¢,

n2 = ub/y,

1
1 l 2
+ ne (2ﬂ(l-v)€) =0

(7)

(@)

vhere p is the shear modulus. If the value of Ec is leés than the core cut

.off, we presumably have a case where the method does not apply, and

spontaneous generation is a good possibility.

Equations (3) and (5)

diverge for £ + 0, but, of course, the forces they represent must

actually in toto approach zero as £ + 0 because of nonlinear core

effects.

We display in Table I the relevant physical data with the values we

have chosen. The values of y contain the greatest degree of uncertainty,

and we discuss the problems associated with surface energy for our

calculation in §IV. Table II displays the results of the solution of

- Eq. (7) for the various solids, together with suggested values from Hirth

and Lothe (1968) for the elastic cut-off for comparison. We also list

some cruder estimates of the critical distance,

]
Ec and Ec. In Ec’

wve neglect the effect of the ledge in Eq. (7), and then the condition

is given by



2 .2
' (1-v sin® ¢) 2 wb
Ec = _ 8n(1-v) 8 Y 9

In the second estimate, we average over the geometrical and crystallog-

raphic effects still present in (9), giving an even cruder estimate,

LU .‘&_ : -
Ec = lOY (10)

It is interesting to enquire how splitting the dislocation will
affect the calculations, since certainly in}the face centered‘metals,
splitting does occur. In this case, the Burgers vector will be lcwered
in magnitude, and the angle, ¥, will be changed. So far as the size of
the Burgers vector is concerned,_éq. (7) 1s dimensionless, and is not
affected. The size of the cut-off is sensitive to b,.howgver, and in
fact the value we have chosen is just that appropriate to the split
dislocation in the face centered metals. Eq. (7) does contain the
crystallography of the Burgers &ector througﬁ the angle, ¢y, however, in
a rather complicated manner. For thevwhole dislocation, $=30°, and | s
there are tﬁo possibilities for ﬁhe two.partials, ¥=0° and y=60°. For
the first value, the ratio of the various terms in Eq. (7) is only'changed
about 57 from their values for the whole dislocation, thus leaving the
results of Table Ii unchanged. For the second éase, where y=60°, the
first term in Eq, (7) becomes about 507 larger thaﬁ for the whole
dislocation, thereby increasing the vzlue of gc. We show a few values

|
|
for this partial in Table II. i
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II1., ENERGY CONSIDERATIONS

If the equilibrium point, Ec’ is largervthan the core cuﬁ-off, then
there is an energy Hump for the dislocation to jump in order to be
emitted from the crack. Cle;rly, in this case, it will 5e impossible
for a uniform straight line to be emitted from the crack, because for
an infinite length of dislocatién, the energy diverges. Instead, a
local fluctuation in the form of an irregular loop will be formed which,
beyond the saddle point configﬁration, will expand under the externai
stress. The factors determining the éaddle point configuration are the
same as before. ‘Image and ledge forces will predominate for small loop
sizes, while for larger ones the external stress is dominant.

In the elaétic three dimensional problem, even in the isotropic
regime, the problem of determinidg the saddle point configuration and
consequently its energy is intractable in part because the force fields
are variable, and in part because rigorous treatments of three dimen-
sional dislocation problems are not possible when the shape is
complicated. In fact, although we know the image force for a stgaight
dislocation parallel to the crack, image terms are known to be complex
vhen the shape is more complicated, even without the additional
complexity of the crack half surface. We sﬁall thus proceed by
developing some qualitative insights into the problem, and then make
some simplifying assumptions about the saddle point configuration which

allow us to make meaningful calculations.
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First of all, the stress figid due to the_applied load is straight-
forward, and yields a normal force, fc’ on a.dislocation element, dig,
given by the local value of the stress, g. This force is

fo = (g'b) x dL (11)

The ledgg force is always a minor term, except possibly very near
the crack surﬁace. It will have the primary effect of drawing together
the téo ends of the loop where they touch the crack surface. It will
act just like a pure surface tension on these ends because of the surface
energy required to expose the ledge as the loop expands.

