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ABSTRACT 

The-'description of the ·flow of two-phase fluids is important in many engineering 
devices. Unexpected transient conditions which occur in these devices cannot, in general, be 
treated with single-component momentum equations. Instead, the use of momentum 
equations for each phase is necessary in order to describe the varied transient situations 
which can occur. These transient conditions can include phases moving in the opposite 
directions, such as steam moving upward and liquid moving do"'nward, as well as phases 
moving in the· same direction. The derivation of continuity and momentum equations for 
each phase and an.overall energy equation.for the mixture are presented. Terms describing 
interphase forces are pescribed. A seriated (series of) continuum is distinguished from an 
interpenetrating medium by the representation of interphase friction with velocity 
differences in the former and velocity .gradients in the latter. The seriated continuum also· 
considers imbedded stationary solid surfaces such as occur in nuclear reactor cores. These 
stationary surfaces are taken into account with source terms .. Sufficient constitutive 
.equations are presented to form a complete set of equations. Methods are presented to show 
that all these coefficients are determinable from microscopic .models and well known 
experimental results. Cot:nparison of the present derivation with previous work is also given. 

. . . 
The equations derived here may also be employed in certain multiphase, multicomponent 
flo.w ~p.pli~;;ations. 
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GOVERNING EQUATIONS-FOR A SERIATED CONTINUUM: 

AN UNEQUAL VELOCITY MODEL FOR TWO-PHASE FLOW 

I. INTRODUCTION 

Theoretical investigation of the continuum mechanics of mixtures of fluids, both 
reacting and nonreacting, has been of interest for some time. In these investigations, mass, 
momentum, and energy field balance equations and constitutive equations are written for 
each of the constituents of the mixture. Several approaches have been taken depending on 
the primary ipterest of each researcher. 

Basic differences exist between a seriated continuum and an interpenetrating 
continuum. A two-phase mixture is an example of a seriated continuum, whereas a mixture 
of gases is an example of an interpenetrating continuum. Due to the defmition of a seriated 
continuum, all interpenetrating continuums are seriated continuums but not conversely. 
Therefore, the basic equations of change are to be expected to contain more terms for a 
seriated continuum than for an interpenetrating continuum. 

Comprehensive, formal mathematical theories of interpenetrating mixtures have been 
given by Truesdell and Toupin (1960), Truesdell and Noll (1965), Kelly (1964), Green and 
Naghdi (1965, 1967, 1971 ), Eringen and Ingram (1965), Ingram and Eringen (1967), and 
Bowen ( 1967). Differences have been evidenced in the results among the workers in· this 
area du~ in part to the originality and difficulty of the subject matter. Truesdell (1969) has 
summarized existing mixture continuum theories and indicated that the results of MUller 
(1967, 1968) and Dunwoody and MUller (1968) are rigorously consistent with classical 
continuum mechanics theory. These generalized continuum mechanics studies are, for the 
most part, formal mathematical investigations that often result in equations with 
undetermined coefficients. In particular,. the constitutive equations associated with these 
theories are quite complex and numerical values of most of the coefficients are not 
available. Application of the results of these theories is limited to special cases such as the 
mixture of linearly viscous, incompressible fluids considered by Craine ( 1971 ). 

Parts of the results of the above mentioned studieshave been employed in the more 
practical areas of engineering fluid flow such as solid-fluid suspensions; combustion; 
dispersed single-component, two-phase flow; chemically reacting gas flows; the flow of 
blood in circulatory systems; tluidization; and petroleum industry processes. Many of these 
areas have been discussed in the books by Soo (1967) and Wallis (1969). 

A large number of derivations of the balance equations are available for multiphase, 
multicomponent systems for engineering applications. The fact that each researcher is 
primarily interested in a particular system or flow regime has led to conflicts and 
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differences in the resulting equations. A few derivations in the primary area of interest are 
listed here: Murray (1965), fluidized beds; Panton (1968), gas-particle mixtures; Anderson 
and Jackson (1967), fluidized beds; Kalinin (1970), liquid-phase dispersed, two-phase, 
single-component flows with interphase mass transfer; Boure et al (1971) and Delhaye 
(1969), gas-liquid flows: and Mecredy and Hamilton (1972), who have adapted gas-solid 
equations given by Soo (1967) to investigate the isentropic sound speed of liquid-vapor 
(single-component) mixtures. 

In the work reported herein, the simultaneous flow of the liquid and vapor phases of a 
single-component fluid is considered. In addition, the phase change processes of evaporation 
of the liquid phase and condensation of the vapor phase are considered. These flows present 
an extremely complex situation for analytical and experimental study due to the presence 
of both phases of the fluid, the· phase change processes that occur, and the phase 
distribution patterns that arise. The existence of continuous and discrete regions ·of liquid 
and vapor phases is important in both theoretical and experimental studies of these flows. In 
particular, the use of pseudothennophysical coefficients (for example, component coeffi­
cients weighted by the void fraction) in existing classical constitutive equations cannot be 
considered valid for, analysis of these flows. Instead, rigorous theoretical analyses of 
two-phase, single-component flows should be conducted by solving the Navier-Stokes 
equations (if each phase obeys a linear stress-rate-of-strain relation) for each continuous 
vapor and liquid region in the flow field and coupling these with the associated interphase 
mass, momentum, and energy transfer conditions. The difficulties associated with forced 
convection evaporation and condensation analyses have led to most of the knowledge of 
these flows having been gained through experimental data. Little of these data have been 
analyzed with the use of differential models that apply to each phase. Instead, in many 
cases, correlations and concepts are extrapolated from single-phase flow analyses and are 
employed in attempts to correlate the two-phase flow data. Although some success has been 
attained by this method, correlation of two-phase flow phenomena, in general, has been less 
accurate and dependable than correlation of single-phase turbulent flow phenomena. For 
example, the pressure gradient in two-phase, single-component flow is of great practical 
importance and, consequently, has been one of the most studied areas associated with these 
flows. However, continuous evaluation of experimental data and comparisons of correlation 
predictions with these data have shown that prediction methods of the two-phase pressure 
gradient have yet to be formulated in a general manner. Brodkey (1967) has discussed 
two-phase pressure gradient correlations and their associated accuracies. 

Some theoretical analyses are available for special flow regimes (that is, for phase 
distribution patterns) of steady state flow evaporation and condensation. The liquid (or 
vapor) dispersed regime and the annular flow regime have been studied more than others 
primarily due to their relative simplicity and similarity to other engineering flow situations. 
During transients that may be associated with tw<!-phase flow equipment, several flow 
regimes may b~ encountered and, thus, if transient momentum equations are to be written 
and solved,Jo allow for the occurrence of all flow regimes seems best. 
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This report is concern_ed with momentum equations and mechanical constitutive 
equations that are required to describe transient, two-phase, single-component evaporating 
and condensing flows. Momentum field balance equations are derived for each phase on the 
basis of a seriated-continuum approach. The present formu~at~on introduces those concepts 
required to extend generalized continuum analyses and formulations to a· system of 
equations that can be used to calculate the velocity of each phase and the pressure gradient 

f . 

for two-phase, single-component flows. In Section II, the limiting process used to define the 
model of the two-phase media being considered is described. The resulting definition is 
applied in Sections III and IV to obtain continuity and momentum equations. The energy 
equation for the mixture is derived in Section V in terms of component velocities. The 
remaining equations which are required to close the set of equations, such as the equations 
of state, are described in Section VI. The correlations and analyses required to represent the 
mechanical constitutive equations are disc.ussed in Section VII. 
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·II .. LIMITING PROCESS :wHICH -DEFINES :ASERIATED C0NTINUUM. 

