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ABSTRACT

The~description of the -flow of two-phase fluids is important in many engineering
_devices. Unexpected transient conditions which occur in these devices cannot, in general, be
treated with single-component momentum equations. Instead, the use of momentum
equations for each phase is necessary in order to describe the varied transient situations
which can occur. These transient conditions can include phases moving in the opposite
directions, such as steam moving upward and liquid moving downward, as well as phases
moving in the same direction. The derivation of continuity and momentum equations for
each phase and dn.overall energy equation.for the mixture are presented. Terms describing
- interphase forces are described. A seriated (series of) continuum is distinguished from an
interpenetrating medium by the representation of interphase friction with velocity
differences in the former and velocity gradients in the latter. The seriated continuum also’
considers imbedded stationary solid surfaces such as occur in nuclear reactor cores. These
stationary surfaces are taken into account with source terms. Sufficient constitutive
equations are presented to form a complete set of equations. Methods are presented to show
that all these coefficients are determinable from -microscopic .models and well known
experimental results. Comparison of the present derivation with previous work is also given.
The equatidns derived here may also-be employed in certain multiphase, multicomponent
flow applications.
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GOVERNING EQUATIONS-FOR A SERIATED CONTINUUM:
AN UNEQUAL VELOCITY MODEL FOR TWO-PHASE FLOW

I. INTRODUCTION

Theoretical investigation of the continuum mechanics of mixtures of fluids, both -
reacting and nonreacting, has been of interest for some time. In these investigations, mass;
momentum, and energy field balance equatiorié and constitutive equations are written for
each of the constituents of the mixture. Several approaches have been taken depending on
the primary interest of each researcher.

Basic differences exist between a seriated continuum and an interpenetrating
continuum. A two-phase mixture is an example of a seriated continuum, whereas a mixture
of gases is an example of an interpenetrating continuum. Due to the definition of a seriated
continuum, all interpenetrating continuums are seriated continuums but not conversely.
Therefore, the basic equations of change are to be expected to contain more terms for a
seriated continuum than for an interpenetrating continuum.

Comprehensive, formal mathematical theories of interpenetrating mixtures have been
given by Truesdell and Toupin (1960), Truesdell and Noll (1965), Kelly (1964), Green and
Naghdi (1965, 1967, 1971), Eringen and Ingram (1965), Ingram and Eringen (1967), and
Bowen (1967). Differences have been evidenced in the results among the workers in' this
area due in part to the originality and difficulty of the subject matter. Truesdell (1969) has
summarized existing mixture continuum theories and indicated that the results of Miiller
(1967, 1968) and Dunwoody and Miiller (1968) are rigorously consistent with classical
continuum mechanics theory. These generalized continuum mechanics studies are, for the
most part, formal mathematical investigations that often result in equations with
undetermined coefficients. In particular, the constitutive equations associated with these
theories are quite complex and numerical values of most of the coefficients are not
available. Application of the results of these theories is limited to special cases such as the
mixture of linearly viscous, incompressible fluids considered by Craine (1971).

Parts of the results of the above mentioned studies have been employed in the more
practical areas of engineering fluid flow such as solid-fluid suspensions; combustion;
dispersed single-component, two-phase flow; chemically reacting gas flows; the flow of
blood in circulatory systems; fluidization; and petroleum industry processes. Many of these
areas have been discussed in the books by Soo (1967) and Wallis (1969).

A large number of derivations of the balance equations are available for multiphase,
multicomponent systems for engineering applications. The fact that each researcher is
primarily interested in a particular system or flow regime has led to conflicts and




differences in the resulting equations. A few derivations in the primary area of interest are
listed here: Murray (1965), fluidized beds; Panton (1968), gas-particle mixtures; Anderson
and Jackson (1967), fluidized beds; Kalinin (1970), liquid-phase dispersed, two-phase,
single-component flows with interphase mass transfer; Bouré et al (1971) and Delhaye
(1969), gasliquid flows; and Mecredy and Hamilton (1972), who have adapted gas-solid
equations given by Soo (1967) to investigate the isentropic sound speed of liquid-vapor
(single-component) mixtures.

In the work reported herein, the simultaneous flow of the liquid and vapor phases of a
single-component fluid is considered. In addition, the phase change processes of evaporation
of the liquid phase and condensation of the vapor phase are considered. These flows present
an extfemely complex situation for analytical and experimental study due to the presence
of both phases of the fluid, the phase change processes that occur, and the phase
distribution patterns that arise. The existence of continuous and discrete regions-of liquid
and vapor phases is important in both theoretical and experimental studies of these flows. In
particular, the use of pseudothermophysical coefficients (for example, component coeffi-
cients weighted by the void fraction) in existing classical constitutive equations cannot be
considered valid for. ahalysis of these flows. Instead, rigorous theoretical analyses of
two-phase, single-component flows should be conducted by solving the Navier-Stokes
equations (if each phase obeys a linear stress-rate-of-strain relation) for each continuous
vapor and liquid region in the flow field and coupling these with the associated interphase
mass, momentum, and energy transfer conditions. The difficulties associated with forced
convection evaporation and condensation analyses have led to most of the knowledge of
these flows having been gained through experimental data. Little of these data have been
analyzed with the use of differential models that apply to each phase. Instead, in many
cases, correlations and concepts are extrapolated from single-phase flow analyses and are
employed in attempts to correlate the two-phase flow data. Although some success has been
attained by this method, correlation of two-phase flow phenomena, in general,A has been less
accurate and dependable than correlation of single-phase turbulent flow phenomena. For
example, the pressure gradient in two-phase, single-component flow is of great practical
importance and, consequently, has been one of the most studied areas associated with these
flows. However, continuous evaluation of experimental data and comparisons of correlation
predictions with these data have shown that prediction methods of the two-phase pressure
gradient have yet to be formulated in a general manner. Brodkey (1967) has discussed
two-phase pressure gradient correlations and their associated accuracies.

- Some theoretical analyses are available for special flow regimes (that is, for phase
distribution patterns) of steady state flow evaporation and condensation. The liquid (or
vapor) dispersed regime and the annular flow regime have been studied more than others
primarily due to their relative simplicity and similarity to other engineering flow situations.
During transients that may be associated with two-phase flow equipment, several flow
regimes may be encountered and, thus, if transient momentum equations are to be written
and solved,.to allow for the occurrence of all flow regimes seems best.




This report is concerned with momentum equations and mechanical constitutive
equations that are required to describe transient, two-phase, single-component evaporating
and cbndensing flows. Momentum field balance equations are derived for each phase on the
basis of a seriated-continuum approach. The present formulation introduces those concepts
required to extend generalized continuum analyses and formulations to a system of
equations that can be used to calculate the velocity of each phase and the pressure gradient
for two-phase, single-component flows. In Section II, the limitin/g process used to define the
model of the two-phase media being considered is described. The resulting definition is
applied in Sections III and IV to obtain continuity and momentum equations. The energy
equation for the mixture is derived in Section V in terms of component velocities. The
remaining equations which are required to close the set of equations, such as the equations
of state, are described in Section VI. The correlations and analyses required to represent the
. mechanical constitutive equations are discussed in Section VII.




1I..LIMITING PROCESS WHICH DEFINES ‘A -SERTATED CONTINUUM

‘Severdl methods have been employed to obtain field balance -equations for flowing
mixtures. Generalized continuum studies have for the meost part employed a general
property balance integral equation written for each .constituent-of the mixture along with
discontinuity conditions for the constituent interfaces. Time-and-area-averaging techniques
‘have been employed in several derivations -associated with engineering applications. For
example, Panton (1968) employed area averages of time-averaged flow field properties,
Delhaye (1969) used space-averaging, time-averaging, and space-and-time-averaging proce-
dures, and Birkhoff (1964) has indicated that the use of averages with mixture balance
-equations must be corrected for the effect of using the product of the averages of factors
instead of the average of a product of factors. Statistical methods have been employed by
Tam (1969), Buyevich et al (1969), and Buyevich (1971) in derivations of multiphase flow
equations.

Two different Eulerian methods may be used to.obtain the space-averaged, two-phase
equations. The first method involves the derivation of balances on a control velume of finite
size iin analogy to the method:employed:in Bird, Stewart,.and Lightfoot.(1960). The second
method begins with the well known single-phase balance equations. These equations are
then integrated over a control volume. The resulting integrals are approximated in terms :of
averaged properties. This method is illustrated by Panton (1968) and Anderson and Jackson
(1967). Both methods should yield equivalent -equations. Although only the first method is
presented in this derivation, the authors and their associates have.used the second method to
provide -a -check on this derivation. The first method is better for determining explicit forms
for constitutive relations. It also .indicates the spacial resolution which can be:.expected from
the results of such an equation set. The second method is better for determining the
assumptions required in deriving averaged quantities.

Figure 1 shows a portion of a vapordiquid mixture with three possible control
volumes superimposed. The limitations associated with the control volume-limiting process
procedure can be illustrated by éonsidering the density of the liquid phase as determined by
‘the control volume. The partial densities of the liquid and vapor phases could but will not
be defined as

"L _ 4. —- 2 -
p” = 1lim 1)
AV->0
.and
o8 = 1im p 8 )
AV->0
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Fig. 1 A two-phase mixture with superimposed control volumes.

where 5% = (mass of liquid in the volume)/(total volume)
and p & = (mass of vapor in the volume)/(total volume).