The image force, as mentioned above is more complei. In problems

of dislocations interacting with normal surfaces, it is a useful first
approximation to simply replace the image terms by the action of an
image dislocation reflected in the surfacé. This replacement is not
normally rigorous, buE yields a fair‘approximation. Sincé in our case
of the crack, the straight dislocation yields the same result as for a
normal surface, we shall adopt this simple stratagem for the crack.
This means that in order fo calculate theAenergy of a dislocation half
loop configuration whiéh ends at the crack surface, we need do no more
than calculate the energy of a full loop including-the-reflected image,
and take half of the ;esult. This energy will then include the image

terms.
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One further very important result fdllows from the presence of the
image term. The image term requires that when a dislocation approaches
an open surface, it must cut the surface at normal incidence. The
predominance of the image term in the immediate vicinity of the crack
surface will require the  same boundary condition on the dislocation at
the crack surface., This condition, in conjunction with the magnitude of
the stress in the region beyond gc are the crucial determinaﬁts of the
total activation energy.

~ We note one final qualitative characteristic of the two dimensional
force field which 1is very suggestive for our three—dimensionai treatment.
Except for the ledge term in Eq. (7), which is important only very near
the crack tip, the net force is the difference between 1/§ and 1/VE ,
a very broad function which we have plotted in Fig. 3. The point at
which this function reaches one half its maximum value is aboutll.S Ec’
and it does not fall below this value again ti1ll £ becomes approximately
504Ec. Thus, throughout this very broad range, the balance between these
two major forces is nearly constant. Under a constant normal force, of
course the equilibrium shape of the dislocation has constant curvature,
and is circular. For values of £ less than Ec’ the force becomes
negative, and including the effect of the ledge, the curvature will alsd
reverse. Hence the general shape of the saddle point configuration will

be as sketched in Fig. 4.
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In view of these qualitative background comments, we feel justified
in proceeding with the assumption that the approximate equilibrium shape
is the simple half circle depicted in Fig. 4a. In view of the broad
maximﬁm in the effective force field, we believe the energy of the
activatéd state thus computed is a reésbnable estimate of the true
energy, and our use of the circular shape probably introduces no major
errors in the calculation,

We thus calculate the total energy of the activated'state of the
system, which consists of three parts. 1) The self energy of the
dislocation half loop. As mentioned before, this energy will
automatically include the image term contribution. 2) The energy of the
ledge. 3) The energy gained by the dislocation loop as it expands under
the influence of the stress surrounding the crack; In order to determine
the size of the loop of the activated stéte, we locate the maximum energy
of the loop as a function of the loop radius.

The self energy of a dislocation half loop as given by Hirth and
Lothe (1968) is

3 2-v 8r
Uge1£ = ¥0'T gy ™ 3 (12)
e Eo

In this equafion, r and Eo are respectively the radii of the half circle
and radii of the core cut-off in units bf the Burgers vector, b. Eo is
the same quantity as used for the core cut-off in §II.

To the self energy must be added the energy of the ledge formed as
the loop expands. We write this in the form

U = Zybz cos ¥ sin ¢ (r—Eo) 13)

ledge
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Eq. (13) simplifies the expression fo: a ledge as we used it in §II.
Here we assume that when the radius r is greater than the cut-off radius,
the ledge is fully formed, and that the energy is linear in the radius
of the loop.

Finally, we compute the energy gained by the half loop in the stress
field of the crack tip. In terms of Eq. (3) and Figure 5, the energy to

expand the loop from the initial radius, ;c, to r is

1
Ua = - __EIE_E_. 2 b2 cos ¢ sin ¢ cos ¢/2
4u(l-v°) '
r T (14)
dr f 0 —I
[o (] Vr sin 6
Noting that
T -1 .1_)
de 2 4
= q 3 (15)
,[ Vsin 6 r '4‘)

we then have

- - 2 3‘[_1
Uo 0.9862 = ub. s sin ¢ cos ¢ cos ¢/2

3 3 (16)
rz - Eg

The total energy change for a crack which has emitted a dislocation

loop is then
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U = ub3 [rUp n

r T2 '
act E:' + U (g -3 Uy o
v = 2-v
o EZI—\)S
: a»n
e Y
U, =2 g cos v sin ¢
U = 2.092 ‘}%5- sin ¢ cos ¥ cos ¢/2
8
V1-V )
From (17), the condition for the activated state is
| du : '
| .act. 1/2
N T 0 Uo Ln er/g‘o + U!, +-U8 r (18)