'Several methods have been employed to obtain field balance equations for flowing 
mixtures. Generalized continuum studies have for the most part employed a general 
property balance integral equation written .for each .constituent,of the mixture -along with 
discontinuity conditio_ns for the constituent interfaces. Time-and-area-averaging techniques 
·have .been employed in several derivations ·associated with engineering applications. For 
example, Panton (1968) employed area av:erages of time~averaged .flow field properties, 
Delhaye ( 1969) used. space-averaging, time-averaging, and space-and-time-averaging proce­
dures, and Birkhoff (1964) has indicated that the use of averages with mixture balance 
equations must be corrected for the effect of using the. product of the averages of factors 
instead of the average of a product of .factors. Statistical methods have been empl~yed by 
Tam ( 1969), Buyevich et al ( 19.69), and Buyevich ·( 1971) in derivations of multiphase flow 
equations. 

Two different Eulerian methods may be used to.obtain the space-aver~ged, two~phase 
equations. The first method involves the derivation ofbalances on a control volume of finite 
'Size ;in. analqgy to the ·method:emplo;y..ed ;in~Bird, :Stew.ar.t,~andJ.:ightf0.0.t (.19.60). '.The.second 
method begins with the well known single-phase balance equ~tions. These equations are 
then integrated over a control v:olume. The resulting integrals are approximated .in terms :of 
averaged properties. This method is illustrated by Panton (1968) and Anderson and Jackson 
(1-967). Both methods should yield equivalent .equations. Although only the first method is 
presented in this derivation, the authors and their associates have used the· second method to 
'provide -a check on this derivation. The· first method is better for determining explicit forms 
for constitutive relations. It also .indicates the spacial resolution which can be:expected from 
the -results of such an equation set. The second method is better for .determining the 
.assumptions required in deriv:ing averaged quantities. 

Figure 1 shows a portion of a vapor-liquid mixture with three possible control 
volumes superimposed. The limitations associated with the control volume-limiting,process 
procedure can be illustrated by considering the density of the liquid phase .as determined by 
.the control volume. The partial densities of the liquid and vapor ph;~.ses could but will not 
be defined .as 

,and 

? - lim p R. 
t:.Y-+0 

4 

-g 
p 

(1) 

(2) 
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Fig. 1 A two-phase mixture with superimposed control volumes. 

where p ·£ = (mass of liquid in the volume)/(total volume) 

and p g = (mass of vapor in the volume)/(total volume). 

These definitions· are unsatisfactory for the following reasons. A hypothetical distribution of 
p 5I, {or different size control volumes is shown in Figure 2 where p 5I, is the thermodynamic 
density of the liquid. If the control volume 6. V 3 had been located in a region occupied 
entirely by vapor, the value of p'k- would have been zero rather than Pt· Thus, this definition 
of the partial density of the liquid may exhibit a discontinuous distribution; The sam·e 
discontinuity occurs in the mechanics of a single-phase continuum. The mass-to-volume 
ratio at a point in a single-phase continuum 'would differ considerably depending upon 
whether the point in question was located in a molecule (which would yield a large 
mass-to-volume ratio) or in the space between (which would yield a zero ratio). The 
difficulty could be further compounded by considering the spaces within the molecule. This 
difficulty in continuum mechimics is resolved by defining the density as 
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where E is a small volume size. This volume size ·must be small relative to the perturbations 
-of ..interest in the. continuum but large enough to .COJ;Itain a suffiCient number of molecMles 
so that p is a continuous function. Thus, this definition of density further implies a 
definition of a continuum. 

In a similar manner, a seriated continuum is defined by property definitions such as 
the partial densities of the liquid and the gas· phases. These quantiti~s are defined as 

R. lim -R. 
P. - p 

t:.V+€ (3) 
s 

·p~ -· lim ·. p g 

t:.V+t. (4) 
s 
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where fs is a volume size which is small relative to the perturbations of interest in the 
seriated continuum but is large enough to contain a sufficient number of bubbles or droplets 
or both so that pt and pg are continuous functions. A seriated continuum consists of a 
series of phases of components which may exhibit definite interfaces. Various portions of 
one phase or component may be separated, as bubbles are separated from one another in a 
two-phase mixture. However, the definitions· of p9v and p~ imply_ that each phase or 
component is continuous. ~f the same time, the rather large size of fs allows each phase to 
be considered discrete when the constitutive equations are derived. 

The assumptions involved in deriving equations for a seriated continuum are observed 
to be more severe than the assumptions required in continuum theory because Es>>E. The 
volume € is on the order of a mean free path, whereas the volume € 8 is on the order of the 
size of a bubble. Solutions obtained from seriated-continuum theory do t:J,Ot yield 
information concerning local fluid and flow conditions. For example, seriated-continuum 
theory cannot describe the flow or density field around a bubble. 

The curve in Figure 3 represents the computational results obtained from seriat.ed­
continuum solutions. If the density is evaluated at a point in a droplet, the value of p9v will 
be obtained instead of the thermodynamic density P9.,. ·A similar statement can be made 
about all of the other properties of the flow field. The numerical solutions of the 
seriated-continuum equations will involve fmite difference techniques. The increments may 
in some cases be smaller than the size of a bubble or droplet. A stable convergent numerical 
scheme will yield the value of p9v as a solution no matter how small the increment size. In 
some instances, results may have to be calculated for increment sizes smaller than a bubble 
or droplet in order to obtain an accurate solution from the finite difference scheme. 

Although the value of fs is on the order of the size of bubbles and droplets, other 
considerations can determine its minimum value. For example, if a two-phase flow in a pipe 
is to be considered as a one-dimensional problem, fs would be on the order of the 
cross-sectional area of the pipe times the average distance between bubbles. 

In the following derivations, the smoothed functions, as shown in Figure 3, will be 
used. The quantities p9v ~d pg are defined in a manner equivalent to Equations (3) and (4) 

as 

9., 
p - lims 

tN+O 

7 

-R, 
p 

-g 
p 

(5) 

(6) 
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where the l~:o operator indicates the limit of the smoothed function. This procedure is 

required to use the definition of a derivative in the derivation of the balance equations. For 
ap.a.va. 

example, the law of the mean guarantees that a value of x exists between x and x + b.x 

such\ that 

where x 
6x 6x 

~ f: ~X+ -2· 2. 

b,x 

2 

= 

ax 

a. a. a(i) v 
X 

ax· It: 

After the term on the right side is divided by b.x, the operator i~~ may be used to obtain 

" a. a.. op V 
X 

ax 
lims 

- 8x-+{) 

.8 

(7) 



The use of the smoothed functions alleviates the difficulty of attempting to define the 
derivative in terms of the operator AVlim . 

· u +es 

1. GEOMETRY OF BOUNDING SURF ACES 

The geometries which are of interest in this development range from the one­
dimensional representation of flow through ;t constant area pipe to the three-dimensional 

. ' 
flow of a fluid in a nuclear reactor core. The reactor core of a present day pressurized water 
reactor generally consists of a vertical right cylinder 12 feet in diameter. The core region is 
filled with evenly spaced fuel rods which supply heat. to the fluid. The fuel rods are vertical 
and, in general, about 14 feet long, about 0.422 inch in diameter, and number about 
30,000. 

The nummum size of the control volume, Es, for a nuclear reactor core includes 
several fuel rods within its boundaries. The volume of the control volume includes the . 
volume of the fuel rods and the volume encompassed by the· fluid. The total volume of the 
control volume can be written VT = V £ + Yg + Vs where V£, Yg, and Vs arethe volumes 
occupied by the liquid, gas, and solid phases, respectively. The volume fractions must sum 
to unity so that 

(8) 

where 

Cl£ - the ratio of the volume of the liquid phase to the total volume 

Clg - the ratio of the volume of the gas ·phase to the total volume 

as - the ratio of the volume of the solid phase to the total volume. 