These definitions are unsatisfactory for the following reasons. A hypothetical distribution of
p % for different size control volumes is shown in Figure 2 where p o 18 the thermodynamic
density of the liquid. If the control volume AV3 had been located in a region occupied
entirely by vapor, thé value of b& would have been zero rather than p o- Thus, this definition
of the partial density of the liquid may exhibit a discontinuous distributiori: Thesame
discontinuity occurs in the mechanics of a single-phase continuum. The mass-to-volume
ratio at a point in a single-phase continuum "would differ considerably depending upon
whether the point in question was located in a molecule (which would yield a large
mass-to-volume ratio) or in the space between ('which would yield a zero ratio). The
difficulty could be further compounded by considering the spaces within the molecule. This
difficulty in continuum mechanics is resolved by defining the density as
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Fig. 2 Variation of liquid mass:to-volume ratio in different size volumes.

where € is a small volume size. This volume size ‘must be small relative to the perturbaﬁons
.of interest in the.continuum but large enough to contain a sufficient number of molecules
so that p is a continuous function. Thus, this definition of density further implies a
definition of a continuum. A

In a similar manner, a seriated continuum is definéd by property definitions such as
the partial densities of the liquid and the gas phases. These quantities are defined as

pg' = A.l.im E 2 ,
AV-€ ' (3)
s ‘
: AV—EES
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where €g is a volume size which is small relative to the pefturbations of interest in the
seriated continuum but is large enough to contain a sufficient number of bubbles or droplets
or both so that pz and 'pg are continuous functions. A seriated continuum consists of a
series of phases of components which may exhibit definite interfaces. Various portions of
one phase or component may be separated, as bubbles are separated from one another in a
two-phase mixture. However, the definitions of p’L and p& imply that each phase or
component is continuous. At the same time, the rather large size of € allows each phase to
be considered discrete when the constitutive equations are derived.

* The assumptions involved in deriving equations for a seriated continuum are observed
to be more severe than the assumptions required in continuum theory because e;>>e. The
volume € is on the order of a mean free path, whereas the volume € is on the order of the
size of a bubble. Solutions obtained from seriated-continuum theory do not yield
information concerning local fluid and flow conditions. For example, seriated-continuum
theory cannot describe the flow or density field around a bubble.

The curve in Figure 3 represents the computational results obtained from seriated-
continuum solutions. If the density is evaluated at a point in a droplet, the value of pQ' will
be obtained instead of the thermodynamic density p,.-A similar statement can be made
about all of the other properties of the flow field. The numerical solutions of the
seriated-continuum equations will involve finite difference techniques. The increments may
in some cases be smaller than the size of a bubble or droplet. A stable convergent numerical
scheme will yield the value of pf' as a solution no matter how small the increment size. In
some instances, results may have to be calculated for. increment sizes smaller than a bubble
or droplet in order to obtain an accurate solution from the finite difference scheme.

Although the value of €g is on the order of the size of bubbles and droplets, other
considerations can determine its minimum value. For example, if a two-phase flow in a pipe
is to be considered as a one-dimensional problem, €5 would be on the order of the
cross-sectional area of the pipe times the average distance between bubbles.

In the following derivations, the smoothed functions, as shown in Figure 3, will be
used. The quantities pg‘ and p8 are defined in a manner equivalent to Equations (3) and (4)
as

L _ - % ’
“p~ = lims o} )
AV-0
pg = lims p_ & (6)
AV~>0




!

Liquid Mass-to-Volume Ratio, p*

k-
~

Avé‘ av, av,.

Control Volume Size, AV. ANC~A.-4467

Fig. 3 Idealized limiting process for a.seriated continuum.

where the Ah\r,n_)so operator indicates the limit of the smoothed function. This procedure is

required to use the definition of a derivative in the derivation of the balance equations. For

0pov®
example, the law of the mean guarantees that a value of X exists between x and x + Ax
ox
such: that
ap“v“
ao _ % - p.S Ax
P X + Ax P X _ Ax ax- 3
X > X. )
wh‘erex-% f_EiX'*'% .
After the term on the right side is divided by Ax, the operator AII;:S may be used to obtain
o o, a o
% Vx _ lims % x| . 7
39X T Ax»>0 - 3x £
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The use of the smoothed functions alleviates the difficulty of attempting to define the

e lim
derivative in terms of the operator AVoeg

1. GEOMETRY OF BOUNDING SURFACES

The geometries which are of interest in this deveiopment range from the one-
dimensional representation of flow through a constant area pipe to the three-dimensional
flow of a fluid in a nuclear reactor core. The reactor core of a present day pressurized water
reactor generally consists of a vertical right cylinder 12 feet in diameter. The core region is
filled with evenly spaced fuel rods which supply heat to the fluid. The fuel rods-are vertical
and, in general, about 14 feet long, about 0.422 inch in diameter, and number about
30,000.

The minimum size of the control volume, €g, for a nuclear reactor core includes
several fuel rods within its boundaries. The volume of the control volume includes the
volume of the fuel rods and the volume encompassed by the fluid. The total volume of the
control volume can be written Vp =V + Vg + Vg where Vg, Vg, and VS are the volumes

“occupied by the liquid, gas, and solid phases, respectively. The volume fractions must sum
to uriity so that

a2+ag+as=l ' ' (8)

where
ot = the ratio of the volume of the liquid phase to the total volume
o = the ratio of the volume of the gas phase to the total volume
as = the ratio of the volume of the solid phase to the total volume.

If the quality 6 is defined as 1 - o3, that is, the ratio of the fluid volume to the total volume,
Equation (8) can be written:

a‘+a'=1 )




where now

the ratio of the volume of the liquid phase to the fluid volume = o%/6

1]

ol

ag the ratio of the volume of the gas phase to the fluid volume = a.8/6.

The equations which will be developed will yield values of properties of the fluid at all
points even at points within the fuel rods. The fuel rods are essentially treated in the
equations as generation terms of friction and energy. The property values of points within
the fuel rods are meaningless. The velocity valucs calculated are absolute velocities and,
therefore, are not reduced by the ratio of the volume of the fuel rods to the total volume.
The flow rate w2 past a plane would be calculated by w2 = p@v3A where A is the average
area available for flow. The average flow area is.assumed to be constant in a given direction
with distance, time, and direction. This assumption implies that any obstructions in the flow
must be uniform and evenly spaced. Coupling or boundary conditions can be used to éouple
two different regions with different density of obstructions. Consideration of a vatiable
obstruction density in space, time, and direction is beyond the scope -of this report.

2. LOCAL DISTRIBUTION CORRECTIONS FOR PRODUCTS

A question as to whether the limit of the product is equal to the product of the limit
of the factors remains with regard to the use of the smoothed limit operator. That is, does

Llim — _f(ium v \?
Ave Vx Yk T Me o %) 2 (10)

This question arises in the more elementary problem of single-phase flow through a pipe and
is not particular to two-phase flow problems. In general, Equation (10) is not an'equality. A
well known example for which Equation (10) is not true is in fully developed, steady state
flow of a Stokesian fluid in a pipe (parabolic velocity distribution). Since the limiting
process must include the entire area of the pipe for a one-dimensional representation,
Equation (10) does not hold for this situation. As far as the authors know, this question
cannot be resolved except by solving for these velocity distributions in detail (at a
tremendous increase in effort to solve this problem). One possibility, suggested by many
authors ‘(for example, Panton, 1968) is to use a factor to correct each of these products. For
example, a K could be defined such that '

= \2

lim - [ 1i 2

Moe Vi Vi = K( o x ) = Kv_ (11)
]

10




This definition suffers from K being dependent on the profile, for example:

j:k v -v>dA
c X X

(J;C vdi )2

where AC is the croSs;sgctional aréa and Vg is the local velocity. Evaluation of K requires as
much information as a more complete solution does. It is a function of position, time, and
direction but is often approximated from assumed profiles or steady state data (Hancox and
Nicoll, 1972). A more detailed solution is beyond the intent of this discussion. Analysis for
a nuclear reactor with approximately 30,000 flow channels which may have dissimilar flow
. patterns and heat addition would be beyond the scope of present day computers. In this
discussion, the authors have choosen to assume that Equation (10) is an equality. Anytime a
product appears in the equations derived, the reader may wish to append constant K factors
to attempt to account for this effect. Due consideration of an anisotropic nmiedium would.
have to be given if K were assumed to depend on direction.

K=

11



* * III. DERIVATION OF THE MASS BALANCE EQUATIONS.