Schematically,the three terms in (17) are sketchéd in Figure 6. The
stress term eventually alwayé dominates the other two fqr large r, but
depending upon the parameters, the self energy plus the ledge term may be
dominant for values near Eo. That is to say, depending upon the param-
eters, there may be a spontaneous emission of a dislocation loop with no
‘activation energy, or there may be a finite actiQation energy to form the
-loop whose radius is determined by Eq. (18).

We have solved Eq. (17) for the critical loop size, and calculated
the activation energy for the list of materials given in Table I. The
results are listea in Table III.. Further, the funcﬁional variation of
the activation energy with y/ub, Eo’ and orientation parameters is shown
in Figure 7. 1In this plot, the activation energy [Eq. (17)] is plotted
after y is eliminated through Eq. (18). Here it is convenient to plot
-the dimensionless energy

Uact L

(2-v)2 g2
8(1-v) B'

Yget, © 3 (19)

¥b
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in terms of
L 16(1-v) -y .16 8' .
S . 58! (2“\)) ub and RO '5 (2_\))82 gO . (20)

Indeed, these forms have been chosen because, for typical values of v and

the orientation parameters, they reduce to

Uset Y
Yact.” ';:3—’ s’"'ﬁ; » Ry=E . (21)

It is seen that the behavior divides mainly into two kinds: If the
orientation-dependent core parameter, Ro, is small, there is a substan-
tial energy barrier to dislocation nucleation for all values ofvylﬂb
(1.e., Uactxz 0.1 ub3). On the other hand, if Ro is large there will be
an energy barrier only if the surface energy parameter, S, is smaller
than that at which the curves cross the S axis; otherwise there is
spontaneous nucleation. The curves for the larger values of Ro rise so
steeply that there is essentially a critical value of S below which the
energy barrier is substantial, and above which there is spontaneoué
nucleation, although finer examination shows that there is a narrow rznge

of R, and § values for which Ué is low enough that thermal activation

ct.

could blunt the crack for sufficiently long time scales of load applica-

tion.
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IV. PHYSICAL RESULTS AND INTERPRETATION

a) Surface Energy. Among the experimentally determined values
listed in Table I, ;he values of y are the ones for which the only
important uncertainties exist.

For tungsten, Cordell and Hull (1969) find that the su?face energy
varies from a low value of 1700 cgs at low temperature to 6000 cps at
higher temperature. The higher value apparently is due to plasticity
induced in the vicinity of the moving crack. Other values have been
measured by other workers intermediate to these extremes, but we believe
the low value listed represents the bare crack.

NaCl is claiméd by Class (1964) in his thesis to have a surface
energy of 115 cgs, and this value is adopted by Kelly (1966). On the
other hand, we believe the value 250 is more likély. It is in the range
of the experiments of Gilman (1960), Wiederhorn (1970), and Benson, et al
(1955, 1956, and 1959), and is in reasonable agreement with the theoretical
calculations, which for this crystal should not have a large error, see
Tosi (1964) and MacMillan and Kelly (1972). We list both values, and
results for both, however.

For,A1203, we have a range of values in the literature all the way
from 1000 cgs as given by Kingery (1954) for the basalkplane to 6000 cgs
as determined in cleavage experiments on the rhombohedral planes by
Wiederhorn (1969). Wiederhorn also reports that cleavage is not possible
on the basal planes, and in a private comﬁunication has noted that the
cleavage surface energy fot these planes musﬁ in consequence be in excess
of 40,000 cgs! One wonders if the value reported by Kingery (not méasured

in cleavage) is not actually either that for a restructured surface or a
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composite value for a dimpled surface whose average orientation is [0001],
but not the true basal plane. Consequently, we use y = 6000 cgs in our
work.