If the quality (} is defined as 1 -as, that is, the ratio of the fluid volume to the total volume, 
Equation (8) can be written: 

1 (9) 
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where now 

the ratio of the volume of the liquid phase to the fluid volume = a;t /0 

the ratio of the volume of the gas phase to the fluid volume = a.g/0. 

The equations which will be developed will yield values of properties of the fluid at all 
points even. at points within the fuel rods. The fuel rods are essentially treated in the 
equations. as gen~ration terms of friction and energy. The property values of points within 
the fuel rods are meaningless. The velocity values .calculated are absolute velocities and,. 
therefore, are not reduced by the ratio of the volume of the fuel rods to the total volume. 
The flow rate wa past a plane would be calculated by wa = paya A where A is the average · 
area available for flow. The average flow area is assumed to be constant in a given direction 
with distance, time, and direction. This assumption implies that any obstructions in the flow 
must be uniform and evenly spaced. Coupling or boundary conditions can be used to couple 
two different regions with different density of obstructions. Consideration of a variable 
obstruction density in space, time, and direction is beyond the scope .of this report. 

2. LOCAL DISTRIBUTION CORRECTIONS FORPRODUCTS 

A question as to whether the limit of the product is equal to the product of the limit 
of the factors remains with regard to the use of the smoothed limit operator. That is,. does 

lim 
/::,V+t:. 

s 

- (lim v ·v = 
X X . /::,V+t:. (10) 

s 

This question arises in the more .elementary problem of single-phase flow through a pipe and 
is not particular to two-phase flow problems. In general, Equation (10) is not an equality. A 
well known example for which Equation (10) is not true is in fully developed, steady state 
flow of a Stokesian fluid fu a pipe (parabolic velocity distribution). Since the limiting 
process must include the entire area of the pipe for a one-dimensional representation, 
Equation (1 0) does not hold for this situation. As far as the authors know, this question 
cannot be resolved except by . solving for these velocity distributions in detail (at a 
tremendous increase in effort to solve this problem). One possibility, suggested by many 
authors ·(for example, Panton, 1968) is to use a factor to correct each of these products. For 
.example, a K could be defined such that 

lim . 
t:,V+t:. 

s 
v ·v 

X X 
= K liD 

(
1' 
t:,V+t:. 

s 

10 

Kv 
2 

X 
(11) 



This definition suffers from K being dependent on the profile, for example: 

where Ac is the cross-s~ctionai area and vx is the iocai velocity. Evaluation of K requires as 
much information as a more complete solution does. It is a function of position, time, and 
direction but is often approximated from assumed profiles or steady state data (Hancox and 
Nicoll, 1972). A more detailed solution is beyond the intent of this discussion. Analysis for 
a nuclear reactor with approximately 30,000 flow channels which may have dissimilar flow 

. patterns and heat addition would be beyond the scope of present day computers. In this 
discussion, the authors have choosen to assume that Equation (1 0) is an equality. Anytime a 
product appears in the equations derived, the reader may wish to append constant K factors 
to attempt to account for this effect. Due consideration of an anisotropic medium would. 
have to be given if K were assumed to depend on direction. 
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'" lll. DERIVATION OF ·THE MASS 'BALANCE EQUATIONS 

The continuity equat'ion, or mass balance equation, for each phase of the two-phase, 
single-component mixture· is obtained as follows. The center of a control volume of volume 
t~.v containing both phases is considered to be situated at location (x, y, z) in a rectangular 
Cartesian coordinate system. The lengths of the sides of the volume in the x, y, and z 
directions are b.x, b.y, and b.z, respectively. The phase change processes of evaporation and 
condensation may be occurring due to both energy transfer and pressure changes in the flow 
field. The mass balance equations are obtained by equating the accumulation and net 

transport into the volume of each phase to the generation or growth of mass of each phase. 
This balance can be expressed as 

J Rate of Accumulation l 
f of Phase 'a' ~ 

{ Rate of Generation } 

= t of 'Phase '.a' · • 

··{ Rate of Influx l + 

· of Phase 'a' ~ 

The rate .ofaccumulation of ·phase 'a' is .represented ~y 

Jijiji ~ .dxdydz 
b.V ot 

j Rate of Efflux} 

f of Phase ·•a' 

(1.2) 

(13) 

where <II is .the ratio of unobstructed volume to the total volume in the control volume and 
is referred to as the volume porosity. The mean value theorem of 'integral calculus may be 
used to represent this integral as 

Iff 
b.V 

~ at dxdydz 
a" a"' 
=~I at E;; 

1 

b.xb.yllz 

.where h represents the coordinates of a point in the volume b.V. 

The efflux minus the influx of mass in the x direction is given bY 

·(a a I P vx<jl · . b.x 
x + ·-z,y,z 

(14) 

(15) 

where <II is also assumed to be the ratio of the area of the fluid 'in the x direction to the total 

area in the x direction. 

The porous-media literature, for example, Scheidegger (1957), define~ a velocity 

which is 'based on the total area rather than the unobstructed flow area. The velocity used 
here is based on the latter. The two velocities are related by 

v a= v a<!> 
xp x 
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where v~p is the velocity used in the porous-media literature. Either of these velocities may 
be used to determine the total flow rate past a plane: 

a a a ~ a a,~, A w = p v = p v ~ T 
X xp X 

where AT is the unobstructed total flow area. Although the velocity v~p does not represent 
an absolute velocity, no difficulty arises in the porous-media literature because momentum 
effects are usually · negle~ted. Momentum effects are included in this report and, 
consequently, use of the velocity v: is more meaningful here. This velocity represents the 
absolute velocity when the value of cf> represents the ratio of unobstructed area to the total 
area in all directions. If this ratio is direction dependent, v~ is an approximation to the 
absolute velocity. The assumption is made in this report that cf> may be· considered to be . . 
independent of direction. 

The quantity p~~cf> I + f1x is an appropriately averaged quantity of the area 
x ~y,z 

'b.y& centered at the location X + l1x .Y ,z. The law of the mean may be applied to Equation 
. . 2 
(15) to obtain 

a a 
Clp y 4> 

X 

ax I (16) 

~.2 

where ~2 represents the coordinates of a point in b.V. The efflux minus the influx in they 
and z directions can be represented similarly as 

I ) 
~4 

11xt:.yt:.z • (17) 

Fluid mass is not generated within the control volume; however, mass is exchanged 
between phases. This mass exchange occurs across interfaces within the control volume as, 
for example, across the surface of droplets or bubbles. Mass appears to be generated or 
consumed with respect to each phase even though the total mass remains constant. The total 
mass exchange of phase 'a' is represented by 

f.f!;nacpdxdydz 

t:.V 
where ina represents the mass generation of phase 'a' per unit volume. The mean value 
theorem of integral calculus may be used to show that 

(18) 
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The Expressions (14) and (16) through (18) may be substituted into Expression (12), the 
resulting expression divided by 1:!,.'/.b.y&, and the operator X~!0 ' applied to the equation to 

obtain the mass balance equation for phase 'a': 

a ~ ) 
a a a . •a !e.J + p v~~ • = m ~ • at 1. · ,1. . 

(19) 

In Equation (19), the superscript 'a' refers to the liquid or the gas phase. Cartesian 
tensor notation is used. The subscript refers to any one of the cootdinate directions x, y, or 
z; the comma indicates.differentiation; and repeated subscripts imply summation over the 
three coordinate directions. 