The continuity equation, or mass balance equation, for each phase of the two-phase,
single-component mixture.is obtained as follows. The center of a control volume of volume
AV containing both phases is considered to be situated at location«(x, y, z) in a rectangular
Cartesian coordinate system. The lengths of the sides of the volume in the x, y, and z
directions are Ax, Ay, and Az, respectively. The phase change processes of evaporation and
condensation may be occurring due to both energy transfer and pressure changes in the flow
field. The mass balance equations are obtained by equating the accumulation and net
transport into the volume of each phase to the generation or growth of mass of each phase.
This balance can be expressed as
;_'{Rate of Accumul-ation} {Rate of Influx } { Rate of Efflux}

- . o+

of Phase 'a' of Phase 'a' of Phase 'a'
‘Rat:e of Generation } - (12)

1 -of Phase 'a'

The rate of accumulation of phase “a’is represented by

a
{‘{;f —a-thi dxdydz ‘ (13)

where ® is the ratio of uﬁobstructed volume to the total volume in the control volume and
is referred to as the volume porosity. The mean value theorem of integral calculus may be
used to represent this integral as

i E%’L dxdydz = %l AxAyAz
AV -

14
£ (14)
where £, re‘presents the coordinates of a point in the volume AV.
The efflux minus the influx of mass in the x direction is given by
{ a a a a ! :
pv¢| -pv¢|. AyAz
( x X +AA_}2{':Y,Z x X - -A%:y:z (15)

‘where ® is also assumed to be the ratio of the area of the fluid in the x direction to the total
area in the x direction.

The porous-media literature, for example, Scheidegger (1957), defines a velocity
which is based on the total area rather than the unobstructed flow area. The velocity used

here is based on the latter. The two velocities are related by
a . a

v =v. ¢

Xp X

12




where v)%p is the velocity used in the porous-media literature. Either of these velocities may
be used to determine the total flow rate past a plane:

-

W T 0V Ap = 0TVL0 Ay

where A is the unobstructed total flow area. Although the velocity vf(‘p does not represent
an absolute velocity, no difficulty arises in the porous-media literature because momentum
effects are usually neglected. Momentum effects are included in this report and,
consequently, use of the velocity v)? is more meaningful here. This velocity represents the
absolute velocity when the value of ® represents the ratio of unobstructed area to the total
.area in all directions. If this ratio is direction dependent, v'g‘( is an approximation to the
absolute velocity. The assumption is made in this report that ® may be considered to be
inde‘pendent of direction. .

The quantity p%i‘b < + Az,s_ vz is an appropriately averaged quantity of the area

AyAz centered at the location x +%,y,z. The law of the mean fnay be applied to Equation
(15) to obtain ' |
aa )
p v ¢ .
—x I AxAyAz . (16)
ax £
2 . ’
where &, represents the coordinates of a point in AV. The efflux minus the influx in the y
and z directions can be represented similarly as :

202y 302 '
(—#'l t | ) bxbybz - an

Fluid mass is not generated within the control volume; however, mass is exchanged
bétween phases. This mass exchange occurs across interfaces within the control volume as,
for example, across the surface of droplets or bubbles. Mass appears to be generated or
consumed with respect to each phase even though the total mass remains constant. The total
mass exchange of phase ‘a’ is represented by

%a¢dxdyd z
AV

where m? represents the mass generation of phase ‘a’ per unit volume. The mean value
theorem of integral calculus may be used to show that

/]-]:I.la¢dxdydz = I;lad) g AXAYAZ d (18)
AV =

13




The Expressions (14) and (16) through (18) may be substituted into Expression (12), the
resulting expression divided by AxAyAz, and the operator X{I,LSO applied to the equation to
obtain the mass balance equation for phase ‘a’:

a
é-%ti + (pav?iq)) i = tﬁa¢ .
(19)

In Equation (19), the superscript ‘a’ refers to the liquid or the gas phase. Cartesian
tensor notation is used. The subscript refers to any one of the coordinate directions x, y, or
z; the comma indicates differentiation; and repeated subscripts imply summation over the

three coordinate directions.

Since mass.is not being generated but only exchanged between phases, the total mass
must be conserved. That is, 4

(20)

Equations (19) and (20) are three independent relations that contain 4 + 2n unknown
dependent quantities where n is the number of dimensions. Equation (19) may be summed
over the phases and combined with Equation (20) to obtain the expression

¢ : _
vyl (pvi(b) i 0 1)

where the density of the mixture, p, is defined as

= a

p = I P ,
a=L,g (22)

and the baricentric velocity v; of the mixture is defined as

_ a_ a .
p,vi_ Z p Vv, .

a=t,g (23)

Equation (21) is not an.iﬁdependent relation because it is the sum of Equations (19) and
(20).
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IV. DERIVATION OF THE MOMENTUM BALANCE EQUATIONS

Momentum balancc equations are derived in this section for each phase of a
liquid-vapor mixture of a single-component fluid. The areas wherein the occurrence of phase
change processes enter in the terms appearing in the balance equations are indicated. The
mechanical constitutive equations accounting for the stresses acting on each phase are also
given. These expressions are given as tensor quantities in Cartesian coordinates. The forms

for other coordinates can be obtained by suitable transformations. In Section IV-1, a general

balance expregsion is statcd and the accumulation and transport of momentum terms are
given. In Section IV-2,' the momentum growth term is discussed. In Section IV-3, the
shearing forces acting on each phase are formulated and the pressure, transient flow forces,
and body forces are discussed in Sections IV-4, IV-5, and IV-6, respectively. The final form
of the momentum equation is given in Section IV-7.

1. TRANSPORT OF MOMENTUM

In this derivation, the hypothesis is adopted that each phase may be considered as
continuous for some purposes but may be considered as discrete for other purposes. This
hypothesis is analogous to continuum theory in which the basic equations of change are
derived from continuum considerations, but constitutive equations for transport properties
may be derived from discrete considerations. This hypothesis has been employed in all
derivations of engineering two-phase flow equations, either explicitly or implicitly. To a
large extent, phase distribution patterns (flow regimes) in boiling and condensing flow fields
are physically characterized by one phase being continuous and the other phase being
discrete.

For the system under consideration, the momentum balance in a given direction for
phase ‘a’ may be written as '
[Rate of Accumulation of] FRate of Momentum | [Rate of Momentum ]

+ -
)

| Momentum of Phase 'a' {Ef flux of Phase 'a'] Influx of Phase 'a

+ [ Forces Acting on
| Phase 'a'

[Rate of Momentum ] rSum of the Shearing]
\

| Growth of Phase 'a

-

(1)

[Sum of the Pressure]
+ | Forces Acting on
| Phase 'a'

+ | Forces Acting o
|

[Transient Flow ]
n

| Phase ‘a
[Sum of the Body Forces

+ | on Phase 'a' Due to .
| Field Sources
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The momentum equation for a phase is derived for the x direction. Cartesian tensor
notation is used to generalize to equations to account for the y and z directions.

The rate of accumulation of momentum of phase ‘a’ in the x direction is given by

9dp av}a{ ddp avi
-/][ ot dxdydz = YR I AxAyAz (22)
AV E;I

where £ represents the coordinate of an appropriate point within the control volumc AV.

The momentum which is being convected in and out of the sides of the volume normal to
thee x. direction is CDpav)%" The net flux of momentum may be expressed as

36p aa a 39p aaa
——ul AxAyAz. —=7 I ' AxAyAz
X £ ay E
2 3
(23)
aaa
B¢p vxvz;} _
+ — | AxAyAz
0z £
.4.

where £, £3, and £, represent the coordinates of three points within the control volume
AV. The next term considered in Equation (21) is the contribution of the mass exchange
processes to the momentum balance of each phase.

2. MOMENTUM GROWTH

The phase change processes of evaporation of the liquid phase and condensation of
the vapor phase can occur due to energy transfer from stationary surfaces within or
bounding the flow field, energy transfer between the phases, and the existence of a pressure
change. The effect of these mass exchange processes on the momentum of a phase is
represented by the first term on the right side of Equation (21). These processes occur at
the interfaces between the phases within the control volume. In general, the interface moves
with its own intrinsic velocity '\}? and not with the velocity of either phase.

For unequal phase temperature fluids, condensation and evaporation can occur due to
several processes. The fluid considered in this report is an equal temperature fluid and,
consequently, the only mass exchange process considered is the thermal equilibrium process.
The net mass exchange rate m? may be calculated from thermodynamic considerations. The
individual contributions of evaporation and condensation from kinetic theory are

. considered equal in this réport. Since the mass exchange rate for an equal temperature fluid

is a single process, only one velocity may be used to represent the velocity of mass
generation of phase ‘a’.
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The momentum growth in the control volume may be expressed as

jZf‘b n® Vi dxd}.'dz-e= ¢t;1avi| AxAyAz
’ 3 (24)
AV ' 5

where £ represents the coordinates of a point within AV. The intrinsic velocity Cffis another
unknown for each phase. It should be related to the velocity v?and other quantities. Some
controversy exists In the literature as to whether these relations should both be constitutive
equations or whether one should be replaced with a momentum balance The latter view is
accepted in this report for the followmg reason.

A particle of mass m is assumed to leave phase ‘a’ and enter phase ‘b’. This particle
does not change its center of mass when changing phase. On a continuum basis, no time or
force is required to change phase. Change of phase of a mass simply means that a different
equation is used to account for the momentum of that mass. The momentum of the mass
must be conserved in the phase transition. That is,

m Va = mv
i i
or
PPz q -
TV F Yy 25)

which states that the intrinsic velocities are equal. This relation would conflict with the
assumption of setting the intrinsic velocity of a phase equal to the velocity of the phase.
That is, the relations

v, o=V ' - (26)
cannot be valid except in the simplified case in which the velocities of both phases are
always equal. Thus, Equation (26) is dismissed as belng, in general, physically impossible for
a senated continum.