In Zn, Maitland and Chadwick (1969) have measured a range of values
from 100 cgs (confirmed by other previous authors), to 575 cgs, depending
upon the technique used for making the measurement. Because of weaknesses
in the analysis as applied to the experiments yielding the lower value,
they believe the value of 575 cgs is to be preferred.

But experimental difficulties do not exhaust our problems with the
surface energy. One must also be certain that the surface energy as
measured experimentally and the surface energy as we use it are synony-
mous. In our work, the correct y is derived as the energy necessary to
break bonds at a crack tip. Even in a pure cleavage event where no
dislocations are produced, this process may not correspond to the thermo-
dynamic surface energy because of relaxation effects which are possible
on some crystal surfaces, such as Si, where the surface is entirely
restructured. For this reason, the value chosen for Si is derived in
a cleavage experiment, and for diamond is calculated from the value of
the carbon-carbon bond. Unfortunately no cleavage surface energies are
available for Ge. We also note a further point of rigor. In very hard
crystals where lattice trapping is important, the y measured to grow a
crack is different from the y measured to heal a crack, Hsieh and

Thomson (1973).
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b) Two Dimensional Results. The results in Table III suggest that

the face-centered crystals, with the possible exception of Ni which has
a borderline Ec’ are unstable to dislocation formation, since the critical
distance, Ec’ is less than the care radius, Eo' Since all the elastic
forces become impossible to define inside the core radiu;, and since the
repulsive forces are dominant for all distances larger than the core, we
believe a crack in these crystals cannot sustain the large shear forces
at its tip without forming the dislocation spontaneously. Na, of the
body-centered crystals, probably also spontaneously emits the dislocation
because of the small size of Ec’ and also because we believe that in this
case Eo is not so small as 2/3, as is assumed for the other body-centered
cubics. In all otﬁer cases, Ec is sensibly larger than the core size,
and we believe this gives rise to an energy hump the dislocation must
negotiate as it is f;rmed.

We have listed in Table II two other cruder es;imates of Ec' In the
first, we neglect the ledge term and in the second average over the
geometry. Both are prgtty fair approximatioﬁs to the more accurate
values for the brittle materials in the lower half of the table. The
ledge term is seén to be important for.the softer crystals, as one would
expect.

. The dimensionless ratio, ub/y, related to our é: has alfeady entered
into Armstrong's (l966)vdi§cussion ‘of the brittle vs. ductile competition,
and we see that it is indeed explicit in our own work. However, iﬁ our
theory, as one progresses down the list of crystals in Tdble II, it is
the opposite tendency of the growing value of ub/y and the decreasing
value of the core cut-off which makes the difference befween the ductile g

face-centered cubics and the more brittle body-centered cubics.
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We note in Table II the positions of iron and nickel between the
obviously ductile and obviously brittle solids. We give two calculations
for iron. In one, the crack line runs along a cube direction, [100], and
in the sécond, the crack line runs along [110]. The second is actually
that observed by Tetelman and Robertson (1963) in silicon iron, but it is
the former which has the interesting low value of Ec.

We have listed_the rgsults for a split dislocation for a noble metal
and for nickel. (Aluminum has small or no splitting.) The results shown
are for only one of the partials. In the case shown, the partial has
unfavorable geometrical factors, since it is dot oriented to cause the
crack to open effectively. In this unfavorable case, the critical radii
are slightly increased, but not enough to change our general results.

¢) Three Dimensional Results. The three dimensional results for

the estimated activation energy as given in Table III confirm the two
dimensional findings. We find a negative activation energy for the face-
centered cubics, which again means that since all energies are cut off at
the core radius, by the time any dislocation is well formed, it is under
the primary influence of the repulsive forces. Again, Na would seem to
have an essentially spontaneous emission, not only because of the small
value of the calculated activation energy, but also because we have
probably underestimated the true dislocation core size of this very soft

crystal.