Since mass.is not being generated but only exchanged between phases, the total mass 
must be conserved. That is, 

• R. • g 
m + m = 0 • 

(20) 

Equations (19) and (20) are thre.e independent relations that contain 4 + 2n unknown 
dependent quantities where n is the number of dimensions. Equation ( 19) may be summed 
over the phases and combined with Equation (20.) to obtain the expression 

a~t + (pv i~) ,.i = o 
where the density of the mixture, p, is defined as 

p :: E 
a=t,g 

a p .. 

and: the baricenttic velocity vi of the mixture is defined as 

p.v. = 
l. 

a a 
E p vi 

a=R.,g 

(21) 

(22) 

(23) 

Equation (21) is not an independent relation because it is the sum of Equations (19) and 

(20). 
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IV. DERIVATION OF THE MOMENTUM BALANCE EQUATIONS 

Momentum balance equations are derived in this section for each phase of a 
liquid-vapor mixture of a single-component fluid. The areas wherein the occurrence of phase 
change processes enter in the terms appearing in the balance equations are indicated. The 
mechanical constitutive equations accounting for the stresses acting on each phase are also 
given. These expressions are given as tensor quantities in Cartesian coordinates. The forms · 

. for other coordinates can be obtained by suitable transformations. In Section IV-1, a general 
balance 0xpre[mion is stated and the a~;wmulation and transport of momentum terms are 
given. In Section IV-2, the momentum growth term is discussed. In Section IV-3, the 
shearing forces acting on each phase are formulated and the pressure, transient flow forces, 
and body forces are discussed in Sections IV-4, IV-5, and IV-6, respectively. The final form 
of the momentum equation is given in Section IV-7. 

1. TRANSPORT OF MOMENTUM 

In this derivation, the hypothesis is adopted that each phase may be considered as 
continuous for some purposes but may be considered as discrete for other purposes. This'·· 
hypothesis is analogous to continuum theory in which the basic equations of change are 
derived from continuum considerations, but constitutive equations for transport properties 
may be derived from discrete considerations. This hypothesis has been employed in all 
derivations of engineering two-phase flow equations, either explicitly or implicitly. To a 
large extent, phase distribution patterns (flow regimes) in boiling and condensing flow fields 
are physically characterized by one phase being continuous and the other phase being 
discrete. 

For the system under consideration, the momentum balance in a given direction for 
phase 'a' may be written as 

[

Rate of AccUmulation of] 

Momentum of Phase 'a' 

[

Rate of Momentum ] 

Growth of Phase 'a' 

+ [Rate of MomentUm J 
Efflux of Phase 'a' 

[

Sum of the Shearing] 
+ Forces Acting on 

Phase 'a' 

[

Sum of the Pressure] 
+ Forces Acting on 

Phase 'a' 

[

Transient Flow ] 
+ Forces Acting on 

Phase 'a' . 

[

Sum of the Body Forces]. 
+ on Phase 'a' Due to 

Field Sources . 
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Rate of Momentum J 
Influx of Phase 'a' 

(21) 



The momentum equation for a phase is derived for the x direction. Cartesian tensor 
notation is used to generalize to equations to account for they and. z directions. 

The rate of accumulation of momentum of phase 'a' in the x direction is given by 

dxdydz = 
a a 

34J.p v . X 

at I 1:1xf1yf1z 

~I 
(22) 

where ~1 represents the coordinate of an appropriate point within the control volume 6V. 
The momentum which is being convected in and out of the sides of the volume normal to 
the x direction is cppayf The net flux of momentum may be expressed as 

..,,~, a a a 
a'l'p V V 

X X 

ax 

a a a a4>p v v 

f1xf1yl1z. + 

+ X z: I 
az ·~ 

1:1xf1yf1z 

"'4. 

..,,~, a a a . 
a'l'p V V 

X y I· 
ay ~ 

"'3 

1:1x/5.yf1z 

(23) 

where ~2• ~3 , and ~4 represent the coordinates of three points within the control volume 
t.V. The next term considered in Equation ql) is the contribution of the mass exchange 
processes to the momentum balance of each phase. 

2. MOMENTUMGROWTH 

The phase change processes of evaporation of the liquid phase and condensation of 
the vapor phase can occur due to energy transfer from stationary surfaces within or 
bounding the flow field, energy transfer between the phases, and the existence of a pressure 
change. The effect of these mass exchange processes on the momentum of a phase is 
represented by the first term on the right side of Equation (21 ). These processes occur at 
the interfaces between the phases within the control volume. In general, the interface moves 
with its own intrinsic velocity Vf and· not with the velocity of either phase. 

For unequal phase temperature fluids, condensation and evaporation can occur due to 
several processes. The fluid considered in this report is an equal temperature fluid and, 
consequently, the only mass exchange process considered is the thermal equilibrium process. 
The net mass exchange rate rna may be calculated from thermodynamic considerations. The 
individual contributions of evaporation and condensation from kinetic theory are 

. considered equal in this r6port. Since the mass exchange rate for an equal temperature,fluid 
is a single process, only . one velocity may be used to represent the velocity of mass 
generation of phase 'a'. 

16 



The momentum growth in the control volume may be expressed as 

(fj •a "a · •a"al JJ. cp m v 1 dxdydz. = cpm vi 

~v ~s (24) 

where ~ 5 represents the coordinates of a point within ~ V. The intrinsic velocity ~fis another 
unknown for each phase. It should be related to the velocitY vf and other quantities. ~orne 
l:uulruvt:rsy exists in the literature as to whether these relations shm.ild both be constitutive 
equations or whether one should be replaced with a momentum balance. The latter view is 
accepted in this report for the following reason. 

A particle of mass m is assumed to leave phase 'a' and enter phase 'b'. This particle 
does not change its center of'mass when changing phase. On a continuum basis, no time or 
force is required to change phase. Change of phase of a mass simply means that a different 
equation is used to account for the momentum of that mass. The momentum of the mass 
must be conserved in the phase transition. That is, 

or 

"a "b 
m vi = mvi 

"a "b 
v. = v. 

1. 1. (25) 

which states that the intrinsic velocities are equal. This relation would conflict with the 
assumption of .setting the intrinsic velocity of a phase equal to the velocity of the phase. 
That is, the relations 

(26) 

cannot be valid except in the simplified case in which the velocities of both phases are 
always equal. Thus, Equation (26) is dismissed as being, in general, physically impossible for 
a seriated continum. 

An additional equation is necessary to relate vi to other variables. This relation is a 
constitutive equation which can depend on the flow regime and is represented by the 
fpllowing: 

,. ( g R.) vi = v. v. , v. 
1. 1. 1. 

(27) 

where 

g refers to the gas phase 

R. refers to the liquid phase. 
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Other variables might be included in the argument list of Equation (27) for some flow 
regimes. Some possibilities for the function ~i are given in but not restricted to the 
following: 

(1) The first possibility is 

(28) 

where m.a <O. This relation implies that the intrinsic velocity is equal to the velocity of the 
phase that is losing mass. 

(2) The second possibility is 

(29) 

where 'a' is the dispersed phase. This model may be derived by considering the flow from a 
droplet uniform in all directions. The vapor leaves the surface with a velocity relative to the 
surface of 

v n 
m 

= --
p A 
g 

where vn is the velocity normal to the surface. The average value of this velocity in any 
direction is zero. Therefore, the vapor leaves the droplet at the velocity of the droplet. 

(3) The third possibility is 
R, 

~i = a v~ + (1 - a) vi (30) 

where /3 is a weighting factor (0 ~ ..;;;1 ). This relation implies that a continuous velocity 
distribution exists between the gas and liquid phases. When /3 is between zero and unity, the 
interface velocity is bounded by these two velocities. 