An additional equation is necessary to relate v to other variables. This relatlon is a

constitutive equation Wthh can depend on the ﬂow regime and is represented by the
following:

~

a _ g 2 .
v =il vy 27N
where
g refers to the gas phase

2 refers to the liquid phase.-
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Other variables might be included in the argument list of Equation (27) for some flow
regimes. Some possibilities for the function ‘A’i are given in but not restricted to the
following:

(1) The first possibility is
v, =V
where m2 <0. This relation implies that the intrinsic velocity is equal to the velocity of the
phase that is losing mass.

(2) The second possibility is

i i 29)
where ‘a’ is the dispersed phase. This model may be derived by considering the flow from a

droplet uniform in all directions. The vapor leaves the surface with a velocity relative to the
surfacc of ‘

where v, is the velocity normal to the surface. The average value of this velocity in any
direction is zero. Therefore, the vapor leaves the droplet at the velocity of the droplet.

(3) The third possibility is
2

v =g v8
v, = Bvl+ 1 -8 A (30)

where § is a weighting factor (0 <8 <1). This relation implies that a continuous velocity
distribution exists between the gas and liquid phases. When f is between zero and unity, the
interface velocity is bounded by these two velocities.

A brief literature review is included in the following to summarize what other authors
have used. Panton (1968) who analyzes a gas-particle mixture assumes that the velocity of
the dispersed phase, Equation (29), should always be used. Green and Naghdi (1969) and
Craine, Gréen, and Naghdi (1970) analyze a multicomponent mixture and hypothesize that
Qiais a mean velocity which will depend on the velocities of the remaining components. The
simplest expression which satisfies this hypothesis for a two-phase mixture is

~a b .

Vi T Vy T (31)
This expression would conflict with Equation (25) except when the velocities are equal.
Naghdi, in a private communication, indicated that vﬁ‘ should also be included. This
modification would be consistent with Equation (30). Miiller (1968) indicates that the
momentum growth consists of two parts: (1) thermomechanical interactions and (2) phase
changes (chemical production). The latter portion is equivalent to the momentum growth
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considered in this section. He states that \7*1‘ is the velocity of the newly created mass. The
first part is presumably related to diffusive forces which are considered nonexistent in a
two-phase mixture. Marble (1969) states that as a result of condensation or vaporization at
~ the droplet surface, mass is transferred between the velocities of the bulk liquid and bulk
vapor. This velocity is consistent with Equation (30). The particular problem he considers is
liquid droplets dispersed in a steam environment. He states that with the assumption of no
shear induced circulatory motion, the mass exchanged at the interface has the velomty of
the iquid phase. This velocity is consistent with Equation (29).

Mecredy and - Hamilton (1972) subdivide the mass exchange process into an
evaporation rate I'g and a condensation rate I' .. These rates are related to the mass exchange
in the present work by the relation

m=T_ =T = | - (32)

Expressions from kinetic theory are used to cc')mpute T, and I‘C; The momentum growth of
the gas phase is defined by Mecredy and Hamilton as

L g
I‘e vy I‘cvi (33)
where £ and g refer to the liquid and gas.phases, respectively. These expressions were not
used in the present work because they predict that h = O for equal phase temperatures. This
model for m precludes a net evaporation or condensation during a pressure change and
appears to be physically unrealistic for the present work. -

The conclusion which might be drawn from the literature is that no agreement exists
as to what this term should be; however, we believe that the conclusion which should be
drawn is that no universal method exists for computing the intrinsic velocity Gi' The method
of calculation will depend upon the particular physical situation or flow regime.
Consequently, the intrinsic velocity calculation should be done ‘with a correlation which is
dependent upon the two-phase flow regime. As noted by Panton (1968) for the case in
which averages are used to eliminate solving for three-dimensional velocity distributions
around single particles, an- assumption or model, regarding the distribution of the mass
exchange process around a droplet or bubble, is required. For example, if evaporation is
occurring uniformly around a droplet, no net effect should be produced on the momentum
of the droplet. If condensation is occurring on one half of the droplet and evaporation on
the other half, an effect would be produced. However, with only averaged information
available, directional effects associated with the mass exchange processes cannot be
accounted for unless these effects are included through correlations for C'i'
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3. SHEARING FORCES ACTING ON.PHASE A

The shearing forces considered in this section are due entirely to.velocity gradients.

- The .continuum mechanics ‘literature usually includes the pressure forces and shear forces

due to velocity gradients in a single term herein called the total shear stress (for-example,
Craine et al, 1970). .The forces due to pressure are considered in Section IV-4..The shearing

-forces are considered to be made up of three components which are -given in the following

equation:

Sum of the Shearing [Sum of the Shearing Forces
Forces Acting on = Exerted on Phase 'a' by
Phase 'a' | Stationary Surfaces Inside

|

|.the Control Volume

_ [ sum of the Shearing Forces (34)
S~ Exerted on Phase 'a' by the;

. Other ‘Species Inside the
‘L Control Volume

[Sum of the Shearing Forces
"|'Exerted by Phase 'a' Outside
the Control Volume.on the .
Qutside Surfaces-of the
LControl Volume

‘These three components of the shearing forces may be visualized by considering the model

shown .in Figure 4. This figure illustrates a typical control volume which contains a

two-phase fluid as well as some stationary surfaces such as fuel rods. The two-phase fluid is
assumed to be made up of a continuous phase and a discrete phase. Due to the limiting
process used to define a seriated continuum, stationary surfaces must be included as well as
both -phases in the control volume. The shear forces on the continuous phase are seen to be
due -to (a) velocity gradients at the interfaces between the stationary surface and the
continuous phase, (b) velocity gradients at the interfaces between the continuous phase and
the discrete phase, and (c) velocity gradients in the continuous phase on the surface of the
control volume.

The same forces can be applied to the discrete phase. Stationary surface friction can.
be exerted on the bubbles or droplets on the walls. Interphase friction is exerted by the
continuous phase on the discrete phase, and intraphase friction is exerted on the droplets or
bubbles imbedded in the surface of the control volume. Thus, Equation (33) is valid for
both the continuous phase and the discrete phase. The assumption which is inferred for the
discrete phase is that the forces which are applied to the discrete particles are effectively
applied to the discrete phase as an aggregate. In this sense, the discrete phase is treated as a
continuum.
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Fig. 4 Shearing force model. -

Some two-phase flow regimes are not characterized by a continuous phase and a
discrete phase. For example, annular flow is two continuous phases, one inside the other.
Equation (34) is also valid for this and other flow regimes. The phenomena-based origin of
these forces is discussed more fully in the following sections.

3.1 Shearing Forces Due to Stationary Surfaces and Other Species

The shearing forces due to other species and stationary surfaces both result in forces
which appear to be field forces similar to gravitational forces. The shearing force exerted by
the wall on the fluid is looked at first by considering laminar or turbulent flow of a
single-phase fluid between parallel plates. The velocity profile for this situation is sketched
in Figure 5. The shear stress between the fluid and the wall is directly related to the velocity
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Fig. 5 Velocity profile between parallel plates.

gradient at the wall for both laminar and turbulent flow. The model being developed is
based on the assumption that many surfaces exist within the control volume but that only
average velocities will be obtained as solutions. Thus, the velocity gradient at the wall is
available from the solution. This gradient is approximated by the difference between the
average velocity of the fluid and the velocity of the wall (which is.zero) multiplied by some
suitable coefficient. This force acts in the opposite direction of the velocity. This model is
considerably different for shear than the usual viscous shear model. In this model, a velocity
profile may be spatially invariant yet signiﬁcant shear may occur. Viscous shear, on the
other hand, would be zero in the instance for which the true velocity gradient is zero. For
the physical situation for which flow is present in the axial direction of a single-phase fluid
in a constant area flow section (invariant with axial direction), this type of shearing force
can be associated with pressure drops calculated by the use of Fanning friction factors. This
concept may also be extended to flow in the direction of a repeated geometry such as in the
case of flow normal to tube banks.

The presence of a second phase can change this shear force on the fluid by distorting
the velocity gradient on the wall. A bubble attached to the wall or mass exchange for a
_ bubble will distort the velocity gradient in the region near the bubble. This effect may be
accounted for by adjustment of the coefficient of the shear term.

The second shear force in a mixture consisting of two fluids exists because the second

phase may be moving at a different speed and direction than the first. This shearing force is

related to velocity gradients along the interfaces between the two phases. This force is

‘ represented as the difference between the average velocities of both phases in the control

volume multiplied by a suitable coefficient. This effect may be related to the measurement
of drag forces on various georrietric shapes with and without boundary layer injection.