21



(——77” | : v : - -

The main surprise when comparing the two- with the three-dimensional
results is the very large values obtained for the activation energy of

the brittle crystals, even though gc is usually a small number. One might

dislocation past Ec, say in NaCl, over a small front of the crack tiﬁ,
and that the repulsive force would then be able to dominate the picture
sufficiently to expand the fluctuation indefinitely. However, the
reason this is not so is that thé dislocation must meet the crack surface
at normal incidence. Otherwise, the forces there will collapse the
fluctuation no matter what happens to that portion lying over the hump
beyond Ec. In order for the d;slocation to meet the surface
perpendicularly, a full half loop of dislocation mﬁst be formed in the |
region of repulsive forces, whiéh 1s costly in dislocation line energy.

Thus we find a very strong tendency for crystals to be either
completely ductile, or completely brittle, so far as dislocation
emission is concerned. Iron and nickel are the only interesting cases
where our calculations suggest that the activation energy may be
sufficiently low that thermal flﬁctuations could play a role. With the
various uncertainties in our calculations, we are unfortunately not
able to pin down the values in these cases sufficiently to make a

|

suppose that it would take only a small energy to push a local segment of
definite prediction.

|
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Except for iron, sodium, and the face-centeied cubics, we feel
confideht in predicting that no spontaneous or thermally assisted
blunting of a crack tip can occur in the other crystals investigated.
Even with the uncertainties in the y and the other approximations made,
crystals like LiF and NaCl (to say nothing of the hexagonal metals)
seem immune enough to this process. This conclusion means that if
blunting does occur it must be because of dislocations produced outside
the tip region, and which are then attracted toward,.and collide with it.

Our conclusions are at variance with the often quoted claim that
cracks cannot remain sharp (and the crystals thus be brittle) if the
shear stress at the crack tip is larger than the theoretical shear
stress of the homogeneous crystal. As we stated in the introduction, a
- shear stress at the value of the theoretical shear strength will cause
the crystal to break down only if the stress is homogeneously applied
across an entire plane running through the crystal. If the stress is
only applied locally on that plane, then atomsiwhere the stress has
dropped below the maximum value will not be displaced from their lattice
positions, and atoms where the force is maximum will not necessarily be
displaced even though the stress is above the theoretical shear strengtﬁ
‘because of the resistance offered by atoms in the undeformed region of

the plane.
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Our conclusions suggest that so far as spontaneous emission is
concerned, atomically sharp cleavage cracks are by.no means a minority
occurrence in materials. When the éondition ub/y>7.5-10 is approximately
 satisfied, we have reason to expect the crack to remain sharp, though
geometrical factors and variations in core éize make this condition
only approximate. This condition, in the cases investigated, is
satisfied for a11 but the face-centered cubic metals, and certain
borderline body-centered metals.

Our conclusions leave the precise morphology of cleavage cracks
ultimately undetermined, however, because they do not address blunting
reactions &ue to dislocations which might be attracted to the crack top
from the surrounding crystal. Processes which lower the cleavability
by increasing the effective cleavage surface energy through the actioﬁ
of dislocation atmospheres trapped by the stress fleld 9f the crack are
also not addressed here. On the othér hand, our work does allow an.
evaluation of environmental éffects which can be understood in terms of
a lowering of y. By increasing the ratio ub/y, these could presumably
make possible atomically sharp cracking, even in solids such as fcc
crystals which normally show ductile response. Then the 'cleavage' is
not necessarily fast-running, but can proceed only as fast as reactioﬁs
take place to bring about the requisite lowering of y at the tip. It is