A brief literature review is included in the following to summarize what other authors 
have used. Panton (1968) who analyzes a gas-particle mixture assumes that the velocity of 
the dispersed phase, Equation (29), should always be used. Green and Naghdi (1969) and 
Craine, Green, and Naghdi (1970) analyze a multicomponent mixture and hypothesize that 
~fis a mean velocity which will depend on the velocities of the remaining components. The 
simplest expression which satisfies this hypothesis for a two-phase mixture is 

(31) 

This expression would conflict with Equation (25) except when the velocities are equal. 
Naghdi, in a private communication, indicated· that vf should also be included. This 
modification would be consistent with Equation (30). MUller (1968) indicates that the 
momentum growth consists of two parts: (1) thermomechanical interactions and (2) phase 
changes (chemical production). The latter portion is equivalent to the momentum growth 
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considered in this section. He states that Vf is the velocity of the newly created mass. The 
first part is presumably related to diffusive forces which are considered nonexistent in a 
two-phase mixture. Marble (1969) states that as a result of condensation or vaporization at 
the droplet surface, mass is transferred between the velocities of the bulk liquid and bulk 
vapor. This velocity is consistent with Equation (30). The particular problem he considers is 
liquid droplets dispersed in a steam environment. He states that with the assumption of no 
shear induced circulatory motion, the mass exchanged at the interface has the velocity of 
the liquid phase. This velocity is consistent with Equation (29). 

Mecredy and ·Hamilton (1972) subdivide the mass exchange process into an 
evaporation rate r e and a condensation rate r c· These rates are related to the mass exchange 
in the present work by the relation 

m = r - r e c 
(32) 

Expressions from kinetic theory are used to compute r e and r c: The momentum growth of 
the gas phase is defined by Mecredy and Hamilton as 

r vR- - r v~ 
e i c ~ 

(33) 

where R. and g refer to the liquid and gas.phases, respectively._ These expressions were not 
used in the present work because they predict that m = 0 for equal phase temperatures. This 
model for m precludes a net evaporation or condensation during a pressure change and 
appears to be physically unrealistic for the present work. 

The conclusion which might be drawn from the literature is that no agreement exists 
as to what this term should be; however, we believe that the conclusion which should be 
drawn is that no universal method exists for computing the intrinsic velocity vi. The method 
of calculation will depend upon the particular physical situation or flow regime. 
Consequently, the intrinsic velocity calculation should be done with a correlation which is 
dependent upon the two-phase flow regime. As noted by Panton (1968) for the case in 
which averages are used to eliminate solving for three-dimensional velocity distri~utions 
around single particles, an assumption or model, regarding the distribution of the mass 
exchange process around a droplet or bubble, is required. For example, if evaporation is 
occurring uniformly around a droplet, no net effect should be produced on the momentum 
of the droplet. If condensation is occurring on one haif of the droplet and evaporation on 
the other half, an effect would be produced. However, with only averaged information 
available, directional effects associated with the mass exchange processes cannot be 
accounted for unless these effects are included through correlations for vi. 
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-3. SI:IEARING FORCES ACTING ON,PHASE A 

The shearing forces considered in this section are due entirely to" velocity gradients. 
· The .continuum mechanics literature usually includes the pressure forces and .shear forces 
due to velocity gradients in a single term herein. called the total shear stress (for ·example, 
Craine ~t aJ, 1970). The forces due -to pressure are considered in ·section IV4. ,The ,shearing 

· forces are considered to be made up of three components which are ·given in the following 
.equation: 

·[Sum of the Shearing] 
.. Forces Acting on 
· Ppase 'a' 

= 

·. + 

·+ 

[
S~m of the Shearing Forces] 
Exert.ed o.n Phase 'a' by 

· Stationary Surfaces Inside 
the Control .Volume 

·[Sum of the Shear:ing F_orces ](34) 
Exerted on Phase 'a' by the· 
Other Specie's Inside the 

· Control Vo.lume . 

. [Sum of the Shearing Forces l 
' :·Ex.erted by 'Phase ~:a' Outs.ide. 
. the Control Vo.lume. on the • 

Outside Surfaces·of the . 
Control Volume 

.These three components of the shearing forces may be visualized by considering the model 

.shown . in Figure 4. This figure illustrates a typical control volume which contains a 
two-phase fluid as well as some ·stationary surfaces such as fuel rods. The two-phase fluid is 
.ass.umed to be made up of a continuous phase and a discrete phase. Due to the limiting 
process used to defme a seriated continuum, stationary surfaces must be included as well as 
both ·phases in the control volume. The shear forces on the continuous phase are seen to be 
d_ue ·to (a) velocity gradients at the interfaces between the stationary surface and the 
continuous phase, (b) velocity gradients at the interfaces -between the continuous phase and 
the discrete phase, and (c) velocity gradients in the continuous phase on the surface of the 
control volume. 

The same forces can be applied to the discrete phase. Stationary surface friction can. 
be exerted on the bubbles or droplets on the walls. Interphase friction is exerted by the 
continuous phase on the discrete phase, and intraphase friction is exerted on the droplets or 
bubbles imbedded in the surface of the control volume. Thus, Equation (33) is valid for 
both the continuous phase and the discrete phase. The assumption which is inferred for the 
discrete phase is that the forces which are applied to the discrete particles are effectively 
applied to the discrete phase as an aggregate. In this sense, the discrete phase is treated as a 
continuum. 

20 



Stationary 
Surface 
Friction 

·Interphase Friction 

/Intra phase 
Friction 

Discrete 
Phase 

Continuous 
Phase 

ANC-A- 4468 

Fig. 4 Shearing force model. · 

Some two-phase flow regimes are not characterized by a continuous phase and a 
discrete phase. For example, annular flow is two continuous phases, oneinside the. other. 
Equation (34) is also valid for this and other flow regimes. The phenomena-based origin of 
these forces is discussed more fully in the following secti<?ns. 

3.1 Shearing Forces Due to Stationary Surfaces and Other Species 

The shearing forces due to other species and stationary surfaces both result in forces 
which appear to be field forces similar to gravitational forces. The shearing force exerted by 
the· wall on the fluid is looked at first by considering laminar or turbulent flow of a 
single-phase fluid between parallel plates. The velocity profile for this situation is sketched 
in Figure 5. The shear stress between the fluid and the wall is directly related to the velocity 
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Fig. 5 Velocity profJ.le between parallel plates. 

gradient at the wall for both laminar and turbulent flow. The model being developed is 
based on the assumption that many surfaces exist within the control volume but that only 
average velocities will be obtained as solutions. Thus, the velocity gradient at the wall is 
available from the solution. This gradient is approximated 'by the difference between the 
average velocity of the fluid and the velocity of the wall (which is>zero) multiplied by some 
suitable coefficient. This force acts iri the opposite direction of the velocity. This model is 
consid·erably different for shear than the usual viscous shear model. In this model, a velocity 
profJ.le may be spatially invariant yet significant shear may occur. Viscous shear, on the 
other hand, would .be zero in the instance for which the true velocity gradient is zero. For 
the physical situation for which flow is present in the axial direction of a single-phase fluid 
in a constant area flow section (invariant with axial qirection), this type of shearing force 
can be associated with pressure drops calculated by the use of Fanning friction factors. This 
concept may also be extended to flow in the direction of a repeated geometry such as in the 
case of flow normal to tube banks. 

The presence of a ~econd phase can change this shear force on the fluid by distorting 
the velocity gradient on the wall. A bubble attached to the wall or mass exchange for a 
bubble will distort the velocity gradient in the region near the bubble. This effect may be · 
accounted for by adjustment of the coefficient of the shear term. 

The second shear force in a mixture consisting of two fluids exists because the second 
phase may be moving at a different speed and dire<;:tion than the first. This shearing force is 
related to velocity gradients along the interfaces between the two phases. This force is 
represented as the difference between the average velocities of both phases in the control 
volume multiplied by a suitable coefficient. This effect may be related to the measurement 
of drag forces on various geometric shapes with and without boundary layer injection. 