An approximate analytical expression for these shear forces can be obtained by

- considering the surfaces (both stationary and phase interface surfaces) within the control .
volume. The total force within the control volume may be expressed as
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a a
F,=121 [ . dA
i a is
s A (35)
where
‘oig = the shearing force per unit surface area in the jth direction exerted on
phase ‘a’ by the surface ‘s’
A% = the area of surface s’ exposed to phase ‘a’

and ‘g indicates summation over all the surfaces in the control volume. This expression may
be written in terms of average shear forces:

a _ .a a
UF . A 39
where 1 i '
o ool @
A A s
For convenience, Equation (36) may be written in the form
Aa
a_. a _S_ 37
Fi =% 04 v, bAXAYAZ ( _)
where
AV = ®AxAyAz and is the total voiume of the fluid in the control volume.
Finally, this expression is further modified to introduce the area per unit volume Vo
' f
Fi = 3 ois A"’S‘ oAxAyAZ
) (38)
where N A2
‘ a : s
A = lims —_
s a0 AVg
f
and
a
c,a -1 c,a As .
is ~ = is A_Vf
R _
S



. This is the form of the shear stress, 1%’ for which an approximate analytical expression will
be obtained. Both transient and steady state effects contribute to this stress. Only the
portion of this stress which is related to friction factor forces will be considered in this
section. The remainder of this stress is due to transient effects.and curved streamlines which

are considered in Section IV-5.

Note should be taken that the area per unit volume A_gis related simply to the inverse
of the hydraulic diameter. In the instance of steady state fully developed flow between
parallel plates, as shown in Figure 6, the area per unit volume for the upper plate is

—_— 1
A, 0 =1lim = [ o-dA
1 AV-0 AV
or, since ¢ is a constant,
L.oum A ow 1
AV->0 AV abL L

| ____.|

NN

ANC-A-4465

= L e ol

Fig. 6 Parallel plate geometry.

Physically, the limiting process may not be.carried out for volumes which do not
include both plates. Conceptually, however, this process offers no difficulty and the limiting
process may be performed. Note should be taken that the total area per unit volume for the
parallel plates will be the same as if each were considered separately and then both summed.
That is, ‘

Ap=lim MR ocawm A am A -E4E
AV-+0 AV AV+0 AV~ AV>0 AV
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The shearing force per unit area between two fluids or a fluid and a surface is assumed
to be linearly related to the velocity gradient:

Bva '
a _ _ B ' 39)
% = Xy 3 \

where n is the normal to the surface, K; is an appropriate coefficient, and v? is the local
velocity profile near the interface or surface. Since the local profile will not be calculated,
the following approximation is made for the derivative

a ]
a

~ kK Vi~V (40
s lezigi (40)

where 2 is a characteristic length which depends on the physical configuration, v? is the

velocity of phase ‘a’, vis is the velocity of the other phase or the surface, and K, is a

: : a_ s

vé-v

coefficient which attempts to account for the difference between %v—and L
r

. Substitution

of this expression into Equation (26) yields

_— K.K
a 1 172 (.a s a
g ~ f (v,i -v ) dAS

is A2 A2 L i
s s :
a . _KK a _ s o 41
ols 172 (vi vi)| (41)
L &g :

where ¢ represents the coordinate of an appropriate point on the surface ‘s’. The desired

shear stress of; is obtained from the expression

a = - a a s . (42)
I B (Vi - vi)|
F"S
where ' a
a _ K]_K2 A
B
s 7
2 AS AVf‘

. a a s
F, =~ B A (v -v ) dAXAYAZ .
s : s i (43)

In extracting the quantity Bg from experimental data, what to assign to Ag and what to

assign to Bg is somewhat flexible. In many cases, for convenience, an expression is assigned

to the product Ag Bg.
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Tensor considerations do not allow Bg to be a function of the velocity componént vf-
vis. If this coefficient were allowed to be a function of this velocity component, the resultant
force would depend upon the orientation of the coordinate system. Bg. can be a function of

Vi -vg) (- )

‘which is a scalar and hence acceptable.

For solid 'surfaces, the coefficient B‘; is related to friction factors reported for
single-phase, single-component flows. HoWever, as previously noted, these coefficients may
require modification to account for the effects of the presence of two phases on the velocity
gradient at the surface. The coefficient Bg and the area per unit volume are discussed in
Section VII.

These forces can, for a two-component fluid, be segregated into a sum of force terms
which represent the stationary surfaces (v? = 0) and forces which represent the other phase
(vis = VB. Thus, the expression which represents the first two terms on the right-hand side of
Equation (33) is

a _ a a_a — [ a b , ,
Fi = [ )é BS As vy Bab Aab (vi_ vi)] $AxAyAz 44)

where Bg Ag v? are the appropriate coefficients for the stationary surfaces, and BabA_;ab are

. the appropriate coefficients for the interphase forces.

3.2 Intraphase Shearing Forces

The third shearing force which is due to the same species acting on the surface of the
control volume is related to velocity gradients in the fluid at these surfaces. These velocity
gradients will be approximated by gradients in the average fluid velocity. Thus, although
changes exist in the velocity gradients along these surfaces due to the presence of another
phase at the surface, the assumption is made that these forces are included in the shearing
force term due to other species. The shearing forces on the surface of the control volume
can be visualized by considering a single-phase fluid moving in a tube bundle as is shown in

'Figure 7. This figure illustrates the top view and two cross sections of a fluid moving in the

axial direction in a control volume in a fuel rod bundle. This figure shows that although the
shearing forces of the friction factor type account for the shearing forces on the rods, the
possibility of shear forces between the fluid in the various channels still exists. These forces
can be represented in the usual manner. The shear stresses in the x direction are shown in
Figure 8 in two dimensions for component ‘a’.

The force on the control volume is seen to b‘e

a

Fi = (¢aacj 1) .y Mxdybz 45)
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"Fig. 7 Mustration of the Intraphase Shear Term.
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Fig. 8 Intraphase shear diagram.

Since this force should be zero if all parts of the fluid are moving at the same velocity,
the stresses aﬁ are related to velocity gradients rather than to velocities. The assumption is
that '

oa.=Fa<va , vo ) . (46)

PR V., .
1,] Js1

That is, the stresses are related to the velocity gradients of a given component. If aje_} is
assumed to be a linear symmetric tensor, the stress may be written as

a . af a 1 a ' o .a a

Oy = "2 (eij 3 fkk aij) Mo frk Sy (47)

where

2 1 (va‘ + v )
i3 2 \'4,] 3,1

7} is the kinematic viscosity

and

#3 is the bulk viscosity.

The viscosity coefficients should be considered as dependent on position if turbulent
components are to be part of the viscous stresses. :

“Thus, the total force due to shear is

a - 3 a ) a

Fi T %i walls + Fi phase b + Fi,'\riscous
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or

a_ |_ 2 ‘ ‘ a _ 4 a __b
Fi B [ chs Bs (es’ ea) Vi ¢Aab Bab (Vi vi)

| - 48)
+ (¢aaoji') ’j] AxAyAz  «

The coefficient Bg 6, 6,) is.assumed to be a function of the angle of approach of the
- fluid, 6, to the angle of the solid surface, 0.

4. PRESSURE FORCES ACTING ON PHASE A

The pressure forces acting on phase ‘a’ are considered to be made up of

"Sum of the Pressure [Sum of the Pressure Forces
' Forces Acting on = Exerted on Phase 'a' by
' Phase 'a' Stationary Surfaces Inside|

| the Control Volume

[Sum of the Pressure Forces
Exerted on Phase 'a' by 49)
the Other Species Inside the
 Control Volume

[Sum of the Pressure Forces

‘ | Exerted by Phase 'a' Outside
+ the Control Volume on the

' Outside Surfaces of the

_Control Volume

Expressions for these forces are obtained in the following manner. A control volume
with a discrete or continuous phase ‘b’ inside a continuous phase ‘a’, as shown in Figure 9, is
considered.

Discrete or Continuous Phase “b"

Continuous Phase 'a'

ANC-A-447)

Fig. 9 Pressure force model.
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The pressure forces exerted by phase ‘b’ on phase ‘a’ in the x direction are
gf Ps ndi

where the E indicates a summation over all the internal surfaces, Py is the pressure on the

surface, and ny is the unit normal to the surface. Two forces are generated internal to the

control volume from this expression for both the stationary surfaces and other species. One

is due to both phases being assumed continuous. The second is due to phases being
considered discrete.

These forces may be derived by considering a somewhat simpler picture than that

presented. The model in Figure 10 is considered. Since the volume fraction is treated as a
continuous quantity, the continuous analogy of this model might be interpreted as shown in

) 00()

X > ANC-A-4472

_ Fig. 10 Pressure forccs duc to continuous and discrete contributions.

- .
X ANC-A-4473

Fig. 11 Continuous portion of the discrete phase distribution.