possible that some environmentally assisted crack growth can be understood

in this way.
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TABLE 1

Physical Parameters of Crystals

Crystal Cleavage Slip Y ux10 v b n=
System System cgs Angstroms ‘[TET’
, , Y
Face
Centered
‘Metals
P (001) (11) 60 0,727 0.387 3.49 2.401
Au [110) [10T] 1418(5) 2.37 0.412 2.87 £ 2.190
p 168822; 4.05 0.3246 2.55 2.473
Ag | 1358 2,56 0.354 2.88 2.549
A 840 2.51 0.347 2.85 2.918
Ni 1725€3) 7,48 0.276 2.49 3.286
Body
Centered
Metals
Na (001) (o11) 237(2) 0.243 0.201 3.66 1.937
Fe [100] [111] 1975(4) 6,92 0.291 2.49 2.954
W o - 1700(2; 16.0 0.278 . 2.74 5.078
Fe* (001)/[110] (110)/[111] 1975( 6.92 0.291 2.49 2.954
Ionic
LiF (001) (011) 480523 4.40 0.187 2.848 5.109
NaCl (100] (o11] 250 1.63 0.248 3.988 5.099
115)(8) " " " (7.518)
Mg0 _ _ _ 1200(25) 11.57 0.173 2.974 5.355
AL,0, (1012)/[1210] (0001)/[1120] 6000¢ 23.3 0.200 4.75 4.295
Diamond
Cubic
st (111) a1y 120004 6,05 0.215 3.83 4.394
Ge [o11] (110] 600¢1) 4,92 0.200 4.00 5.727
p | 5400(12) 50,9 0.068 2,52 4.874
Hexagonal
Metals ,
Be (0001) (1x0) 162001 155 0.333 3.58 5.849
Zn [0001] [0001] 575 (9) 3,83 0.333 4,94 5.736
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Crystal

Pb
Au
Cu

N1
Na
Fe
Fe
LiF

NaCl

MgO

°p

Zn

Partial dislocations b=

Cu
Ni

TABLE II

Two Dimensional Results

Core Critical Approximate
Cut-0ff Distance c - Values
B | "
£ & & .~
' w/o ledge ub/10y
2 1.1 0.88 0.58 |
2 0.85 0.65 0.48
2 1.00- 0.77 0.61
2 1.09 0.85 0.65
2 1.4 1.1 0.85
2 1.7 1.3 1.08
2/3 1.2 0.54 0.375
2/3 1.9 1.3 0.87
2/3 4.0 3.9 2.6
2/3 2.7 1.9 0.87
0.25 3.2 2.9 2.6
0.25 \ { 3.4} { 3.2} { 2.6}
(0.25)f (7.0) (7.0) (5.6)
0.25 3.4 3.2 2.9
0.25 2.3 2.1 1.8
0.25 2.2 2,0 1.9
0.25 3.7 3.3 3.3
0.25 2.4 2.2 2.4
2/3 4.5 4.1 3.4
2/3 4.3 3.9 3.3
L 2111, y=60°
12 '
2 1.4 0.91 0.35
-2 2.3 1.6 0.62
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Crystal

LiF
NaCl

‘Mg0
A1,0,

oFRr

Be
Zn

TABLE III - .

Three Dimensional Results

Activation
Energy
(Electron Volts)

Radius of
Activated Loop
(in units of b)

Spontaneous Emission ~ No activated state

for r > Eé.

58

{caior
205

852

111
260
351

180
107

28

23
21.2
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Appendix: Image Force on Dislocation near a Crack Tip

To compute the image force, cdhsider‘Figure 8 in whiéh a straight
dislocation line lies parallel to avcrack front, with the élip plane
intersecting the fracture plane at distance a ahead of the tip. We aré
ultimately interested in the case a=0, but by considering a as variable
we can use energy methods to compute the force.

Suppose that the body containing the crack is subjected to three
generalized boundary forces QI’ QII’ and QIII’ each of which if exerted
singly upon a dislocation free body would cause only a Mode I, II, or
III crack tip singularity, respectively. Let Q1 qII; and 911 be the

associated generalized displacements. These are defined so that

L Q, dq
3 J J

is the work of boundary loadings per unit thickness into the plane of the
figure. The sum on J extends from I to III. Hence, if we let U be the
strain energy of the body per the same unit thickness,

dU =% Qdq;+G da-£do, (A1)
J

where the respective contributions to energy changes come from load-point
displacements qu, crack advance -da, and dislocation glide do; G is the
crack extension force (or energy release rate) and f is the force on the
dislocation.