An approximate analytical expression for these shear forces can be obtained by 
. considering the surfaces (both stationary and phase interface surfaces) within the control 
volume. The total force within the control volume may be expressed as 
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F~ = L 
l. s 

where 

a 
0
ls 

dA 
(35) 

= the shearing force per unit surface area in the ith direction exerted on 

phase 'a' by the surface 's' 

the area of surf act: 's' exposed to phase 'a' 

and ~ indicates summation over all the surfaces in the control volume. This expression may 

be written in terms of average shear forces: 

where 

a 
cr. 
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A~ ~a cr~s 
s s 

dA 

For convenience, Equation (36) may be written in the form 

a 
a is ~t:.xt:.yt:.z 

where 

il>'l!xb.y&z and is the total volume of the fluid in the control volume. 
A a 

s 
Finally, this expression is further modified to introduce the area per unit volume t:.Vf 

F~ L 
a A a ~t:.xt:.yt:.z = 0 is l. ~ s 

where A a 
A a lims 

s 
- t:.Vf s t:.Vf-+0 

and 

1 
A a 

a a s 
0 is -

A a 

0
is t:.Vf 

s 
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This is the form of the shear stress, afs, for which an approximate analytical expression will 
be obtained. Both transient and steady state effects contribute to this stress. Only the 
portion of this stress which is related to friction factor forces will be considered in this 
section. The remainder of this stress is due to transient effects.and curved streamlines which 
are considered in Section IV-5. 

Note should be taken that the area per unit volume A~ is related simply to the inverse 
of the hydraulic diameter. In the instance of steady state fully developed flow between 
parallel plates, as shown in Figure 6, the area per unit volume for the upper plate is 

or, since a is a constant, 

=lim 
tN+O 

a 

L 

L J a·dA 
IW 

ab 1 --=-abL L 

Fig. 6 Parallel plate geometry. 

ANC -A- 4465. 

Physically, the limiting process may not be.· carried out· for volumes which do not 
include both plates. Conceptually, however, this process offers no difficulty and the limiting 
process may be performed. Note should be taken that the total area per unit volume for the 
parallel plates will be the same as if each were considered separately and then both summed. 
That is, 

A.r. = lim 
h.V-+0 

= lim Al lim A2 
6V+O 6V + 6V+O 6V 
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The shearing force per unit area between two fluids or a fluid and a surface is assumed 
to be linearly related to the velocity gradient: 

cra = -K 
is 1 

(39) 

where n is the normal to the surface, K 1 is an appropriate coefficient, and vf is the local 
velocity profile near the interface or surface. Since the local profile will not be calculated, 
the following approximation is made for the derivative 

a s 
cra ~ -K K vi - vi 
.is 1 2 R. 

(40) 

where R. · is a characteristic length which depends on the physical configuration, vf is the 

velocity of phase 'a', vf is the velocity. of the other phase or the surface, and K2 is a 
· ~' va- vS 

coefficient which attempts to account for the difference between ~d T· Substitution 

of this expression into Equation (26) yields 

a 
·.a ~ 

is 
K1K2 (·a _ s) dAa 

n V.. V. 
"' 1 1 s 

cr~s ·:::::: - K1 K2 (va - vs) I 
R. i i ~ 

. s 

(41) 

where ~s represents the coordinate of an appropriate point on the surface 's'. The desired 

shear stress o~ is obtained from the expression 

(42) 

where 

Substitution yields the expression 

(43) 

In extracting the quantity B~ from experimental data, what to assign to A~ ·and what to 

assign to B~ is somewhat flexible. In many cases, for convenience, an expression is assigned 

to the product A~ B~. 
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Tensor considerations do not allow B~ to be a function of the velocity component vf­
vi. If this coefficient were allowed to be a function of this velocity component, the resultant 
force would depend ·u:pon the orientation of the coordinate system. B:.can be a function of 

_J.{, a S·) ( a s) l\vi -vi. vi -vi 

whiCh is a scalar and hence acceptable. 

For solid . surfaces, the coefficient ~ is related to friction factors reported for 
single-phase, single-Component flows. However, as previously noted, these coefficients may 
require modification to account for the effects of the presence of two phases on the velocity 
gradient at the surface. The coefficient B~ and the area pe~ unit volume are discussed in 
Section VII. 

These forces can, for a two-component fluid, be segregated into a sum of force terms 
which represent the stationary surfaces (vt = 0) and forces which represent the other phase 
(vf = v~. Thus, tht( expression which represents the first two terms on the Fight-hand side of 
Equation (33) is 

(44) 

wh·ere B: ~ vf are the appropriate coefficients for the stationary surfaces, and BabA~b are 
. the appropriate coefficients for the interphase forces. 

3.2 Intraphase Shearing Forces 

The third shearing force which is due to the same species acting on the surface of the 
control volume is related to velocity gradients in the fluid at these surfaces. These velocity 
gradients will be approximated by gradients in the average fluid velocity. Thus, although 
changes .exist in the velocity gradients along these surfaces due to the presence of another 
phase at the surface, the assumption is made that these forces are included in the shearing 
force term due to other species. The shearing forces on the surface of the control volume 
can be ·visualized by considering a single-phase fluid moving in a tube bundle as is shown in 
Figure 7. This figure illustrates the top view and two cross sections of a fluid moving in the 
axial direction in a control volume in a fuel rod bundle. This figure shows that although the 
shearing forces of the friction factor type account for the shearing forces on the rods, the 
possibility of shear forces between the fluid in the various channels still exists. These forces 
can be represented in the usual manner. The shear stresses in the x direction are shown in 
Figure 8 in two dimensions for component 'a'. 

The force on the control volume is seen to be 

flxflyflz (45) 
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·Fig. 7 IDustration of the Intraphase Shear Tenn. 
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Fig. 8 Intra phase shear diagram. 

Since this force should be zero if all parts of the fluid are moving at the same velocity, 
the stresses afi are related to velocity gradients rather than to velocities. The assumption is 
ili~ . 

a~. = Fa ( v~ . , v~ . ) 
J1 1,J J,1 

(46) 

That is, ilie stresses are related to the velocity gradients of a given component. If aj~ is 
assumed to be a linear symmetric tensor, the stress may be written as 

where 

a l(a a-) s1.J.- 2 v .. +v. i 
1,] J' . 

and 

J.l.a is the kinematic viscosity 

J.l.~ is ilie bulk viscosity. 

0 .• 
1J 

(47) 

The viscosity coefficients should be considered as dependent on position if turbulent 
components are to be part of the viscous stresses. 

Thus, the total force due to shear is 

Fa = Fa 1 + Fa b + F~ . 
i i wa ls i phase 1,·v1scous 
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or 

[;,_ cpA-: Ba (e , 
s s 

(48) 

The coefficient B: (Os, Oa.) is-assumed to be a function of the angle of approach 9f the 

fluid, 0 a• to the angle of the solid surface, 0 s· 

4. PRESSURE FORCES ACTING ON PHASE A 

The pressure forces acting on phase 'a' are considered to be made up of 

[

Sum of the Pressure] 
Forces Acting on 
Phase 'a' 

= 

+ 

+ 

(

Sum of the Pressure Forces]· 
Exerted on Phas·e 'a' by · 
Stationary Surfaces Ins.ide . 
the Control Volume ·' 

[

Sum of the Pressure Forces J 
Exerted on Phase 'a' by (49) 
the Other Species Inside the . 
Control Volume 

[

Sum of the Pressure Forces l 
· _Exerted by Phase 'a.' Outside · 

the Control Volume on the 
Outside Surfaces of the 
Control Volume 

Expressions for these forces are obtained in the following manner. A control volume 
with a discrete or continuous phase 'b' inside a continuous phase 'a', as shown in Figure 9, is 
considered. 

0 0 
C6nHnuous Phase 'a' 

X ANC-A-4471 

Fig. 9 Pressure force model. 
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The pressure forces exerted by phase 'b' on phase 'a' in the x direction are 

r.J P n dA 
S S X 

where the ~ indicates a summation over all the internal surfaces, P s is the pressure on the 
surface, and nx is the unit normal to the surface. Two forces are generated mtemal to the 
control volume from this expression for both the stationary surfaces and other species. One 
is due to both phases being assumed continuous. The second is due to phases being 
considered discrete. 