The force in the x direction due to the pressure distribution is

x+Ax
) P n dA.
X s X
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The value of n dA is

n dA = lim A% - A*
X x + Ax X
Ax->0
therefore
x+Ax x+Ax. AR, _ A'Q
S PndA =7 P lim x
8 X X (] x+Ax
.4 . AX‘*O —_— dx
‘ ) Ax
© o oxHAx L h x+AX L,
=r p BA 4= s p ¢ Lyax
s 09X s ox
X
so that
- x+Ax 2 .
| = %a ¢ , .
| /., PndA=P_ S | ¢axAyAz (50)

This force is due to a pressure distribution within a volume which has a.change in the
volume fraction. Another pressure force is the form loss force. The existence of this force
can be observed in the case for which no change occurs in the volume fraction. A force
would still be-exerted on the bubbles or droplets and fuel rods by the other phase aslong as
the velocities of the two phases are different. Such forces are well known and have been
studied in such cases as flow around a sphere. These forces exist even when the fluid is
inviscid. These pressure distribution forces are expressed in the same manner as the
interphase .drag. That is,

Fi = 4[' Z Ci A—:Vi " Cab ; (Vi - v?)] bhxhyhz (51)
where
C: is the appropriate coefficient for the stationary surfaces
and
C,p is the appropriate coefficient for the interphase forces.
In certain flow regimes such as smooth annular flow, this force may be zero. This coefficient

may depend upon pressure dropbecause this force should be zero when no pressure gradient
is present. The transient contributions from these forces will be discussed in Section IV-5.
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The pressure forces exerted on the liquid on the surface is given by

3F? = 2| + F2
F px+£\—x- px-A—x
2 2
where
F_| = -a%p| ¢AyAz
e bx
X 2 x + 2 y,2
F_| =°‘aP| dAyAz o
px—Al x - & z
2 2’ y’

The factor a? is used to account for only a portion of the surface of the unit volume
exposing the liquid to the pressure P. [Bouré et al (1971) have discussed using different
pressures for each phase.] The quantity a? is defined as the a? = volume of the component
‘a’/total volume. Thus, on a surface, this quantity is the area of component ‘a’ divided by
the total area. The resulting expression is given as o

L Fo = - [¢a’p| - ¢a’p| AyAz

P Ax Ax

x + _z,y’z ) X = _2’}'92
(52)

a 3¢0°P
pFE = -2 B ayaz

P ax £

7

where ‘;’7 represents the coordinates of a point in AV. Thus, the total force due to shear is

‘a a —_ .

a - Sa ¢y _3¢a By ea,a A a _ b .

¥, P T I 3% | ¢C_ A vy = ¢C_ AL .(vi vi) AxAyhz
%6 & (53)

5. TRANSIENT FLOW FORCE

The forces acting on phase ‘a’ as discussed in Sections IV-3 and IV-4 were limited to
the steady state shear and pressure forces, respectively. However, the shear forces of
Equation (35) and the pressure forces of Equation (49) are averages over the interfaces in
the flow field and, therefore, may contain time dependent quantities. Of course, even in
transient one-dimensional, single-phase flow, common practice is to employ a steady state
friction factor correlation evaluated at the local instantaneous channel average velocity.
Slattery (1972, pp 182-183) has compared the exact and the area-averaged, one-dimensional
solutions for the .case of a single-phase fluid starting from rest in a circular conduit of
constant cross section. For this case, the approximate solution overpredicts the flow
through the conduit.
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The flow situation that is usually used to illustrate the effect of transient pressure and
velocity distributions is the Basset-Boussinesq-Oseen solution for unsteady Stokes’ motion
of a single solid spherical particle in an incompressible constant property fluid at rest
(Tchen, 1947). The equation of motion, for the particle starting from rest, is given by

dv dv
3 " Py Tt 2 (3 “a> Pegr O™V,
(54)
v

\1/2 2 (¢t 1 4
'6(“°f“f)/ 2" )y T T dT+3 ma’ (pf_ p) &

where

a = radius of spherical particle

Vp = velocity of particle

PpsPf = density of particle, density of fluid
TS viscosity of fluid.

The terms on the right-hand side of Equation (54) are as follows. (a) The first term
represents the added mass due to the difference between the transient and steady state
pressure distribution around the particle; (b) the second term represents the steady state
Stokes’ drag due to shear and pressure, evaluated at the instantaneous particle velocity Vp;
(c) the third term represents the Basset force (Tchen, 1947) which accounts for the
transient viscous drag; and (d) the fourth term represents the gravitational force on the
particle. Thus, for this flow situation, the transient pressure and velocity distribution effects
are additive to the complete steady state effects evaluated at the instantaneous transient
velocity.

Figures 12 and 13 are presented to show the relative importance of the transient force
terms in the slow flow regime. Solutions of Equation (54) are presented in these figures as a
solid line for a steam bubble rising in water. The effect of pressure is manifested in Equation
(59 oxily in terms of density ratio. The effect of the transient flow forces was determined

by re-solving Equation (54) with the Basset term neglected and then with both the Basset
and added mass term neglected. The results are presented as the ratio of the instantaneous
velocity V to the terminal velocity V., as a function of a dimensionless time. The effects of
these terms are observed to be significant in this situation. The effects of these terms would
be much less for a droplet in a vapor and may be less in high speed ﬂow
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The most restrictive assumption associated with Equation (54) is the slow flow
assumption. However, the equation is employed in various forms in the inertial, or high
speed, flow regime essentially by mere extrapolation. Thus, as shown by Tchen (1947) for
the case of a single particle, Equation (54) can be written

dav_ - dv

3. _p _ _ 3 _p _ ' 2
4/3 ma pp T CAM(Re’Ac) P 4/3 ma It CDA(Re,Ac)I/prna Vp
dv 1 4T
1/2 2 e ¢p  ———
- C (Re,A ) (pgu) 2 2 f .
+ 4/3 na3 PP | g
£p
where
N 2Vpap'f
Re = particle Reynolds number =
L
Cy2
A, = particle acceleration number=— P
2ade
: dt
Cam(Re,A) = added mass force coefficient
CD A(Re,Ac) 'A = velocity drag force coefficient
CgRe,A)) = - Basset force coefficient

and the assumption that Vp and thp do not change sign has been employed . For the case of

an ensemble of particles, Equation (55) is further extrapolated by assuming that the
coefficients Cppp, Cpa, and Cg are functions of the volume fractions of the phases.
Application of various forms of Equation (55) to momentum balance equations for
two-phase flow has been discussed by Murray (1965), Anderson and Jackson (1967),
Buyevich (1971), and Mecredy and Hamilton (1972). Forms of Equation (55) have been
compared with_experimental data. by Odar and Hamilton (1964), Odar (1968a, 1968b),
Tunstall and Houghton (1968), Torobin and Gauvin. (1959) and Clift and Gauvin (1971).
The results of these studies indicate that the extrapolations of Equation (54) have not yet
been justified and that the coefficients C AM: CDA» and Cg have not been determined for
general conditions. :

Both the added mass and Basset force effects relative to the Stokes’ drag are functions

of the particle-fluid density ratio. For the case of liquid-vapor flow of a single-component
fluid, the density ratio will depend on the flow regime. That is, the particles will be
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analogous to bubbles in one flow regime and to liquid droplets in another. Thus, in order to
be general enough so that the possibility that a significant flow force is not omitted, some
form of the added mass and Basset forces needs to be included in the momentum balance
equations. However, in addition to the extrapolations and assumptions noted, additional
assumptions are required with regard to (a) the form of the relative acceleration required
due to the fact that both phases may be accelerating, (b) inclusion of the Basset force effect
into the coefficients C AM and CD A in order to lessen numerical solution problems
associated with evaluation of the integral of the Basset force, and (c) the equation of motion
obtained for the one-dimensional flow case being considered to be a single component”
composed of vector forces. Further, additional analyses are required to apply the preceding
solutions to fluid particles (Levich, 1962).

Adoption of the assumptions and extrapolations noted enables additive transient force
effects to be included for both the phase-to-phase and phase-to-stationary-surfaces forces. In
analogue with the pressure and shear force per unit volume derivations, the transient forces
are given by '

. a . b
v v,
P - & ¢ ( i .4 ) dAXAYAZ (56)
AMi ab AMab ot . At
for the interphase transient forces and by
a
7 - -13 & vy AxAyA
AM LAs Can \7¢ ¢hxhydz (57)
w1l S

for the phase-to-stationary-surface forces. An explicit representation of the Basset force is
omitted. Other forms of the relative acceleration are possible and, indeed, the version given
in Equation (56) is not invariant.

The example discussed is a highly idealized representation of a two-phése flow. In
addition to the factors already discussed, several other differences between the example and
reality exist. Among these differences for the phase interface are (a) nonspherical particle
shapes, (b) compressibility of the particles and continuous fluid, (c) rotation of the
particles, (d) phase changes at the liquid-vapor interfaces, and (e) acceleration of both the
particle and the fluid. Nonetheless, forces due to transient effects do exist and must be
accounted for in analyses. In general, these forces are due to the presence of curved
streamlines in the flow field. All flow regimes of interest in two-phase flow will have.
-associated with them curved streamlines. In some of these regimes, such as annular wavy
flow, the transient effects may be small. ‘ '
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.6.: BODY:FORCES

The only field force source of interest here is that dueA to gravity. The force on phase
‘a™is given'by ‘

fff¢pa_gidxdydz = (¢pagi>| AxAyAz (58)
AV . €8

where £g represents.the coordinates of a point in AV, and g; is the component of the gravity
field.