The last equation may be rewritten as

d(U-:‘:TQJ q;) =—§ quQJ-i-Gda-fdp._

Further, since the terms on the right constitute an exact differential,

we may write the Maxwell relation

2, -4 o
(89 %,Q aa 5,Q : |
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This is a fundamental relation f&r it allows us to compute the force on
the dislocation solely from a knowledge of elastic fields induced by
each of the forces QJ. To see .this, recall that the crack energy
release rate is given by (e.q., Rice, 1968) |

G 1--\)2

E

2. 2. It 2
K+ K+ Frp oo (3)

vhere the K's are stress intensity factors for the three modes. These
are due both to the boundary forces QJ and to the interaction of the

dislocation stress field with the crack, and take the forms

K, -‘kJ(a) Q; + L;(a,0), J=I,11,111 (A4)

Here each kJ is the Mode J stress intensity factor induced pef unit of

the corresponding boundary force. Each is assumed to be known for all

crack lengths and hence can be considered as given function of a. The

unknown functions LJ are the stress intensity factors induced by the

dislocation. The force on the dislocation is given by : ;

£ =0 [ty(ap) Q; + ty5(a,p) Q) + b, tr1-(a,0) Qppp + 8(ap) - (AS)

Here be is the edge and bs the screw Burgers vector compénent; tI and -
tII are the shear stresses induced on the glide plane, at the disloca-
tion position, in the edge direction per unit boundary force QI and QII’
respectively; tI111 is the shear stress in the screw direction induced
per unit force QIII‘ These shear stresses are to be considered as known
functions of crack length and dislocation position, and hence of a and p.
The unknown force term g is that due to the dislocation itself, i.e.,

the image-force, and our object is to compute it.

By substituting for G and f as above in the Maxwell relation (A2),

we obtain
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2(13\; ) (g, + L) i S I, 1 111
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This must hold for all values of the Q's. Hence by equating coefficients

of each QJ,
aLJ -Ebe oty ) aLIII -Ebs ot 1y
= , for J=1,II; = . (46)
o 2(1—v2)k a 9p 2(1+v)kIII 3a
J .
And by equating sides when each QJ = 0,
2, 1’ a24+12 +1 12 (A7)
3a E p I I 1-v “III

The calculation of the image force now involves simple integrations:
(1) First, we note that the right sides in (A6) involve known functions
of a and p; each LJ is determined by integ:ating these at fixed a‘from
-the p of interest to a large value of p, say to «or to the specimen
boundary, at which the L's may be taken as zero. (1i) Thus the right
side of (A7) is detefmined, and g is obtained by integration from the a
value of interest (zero in our case) to a large value of a at which g
may be taken as zero.

Now, since we are interested in a dislocation rather near to the
crack tip, 1t will suffice to consider a semi-infinite crack in an
infinite body. Also, the solution for the L's and g cannot depend on
the particular nature of thé load systems denoted by the Q's. Indeed,
the right sides of (A6) are.universal funcéions, the same for all load
systems inducing a given crack tip mode (see Rice, 1972). Hence, for

simplicity, we can choose load systems which act so far from the crack



tip that the characteristic inverse-square-root elastic stress distribu-
tion gives the entire stress field, and that the k's are virtually
constant, for all crack distances a of interest. Let (cij)J denote the

stress field for a given loading mode, J; this will be of the form
6 . = 3%
139 v

Here the F's are functions of €, particular to each mode, that are

[Fij (e)]J , i,i=x,y,z. (A8)

tabulated e.g. by Rice, 1968, pp. 216-217. From these the shear stresses

on the dislocation, per unit boundary loads, are identified from

(o,,); = (o.)
Qt; = Xy J 5 xxJ sig 24 + (oxy)J cos 24 ,

for J = I, 1I, and

Qrirtizr = (Oyp)11r €05 ¢ = (0,,) g sin ¢ .

Upon substitution from (A8), these give

ey =k 8072 sin g Re [} (5712 - 312

~-1/2

tIIB kII (8n) Re [2e21¢ 5-1/2] + sin ¢ Im [ei¢(£-1/2- a£-3/2)] (A9)

| S kIII (2n)-1/? Re [ei¢ 5-1/2] ,

IT1

vhere 1 is the unit imaginary number, Re and Im denote real and imaginary
parts, and where
E=r eie =aqa+p ei¢ .

Hence the first of (A6) becomes

oL Eb_
e S {kI(Sn)’llz N a5“3/2)]}
g 2(1-v )kI .
3 Ebe sin ¢

Re [I? (¢73/2 az~>1?y

8(2m) /2 (1-v?)