These forces may be derived by considering a somewhat simpler picture than that 
presented. The model in Figure 10 is considered. Since the volume fraction is treated as a 
continuous quantity, the continuous analogy of this model might be interpreted as shown in 
Figure 11. 

ooo 
X ANC-A-4472 

Fig. 10 Pressure forces due to continuous and discrete contributions. 

X ANC-A-44'73 

Fig. 11 Continuous portion of the discrete phase distribution. 

The force iri the x direction due to the pressure distribution is 

x+b.x 
I P n dA. 

X S X 
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The value of nx.dA is 

therefore 

f 
X 

so that 

n dA­
X 

lim 
L'lx-+0 

x+L'lx x+L'lx 
P n dA = JX p 

s ·x s 

x+L'lx 'dAR. 
= f p dx = 

s ax 
X 

x+L'lx 
f P n dA = P 

X S X S 

At At 
lim X 

L'lx-+0 x+L'lx dx t:..x 

x+L'lx aatq, 
f p AVdx. 

s ax 
X 

(50) 

This force is due to a pressure distribution within a volume which has a change in the 
volume fraction. Another pressure force is the form loss force. The existence of this force 
can be o.bserved in the case for which no change occurs in the .volume frac.tion. A force 
would .still.be ·exerted on the bubbles or droplets and fuel rods by the other phase as long as 
the v.elocities of the two phases are different. Such forces are well known and have been 
studied in such cases as flow around a sphere. These forces exist even when the fluid is 
invisCid. These pressure distribution forces are expressed in the same manner as the 
interphase .drag. That is, 

Fi = . [- \s Ca Aa a C A 
L s s vi - ab a~ ~L'lxL'lyL'lz (51) 

where 

~ is the appropriate coefficient for the stationary surfaces 

.and 

cab is the appropriate coefficient for the interphase forces. 

In certain flow regimes such as smooth annular flow, this force may be zero. This coefficient 
may depend upon pressure drop 'because this force should be zero when no pressure gradient 
is present. The transient contributions from these forces will be discussed in Section IV-5. 
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The pressure forces exerted on the liquid on the surface is given by 

LF~ = Fal + Fal 
p p f1X p l:J.x 

x+2 x--2 
where 

F I -aaPI ~l:J.yl:J.z 
p 

+ 11x 11x X - X+ 2' y,z 2 

F I = aaPI ~l:J.y/1z 
p 

l1x l5.x X--2 X--2' y,z 

The factor aa is used to account for only a portion of the surface of the unit volume 
exposing the liquid to the pressure P. [ Boure et al (1971) have discussed using different 
pressures for each phase.) The quantity aa is defmed as the a a= volume of the component 
'a'/total volume. Thus, on a surface, this quantity is the area of component 'a' divided by 
the total area. The resulting expression is given as 

l:J.yl:J.z 

(52) 

a 
L Fa= - a~a PI 15.x/1y/1z 

p ax E; 
7 

where ~7 represents the coordinates of a point in b.V. Thus, the total force due to shear is 

a 
apa PI 

ox E; 
7 

5. TRANSIENT FLOW FORCE . 

( v~ -vnl Ox~y~z • J (53) 

The forces acting on phase 'a' as discussed in Sections IV-3 and IV-4 were limited to 
the steady state shear and pressure forces, respe~tively. However, the shear forces of 
Equation (35) and the pressure forces of Equation (49) are averages over the interfaces in 
the flow field and, therefore, may contain time dependent quantities. Of course, even in 
transient one-dimensional, single-phase flow, common practice is to employ a steady state 
friction factor correlation evaluated at the local instantaneous channel average velocity. 
Slattery (1972, pp 182-183) has compared the exact and the area-averaged, one-dimensional 
solutions for the case of a single-phase fluid starting from rest in a circular conduit of 
constant cross section. For this case, the approximate solution overpredicts the flow 
through the conduit. 
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The flow situation that is usually used to illustrate the effect of transient pressure and 
velocity distributions is the Basset-Boussinesq-Oseen solution for unsteady Stokes' motion 
of a single solid spherical particle in an incompressible constant property fluid at rest 
(Tchen, 194 7). The equation of motion, for the particle starting from rest, is given by 

; 1Ta3pp ::p = -; (t 1Ta3) Pf .::P - 61T~faVP 
(54) 

where 

a· = radius of spherical particle 

= velocity of particle 

density of particle, <Jensity of fluid 

viscosity of fluid. 

The terms on the right-hand side of Equation (54) are as follows. (a) The ftrst term 
represents :the added mass due to the difference between the transient and steady state 
pressure distribution around the particle; (b) the second term represents the steady state 
Stokes' drag due to shear and pressure, evaluated at the instantaneous particle velocity V P; 
(c) the third term represents the Basset force (Tchen, 1947) which accounts for the 
transient viscous drag; and (d) the fourth term represents the gravitational force on the 
particle. Thus, for this flow situation, thetransierit pressure and velocity distribution effects 
are additive to the complete steady state effects evaluated at the instantaneous transient 
velocity. 

Figures 12 and 13 are presented to show the relative importance of the transient force 
terms in the slow flow regime. Solutions of Equation (54) ·are presented in these ftgures as a 
solid line for a steam bubble rising in water. The effect of pressure is manifested in Equation 
(54) only in terms of density ratio. The effect of the transient flow forces was determined 
by· re-solving ·Equation (54) with the Basset term neglected and then with both the Basset 
and added mass term neglected: The results are presented as the ratio of the instantaneous 
velocity V p to the terminal velocity V 00 as a function of a dimensionless time. Th~ effects of 
these terms are observed to be significant in this situation. The effects of these terms would 
be much less for a droplet in a vapor and may be less in high speed flow. 
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Fig. 12 Effect of transient fluid flow forces on velocity of a vapor bubble at 2400 psia. 
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Stokes Steady State Drag and Added 
Mass Force and Basset Force 

Fig. 13 Effect of transient fluid flow forces on velocity of a vapor bubble at 14.696 psia. 
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'Fhe most restrictive assumption associated with Equation (54) is tlie slow flow 
assumption. However, the equation is employed in various forms in the .inertial, or high 
speed, flow regime essentially by mere extrapolation. Thus, as shown by Tchen ( 194 7) for 
the case ofa single particle, Equation (54) can be written 

3 
dV 3 dV 2 

4/3 ~a pp ~ = -CAM(Re,Ac) pf 4/3 ~a ~ - CDA(Re,Ac)l/2pf~a Vp 

where 

Re = 

= 

= 

dV 
a 2 J t. --...E. 

0 dt 

1 dT -;::====­
"It-T 

particle Reynolds number = 
#lf 

v 2 
particle acceleration number - P 

2adVp 

dt 
added mass force coefficient 

velo_city drag force coefficient 

Basset force coefficient 

(55) 

dVp . · 
and the assumption that VP and do not change sign has been employed. For the case of . --or-
an ensemble of particles, Equation (55) is further extrapolated by assuming that the 
coefficients C AM• CDA• and CB are functions of the volume fractions of the phases. 
Application of various forms of Equation (55) to momentum balance equations for 
two-phase flow has been discussed by Murray (1965), Anderson and Jackson (1967), 
Buyevich (1971), and Mecredy and Hamilton (1972). Forms of Equation (55) have been . . 
compared with_ experimental data. by Odar and HamiltQn (1964), Odar (1968a, 1968b ), 
Tunstall and Houghton (1968), Torobin and Gauvin (1959) and Clift and Gauvin (1971). 
The results of these studies indicate that the extrapolations of Equation (54) have not yet 
been justified and that the coefficients CAM, CDA• and CB have not been determined for 
general conditions. 