7. FINAL FORM OF THE MOMENTUM BALANCE EQUATION

‘The -expressions for the components of the momentum equatibn Equations (22),
(23), (24), (48), (53), and (58), may be substituted into Equation (21), the-resulting
-expression :divided by AxAyAz, and the operator AIK%O applied to the equation’ to obtam the
momentum-equation for phase

=8¢p v -
i a a a _ ,ca’a
Y + .(q;p V.V >,.j = ¢m vi

) 59
a ~d —a a - a b
T e Py ¢§ Cs 8571 ~ *Caphap ( Vi)'
_ av: av: o A v
LR T "5 ) T LA O\ t oo
ab s s
here 2 a ;'rb = :r
w VitV Yy
and o0& is approximated by Equation (47).

n
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Additional interphase force terms can be included in this equation in a manner similar to the
method used to include the second phase. For the two phases considered here, all interphase
forces are assumed equal. That is,

abBab = A'baBba

AabCab = A'bacba

A .C = C .

ab AMab » AtLba AM.ba

The assumption also made is that P = P because the pressures of both phases are assumed
equal. Note should be taken that this momentum equation does not include diffusive forces.
If multiple species are to be considered, this force should be added. Truesdell (1962) points
out that the normal equations which are used to account for diffusion are actually
approximations to momentum equations for each species for which momentum terms are
neglected. Diffusive forces are beyond the scope of this present work.

- The mixture momentum equation may be obtained by summation of the component
momentum equations to obtain

ddpv ' _
1 +<¢z pavévé> )

ot g, L3 1) 2:8

& indicates summation over the components.

Note should be taken that the momentum flux terms do not yiéld a term which can be
written completely in terms of the average velocity. The momentum flux may be written in

terms of the average velocity and a velocity difference uj=v; - v?. Solution for v?yields

so that
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a
=2pv

a a a a aaa
jvi' Ip vjui Ip uj Vi + Ip ujui
therefore
Zavava= v,V ___‘Zauaa
because

a a a aa
Ip vjui—vj <Zp vi—Zp vi> =0

Several authors, for example Green and Naghdi (1969), prefer to write the momentum flux
in terms of PViVi and include the Epauj%?as part of the total shear stress tensor.
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V . DERIVATION OF THE ENERGY EQUATION

The overall energy balance for the two-phase seriated continuum is derived in this
section. Whereds a continuity and a momentum are required for each phase, only one overall
energy equation is necessary because the phase temperatures are assumed equal.

The first law of thermodynamics states that

- - fRate of Heat
{Rate of Change } = ({Added to the - { Rate of Work } (61)
of Energy System Done by the System .

This equation applies to a constant mass (Lagrangian) system.

For the Eulerian system under consideration, this equation may be written as

{Rate of Accumulation} + Rate of Energy} ; Rate of Energy)
of Total Energy Efflux Influx
Rate of Heat - (Rate of Heat Rate of Heat
= ¢ Influx through - {4 Efflux through + Generated in the
the Walls the Walls Control Volume
62
Rate of Work (62)
_ }Done by the .
System on the
Surroundings -

Expressions for these terms are derived in the following sections.

1. TRANSPORT OF ENERGY

The total energy E2 of phase ‘a’ is defined as the sum of the internal energy U2 plus
the kinetic energy,lz- vi\/?. This total energy is expressed as

a_'a_,1l aa
E =0 <+ 2 vivi
The rate of accumulation of energy in a control volume is given by

3 BpByot ’L) 3 ( Ep8+ ’LE")
fff 'a—% (p E°+p E dXdde = 5% P P | AXAYAZ (63)
AV £ }
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where £; is anr appropriate point.in the control volume. The energy which is being convected
through each side of the control volume is (D(ngg + szl). The net flux (efflux minus

influx) of energy may be expressed as,

2 ’:¢ (nggvg + p‘&E'Q'v'Q' ):I | AxAyhz
X X £
2

9x
W 9.0 8 ~ 64
+ 5o ¢(ng8vg +p"EY ) | AxBylz (64)
¥y | y Y/
- "3
+ 3—3- ¢(ngng + szvaz) | AxAydz o
z z z £ :
. g,

2. ADDITION OF HEAT TO THE SYSTEM

The heat flux in the direction “i” due to phase ‘a’ will be denoted by qi‘ The net
influx. minus:efflux of heat through the.walls is given by V
3 g 2) __9 /.8 231
l o 4%t % | l'g. 3y [4" (q,y ¥ qy--)] Ig
5 6
- (65)

R I

The conduction. term will be considered to be the major portion of q?. A representative form

&7

for this term is

a_ _ _a.’,
q:L aKTs,i

where k2 is the thermal conductivity of phase ‘a’ and T is the temperature.

The volumetric heat generation rate may be expressed as

fA.(,f o(eB+a")  axdyaz = ¢ (a%a") | e S

41



The quantity q2 is considered to be made up of two components: (1) heat transfer from the
stationary surfaces within the control volume, qgonv’ and (2) heat generation from volume
sources such as gamma heating, ¢, and thermal radiation, qf. The term qgonv is related to

\
the heat transfer per unit wall area, st, by the relation

a _ a
Yeony AV = Ay Q
or
a —a .a
Qeonv ~ Aw W

(67)

3. RATE OF WORK DONE BY THE SYSTEM

The possible contributions to the work terms are:

(1) Shearing forces due to stationary surfaces

(2) Intraphase shearing forces

(3) Pressure forces

(4) Body forces.

The remaining two forces described in Section IV do not contribute to the work terms. The
first of these, the shearing forces between phases, does work on each phase but produces no
work on the surroundings. The second of these, the transient flow forces, results from

accelerative effects and is, thus, not actually a force term.

3.1 Work Due to Stationary Surface Shearing Forces

The work due to shearing forces from stationary surfaces can be obtained from
multiplying the surface shear force in Equation (35) by the velocity of the surface to obtain

wf‘=zfa o
A
S

a _s
isV4 dA =0 - (68)

Since this velocity is zero, this work term is zero. This expression is equivalent to
multiplying the stationary shear force term in Equation (44) by vis.
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3.2 Work Due to Intraphase Shearing Forces

The work done on the surface of the control volume by both phases is obtained by
multiplying: the forces shown in Figure 8 by the appropriate velocities and then summing
over the x, v, and z directions as well as over both phases. The total work due to these
forces is given by

a_aa :
W —g,},:g <¢a ojivi),j |l:9 AxAyAz (69)

3.3 Work Due to Pressure Forces

" The work due to pressure forces will be calculated as the negative of the work done by
the surroundings on the system. .

The pressure forces are exerted by phase ‘a’ on the control volume on the faces in the
direction of an inward normal. These forces in the x direction are

a ‘a
F A = P Ax AyAz
x = %,Y,Z ¢ a |X T THYs2 Y
and
F? | Ax = - a P| AyAz
X + —z"’y’:ZT 29}7: Y .

‘These forces are exerted with the velocity of phase ‘a’. Thus, the work terms for both phases

and on all sides of the control volume may be written as

[¢P (otgvg + agvl>-]| - — [ch(agvg + q v2>]~|:.
Soox o ellEy y e

0
(70)

—%—z- [¢ < gg+c:.v9')]i[E AxAyAz
, . 12
Th.e work done by the system on the surroundings is the negative of thisexp’;ession.

3.4 Work Dueto Body Forces

The work due to body forces will be derived as the work done by the system on the
surrounding forcc field. Only body forces will be considered. The force exerted on phase ‘a

by the body force field is
fff dp agi dxdydz
AV
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where g; is the gravitational constant in the x; direction. The force exerted by the fluid
opposing this force is the negative of this expression. This force is being moved with the
velocity of phase ‘a’. Consequently, the work term associated with body forces on both
phases is :

g 8 g 8 g g
- + +
[¢( gzvx P gyvy P gzvz'

(71)
L L L L S .
+ 0 ngx + 9 gy vy +p gzvz)] |€13 AxAyAz o

4. RESULTANT ENERGY EQUATION

The resultant energy equation is obtained by substituting Expressions (63) to (66) and
(68) to (71) into Equation (62), dividing by AxAyAz, and then applying Al\l}fg to obtain

899E+ aaa _ a a
5t ® Iy PEVY ¢ glg @ kT sy

aa a
+ ¢q+(¢ z§g°‘°j1"1)’i
(72)

g8
("’P 23g © "i)’i

a a
+
$ I P 8y

where
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VI . ADDITIONAL RELATIONS REQUIRED TO COMPLETE THE EQUATION SET

Thus far, 5 equations and 12 unknowns have been introduced. The equations are mass
balance equations for each phase, momentum equations for each phase, and the energy
equation. The unknowns are '

p*  pB

Py Py

4V2 Vg

a* a8 ’
vt Ut

P

and ™=mé=-m".

"The seven-additional relations which are needed to complete the equation set are given
Ain the following:

1) Relation between the partial densities and the thermodynamic densities:

8

¢
a

Pg
ot = dbp,.

(2) Equations-of-state for the thermodynamic densities along the phase boundary
[steam-water properties are given in Meyer et al (1967)] :

Pg po(P)

Py P, (P).

(3) Equations-of-state for the thermodynamic energies along the phase boundary

[Meyer et-al (1967)]:
Ut = UkP)
v = vl
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(4) Summation of the volume fractions:

a®+ad* = 1.