Multiplying by dpo and recognizing that eiédp = df, so that integration
on P becomes integration on £ inside the brackets, we have

3 E be sin ¢ ) _1
L. = - Re[-2 £
-E b
e 0 30
- (3 sin ¢ cos 5 - sin ($-8) cos 5] ,
4(1-v?) (201172 2 2

/2,2

- a£—3/2]

(A10)

where the constant of integration is chosen so that L, vanishes at p=o .

I
In a similar way we find
~E b, 0 0 38
LII = 3 173 {2 cos ¢ cos 7 - sin ¢ sin 5 + sin(¢-6) sin E—J
4(1-v°) (27r) .

. -Eb

- s I (Al11)
L1t cos 3 ,

2(14v) (2mr)L/?

Now that the L's are known, we have determined the effect of .the
dislocation on the stress intensity factors KJ (A4) and, further, we can

substitute into (A7) to determine the image force. Since each of the

-1/2

L's is proportional to r , (A7) is of the form

w2 [QLAM >]
P '

oa T

1-v 2 2 1 2
where Q(6,9) g~ T +Lly+3= L0 - (A12)
But by using the relations
2, 3 _stn® 3 3, gy &_ _ sin(6-8) 3
@ %% " w9 37 r 20

between partial derivatives, one may readily derive the identify

s

_ 2 [g(e,cb)] - i_'[sin(d:-e) Q(e.‘¢)]

9p r 3a sin ¢ T



This lets us integrate (Al2) immediately. We must, however, append a

'constant' of integration, which may depend onp (=r siﬂ 8/sin ¢), and
which assures that g =+ o as a+?z This means that g>o0as r>e, 6 >0 |
in such a way that r sin 6 remains finite. Integfation.of (A12) subject

to this condition gives the image force
sin(¢-6) Q(6,4) - sin ¢ Q(o,¢)

r sin 6 ’

g = (a13)
wvhere Q is defined from (A10,11) via (Al2).

In the text of the paper we were concetned_with the case a=o, so

that 6=¢ and r=p. In that case

2 52
g = - o) o _ F Pe - _Eb% (A14)
p 8ﬂ(1-v2)p 8t (1+v)p °?

where the latter form comes from identifying Q(o,¢), which is found to
be independent of ¢. Remarkably, ﬁhis is the same image force as for

a dislocation line at distance p along its slip plane from the boundary
of a half-space. 1In fact, the result for this latter case is also
obtainable from (Al3) by letting the crack tip pass far beyond the site
of the dislocation, a~« ., This means that we let 6-r1 , r>e while
keeping r sin 6 finite (it equals p sin ¢). By direct evaluation one
finds that Q(w,9) = o, so that the image force from the half-space

boundary is also given by (Al4).
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FIGURE CAPTIONS

Figure 1. An atomically_sharp crack is blunted when a dislocation is
emitted from the tip when the Burgers vector has a normal component to
the fracture plane.

Figure 2. Geometry of the dislocation, crack configuration in two
dimensions. be and bs are perpendicular and parallel components of the
Burgers vector relative to the crack.

Figure 3. The function £ = ~AE + B/\/E-plotted to show its broad
maximum. |

Figure 4. Schematic representations of saddle point dislocation
configurations. At distances greater from the crack than Ec’ the
curvature is positiye. while at less than Ec’ the curvature is negative.
The dislocation aiways has normal incidence at the surface because of
the preponderance of the image term near the surface. a) Ec is small.
and the region of negative curvature is negligible. b) Intermediate €c.
¢) Large Ec.

Figure 5. Configuration for calculating the work done under the crack
stress by the expanding dislocation. The work integration has the lower
limit shown when r=£°.

Figure 6. Schematic va;iation of the three terms in Eq. (17) as a
function of the radius.

Figure 7. Dependence of activation energy for dislocation nucleation on
S&y/ub) and Roézgo); exact definitions of S and Ro’ and normalization of
energy, are given in text.

Figure 8, Configuration of crack and dislocation for computation of the

image force.
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