The equations-of-state are assumed known.
These equations form the closure of the equation set. The momentum equations

require empirical information for evaluation of some of the coefficients in the equation. The
following section indicates how and where estimates for these correlations may be obtained.
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~ VII..CORRELATIONS AND ANALYSES REQUIRED

TO COMPLETE THE MOMENTUM BALANCE EQUATIONS

The momentum balance for each phase as given by Equation (59) contains several
coefficients that must be estimated in order to obtain numerical results. These coefficients
represent the effects on each” phase of pressure and shear force distributions around the
discrete regions of each phase and around stationary surfaces within the flow field.
Analogous to transient, area-averaged, one-dimensional, single-phase flow, these coefficients
are in fact representations of local solutions of the appropriate form of the Navier-Stokes
equations for the geometry and flow conditions of interest. However, in most cases of
engineering interest, experimental data must be used because analytical solutions are
impractical. In the case of two-phase flow, even fewer analytical solutions are available, and
reliance on experimental data is much more necessary. Again analogous to single-phase flow,
the empirical correlations will be more reliable if simple physical models are employed as
obtained from analytical solutions of simpler problems. Table I gives a summary of the
requiréd coefficients. ‘

' TABLE I

COEFFICIENTS APPEARING IN MOMENTUM BALANCE EQUATIONS

Interphase Stationary Surfaces
Coefficients 'Coefficients
Shear Forces B : . Ba
ab. s
3 : ~a
Pressure Forces C C
, ab A s
Transient Effects CAM : C:M
of Shear and ab ’ s
Pressure Forces
- — _a
Area per Unit Aab As

Volume

Propér evaluation of these eight terms is iihportant if the balance equations are to
describe accurately two-phase flows with mass exchange processes. These coefficients are
discussed in this section with emphasis on the special requirements of two-phase flows. That
is, the phase distribution patterns that arise in two-phase flows are presented along with
methods of -describing the effects of these patterns on the momentum of each phase. A
heuristic discussion is presented here because a complete discussion of the determination of
these constitutive relations is beyond the scope of this report.
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The seriated (discrete-continuous) nature of two-phase, single-component flows has
been noted earlier. The results of various experimental studies have indicated that several
phase distribution patterns exist in these flows and, in fact, accurate determination of the
conditions for a particular pattern would lead to greater understanding of the basic nature
of two-phase flow. That is, if a given flow regime could be predicted to always be present
for a fixed flow field and boundary conditions, improved accuracy could be attained with
two-phase flow empirical correlations. One reason the ranges of conditions under which
these correlations are derived should always be adhered to, if accuracy is to be considered, is
that the phase distibution pattern has an effect on the quantities of interest, that is, on the
pressure gradient, heat transfer coefficients, and liquid-vapor velocities, among others.

The various phase distribution patterns depend on many flow field properties and
bounding surface thermal-hydraulic conditions. Brodkey (1967) and Hewitt and Hall-Taylor
(1970) have given discussions of the flow regimes for vertical and horizontal flow channels.
Figure 14 illustrates the possible flow regimes for the case of subcooled liquid entering the
bottom of a heated array of rods and changing phase to become superheated steam at the
exit of the array. The flow regimes are indicated for both a low and a high surface heat flux.
Clearly, all or only a few of the regimes may be present depending primarily on the extent
of net vapor phase generation possible for the flow into the channel and the heat flux at the
bounding surfaces. Further discussion of flow regimes can be found in the books of Brodkey
and Hewitt and Hall-Taylor.

An accounting of all occurrences in each flow regime is a complicated task. For
example, in the early stages of bubble or froth flow, as shown in Figure 14(a), vapor regions
are not distributed totally across the flow channel. Thus, if one-dimensional calculations are

“employed, an average vapor volume fraction across the whole channel would be required
which clearly involves an approximation. Additionally, in this flow regime as the flow
progresses up the channel, the vapor regions (bubbles) are of a wide range of sizes. In the
annular, or film, flow regime, vapor generation at the heated surface may be suppressed
under some conditions. The flow of the vapor phase past the liquid film surface will
generate surface waves that may grow into roll waves on the bounding surface. Breakup of
the tips of these waves adds liquid droplets to the vapor core, some of which may deposit on
the liquid surface. In the mist and liquid deficient regimes, the vapor forms the continuous
phase and discrete regions of liQuid droplets of various sizes exist across the flow channel.
As in the bubble regime, the discrete regions may not be distributed totally across the flow
channel and may not attain contact with the heated surface under some conditions. The
preceding is only a brief summary of a very large number of occurrences associated with
two-phase, single-component flows with phase change.

The problem then is to account for the physical situation shown in Figure 14 with the

coefficients of Table I. As a specific example, the force coefficients for interphase
momentum exchange B‘ab' and Cab are considered. For the case of a single solid particle at
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rest in an infinite flow field at steady state conditions, these coefficients are well defined.
These well known coefficients could be used as a first approximation for interphase
momentum transfer in the flow regimes that consist of a discrete phase contained in a
continuous phase. However, improvement of the description of this process can be obtained
by incorporating the following information into the coefficients.

Firstly, liquid and vapor, unlike solid particles, will undergo deformation in response
to the forces acting on them. The shape of the region determined by these forces in turn will
influence the forces accounted for by the coefficients B i and Cab' Secondly, the presence
of stationary surfaces, adjacent particles, and trailing and following particles is known to
also affect the forces acting on the particles. Lastly, the occurrence of mass exchange
processes at the liquid-vapor interfaces will affect the velocity gradient at surfaces and thus
affect the coefficients accounting for interphase forces. Boundary layer studies with blowing
or suction have included an analogous effect.

In the annular flow regime shown in Figure 14(a), the interphase momentum
exchange occurs at the vapor core-liquid film interface and between the liquid regions in the
vapor core and the vapor. The coefficients B ab and C,p in this regime must account for the
unique nature of the vapor flow past a wavy liquid surface. That is, as discussed by Cohen
and Hanratty (1968) and Hewitt and Hall-Taylor (1970), the velocity distribution in the
vapor does not correspond to that expected by analogy to roughened surfaces. In addition,
the nonrigid liquid surface and the breakup of the tips of the waves is expected to also
influence the velocity gradient at the interface. Again, as in the bubble flow regime, with
one-dimensional calculations, the vapor volume is not uniformly distributed across the flow
channel, and thus approximations will be associated with these calculations in this regime.

The surface areas per unit volume, A, S and A will also be required to account for
flow regime effects. For example, if no vapor covers part of a stationary surface, Ag is Zero;
and if the vapor is the only phase adjacent to the surfaces, Ag is the total area per unit
volume available. Since the interphase area is composed of phase regions of various sizes, an
average value will be determined or the effect of a distribution c of sizes may be included in
this term. Of course, if only one phase is present, the forms of A i and A must reflect this
fact also.

The preceding brief discussion evidences that ultimately, to employ the model
developed in this work, the conditions that determine which phase distribution pattern will
exist must be understood. Determination of the phase distribution pattern is clearly an area
that requires study and research of two-phase, single-component flows at a basic level.
Additionally, interpretation of experimental data with a model that accounts for the effects
of each phase will enable direct incorporation of experimental results into theoretical
models.
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" We have previously indicated that the interphase and phase-to-stationary-surface
coefficients of Table I can be estimated from existing data of single-phase and particle-fluid
flows. Modifications that account for the uniqueness of two-phase, single-corr{ponent flows
with phase change have been noted as being necessary. These modifications and other
additional information required for the coefficients can be obtained from both experimental
data and theoretical analyses. In particular, theoretical analyses need be conducted.-only on™
a simpler problem that simulates the required situation and the results formulated in terms ‘
of the information contained in the field balance equation in order to improve the balance
equations. : ‘ '
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VIII . CONCLUSIONS

A set of equations has been derived for an unequal phase velocity and equal phase
temperature seriated continuum. These equations have been reduced to a solvable form.
That is, a complete set of equations has been lformed, 12 equations and 12 unknowns, and
how the correlations needed in this model may be estimated has been discussed. One point
should be noted concemning the transient flow forces included in these equations. If these
terms are neglected, Jarvis (1965) points out that the equation set is elliptic in nature and is
not a properly posed initial value problem. Hence, the conclusion is that these terms are
important for a complete solution of these equations. ‘

We have noted in Section I that several methods have been used to derive momentum
balance equations for two-phase or multiphase, multicomponent flows. The wide range of
different flow situations of interest in the multiphase, multicomponent area has led to
several sets of momentum equations in the literature. In general, these equations have
resulted from different interpretations of the makeup of the flow field and the properties of
the field. We have assumed that the material within the flow field may be considered
continuous for some purposes and considered discrete for others. And whereas the primary
area of interest is the simultaneous flow of the vapor and liquid phases of a
single-component fluid, the resulting momentum balance, Equation (59), is applicable to
other multiphase flow situations.

The momentum balance of Equation (59) applies to each phase in the flow field and
also to each coordinate direction. The velocity employed in the derivation and resulting
equations is a time- and volume-averaged value of each coordinate direction component. The
constitutive relations accounting for the forces acting on each phase are also expressed as
vector quantities and, in addition, by virtue of the averaging process employed in the
derivation, the effect of stationary surfaces that bound the flow field is included in the
momentum balance -equation. The accuracy and completeness of the constitutive equations
necessary to account for the forces acting on each phase will ultimately determine the
accuracy of momentum balance equations of multiphase, multicomponent flows. In Section
VII, brief discussion was given indicating methods of dete'rmining the information required
to complete our forms of the constitutive equations for the case of flow of the liquid and
vapor phases of a single-component fluid with evaporation and condensation occurring.
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