Both the added mass and Basset force effects relative to the Stokes' drag are functions 
of the particle-fluid density ratio. For the case of liquid-vapor flow of a single-component 
fluid, the density ratio will depend on the flow regime. That is, the particles will be 
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analogous to bubbles in one flow regime and to liquid droplets in another. Thus, in order to 
be general enough so that the possibility that a significant flow force is not omitted, some 
form of the added mass and Basset forces needs to be included in the momentum balance 
equations. However, in addition to the extrapolations and assumptions noted, additional 
assumptions are required with regard to (a) the form of the relative acceleration required 
due to the fact that both phases may be accelerating, (b) inclusion of the Basset force effect 
into the coefficients CAM and CDA in order to lessen numerical solution problems 
associated with evaluation of the integral of the Basset force, and (c) the equation of motion 
obtained for the one-dimensional flow case being considered to be a single component­
composed of vector forces. Further, additional analyses are required to apply the preceding 
solutions to fluid particles (Levich, 1962). 

Adoption of the assumptions and extrapolations noted enables additive transient force 
effects to be included for both the phase-to-phase and phase-to-stationary-surfaces forces. In 
analogue with the pressure and shear force per unit volume derivations, the transient forces 
are given by 

for the interphase transient forces and by 

= 
a 

- E A 
s s 

"" b) . aV. 
1 . 

- ~ cf>l::.x!::.y!::.z (56) 

(::/) <P!::.x!::.y!::.z (57) 

for the phase-to-stationary-surface forces. An explicit representation of the Basset force is 
omitted. Other forms of the relative acceleration are possible and, indeed, the version given 
in Equation (56) is not invariant. 

The example discussed is a highly idealized representation of a two-phase flow. In 
addition to the factors already discussed, several other differences between the example and 
reality exist. Among these differences for the phase interface are (a) nonspherical. particle 
shapes, (b) compressibility of the particles and continuous fluid, (c) rotation of the 
particles, (d) phase changes at the liquid-vapor interfaces, and (e) acceleration of both the 
particle and the fluid. Nonetheless, forces due to transient effects do exist. and must be 
accounted for in analyses. In general, these forces are due to the presence of curved 
streamlines in the flow field. All flow regimes of interest in two-phase flow will have. 
associated with them curved streamlines. In some of these regimes, such as annular wavy 
flow, the transient effects may be small. 
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. 6.,BODY:FORCES 

The only· field force Source of interest" here is that due to gravity. The force on phase 
'a'· is .given' ~Y 

b.xt:.yt:.z (58) 

where ~8 represents. the coordinates _of a point in~ V, a~d ~is t.tte component of th~ gravity 
field. 

7. FINAL FORM OF THE MOMENTUM BALANCE EQUATION 

·The .expressions for the components of the momentum equation, Equations (22), 
(23), (24), (48), (53), and (58), may be substituted into Equation (21), the resulting 

:expression.·;div.ided by b.x.~yb.z, and the operator ~\nb applied to the equation to obtain the 
momentum·equation for phase 'a': 

a a 
·acpp v 

1 
.:at 

·-<~>I·~ Ba (a ,a )v~- cpA bB b(v~- vb1) + (<~>aacr~.) . 
. ~8 s s s a · 1 a a 1 J 1 ,J 

- cpA C 
ab .. AMab (av~ at . 

_ av~) 
at 

a + cj>p gi 

-where 

and aft is approximated by Equation (47). 
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Additional interphase force terms can be includeq in this equation in a manner similar to the 
method used to include the second phase. For the two phases considered here, all interphase 
forces are assumed equal. That ~s, 

A C =A..C ab ab -oa ba 

The assumption also made is that P s = P because the pressures of both phases are assumed 
equal. Note should be taken that this momentum equation does not include diffusive forces. 
If multiple species are to be considered, this force should be added. Truesdell (1962) points 
out that the normal equations which are used to account for diffusion are actually 
approximations to momentum equations for each species for which momentum terms are 
neglected. Diffusive forces are beyond the scope of this present work. 

The mixture momentum equation may be obtained by summation of the component 
momentum equations to obtain 

+ (~ I 
R.,g 

a.a a) p v.v. . 
J ~ ,J .. 

~ I I J:iBava + (~cr .. ) . 
R.,g s 

s s i J~ ,J 

A a ca (::~) + 
(60) 

~ I r ~pgi s AM t,g s s 
- .!.p -

'I' 'i 

where 

~ indicates summation over the components. t,g 

Note should be taken that the momentum flux terms do not yield a term which can be 
written completely in terms of the average velocity. The momentum flux may be written in 
terms of the average velocity and a velocity difference uf= vi- vf Solution for vfyields 

so that 

a v. = 
1 
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therefore 

because 

a a 
I:p v .u. = vj 

J 1 ( a a a) I:p vi - I:p ~i = 0 

Several authors, for example Green and Naghdi ( 1969), prefer to write the momentum flux 
in terms of pvjvi and include the :!:p~jbfas part of the total shear stress tensor. 
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V. DERIVATION OF THE ENERGY EQUATION 

The overall energy balance for the two-phase seriated continuum is derived in this 
section. Whereas a continuity and a momentum are required for each phase, only one overall 
energy equation is necessary because the phase temperatures are assumed equal. 

The first law of thermodynamics states that 

{
Rate of Change } 
of Energy 

= {

Rate of Heat} 
Added to the 
System 

{
Rate of Work } 
Done by the System 

(61) 

This equation applies to a constant mass (Lagrangian) system. 

For the Eulerian system under consideration, this equation may be written as 

{
Rate of Accumulation} 
of Total Energy 

{

Rate of Heat } 
= Influx through 

the Walls 

Rate of Work I 
Done by the 
System on the 
Surroundings 

+ {
Rate of Energy} 
Efflux 

{

Rate of Heat } 
· Efflux through 

the Walls 

{
Rate of Energy} 
Influx 

{

Rate of Heat } 
+ Generated in the 

Control Volume 

(62) 

Expressions for these terms are derived in the following sections. 

1. TRANSPORT OF ENERGY 

The total energy Ea of phase 'a' is defined as the sum of the internal energy ua plus 

the kinetic energy, ~ vi\'i· This total energy is expressed as 

Ea = Ua + !. a a· 
2 vivi 

The rate of accumulation of energy in a control volume is given by 

dxdydz - .£.!. - at 
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where ~i is an· appropriate pointin the control volume. The energy which is being convected 
through each side of the control volume is 4>(pgEg + /'Et). The net flux (efflux minus 

influx) of energy may be expressed as. 

__! 14> (pgEgvg + p.Q.ER,v.Q. )] I flxAyAz 
ax l X . X ~ 

2 

a 
+ ay llxt:.yt:.z 

2. ADDITION OF HEAT TO THE SYSTEM 

(64) 

The. heat ·flux in the direction "i" due to phase 'a' will be denoted by q:f: Th,e net 

influx. mihJl$e{flux of heat through the~ walls is. given by · 

a 
az 

[ 4>. (qs + q t) J I - __! 
X X ~· ay 

5 

Hq~ + q!) ]I ( I Ax6y6z 

7 

. (65) 

The conduction. term will be considered to be the major portion of qf. A representative form 

for this term is 
a a a 

q = - a K T 
i '·i 

where ka is the thermal conductivity of phase 'a' and Tis the temperature. 

The volumetric heat generation rate may be expressed as 
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The quantity qa is considered to be made up of two components: (1) heat transfer from the 
stationary surfaces within the control volume, q~onv• and (2) heat generation from volume 
sources such as gamma heating, q~, and thermal radiation, q; The term q~onv is related to 
the heat transfer per unit wall area, Q~, by the relation 

or 

(67) 

3. RATE OF WORK DONE BY THE SYSTEM 

The possible contributions to the work terms are: 

( 1) Shearing forces due to stationary surfaces 

(2) lntraphase shearing forces 

(3) Pressure forces 

(4) Body forces. 

The remaining two forces described in Section IV do not contribute to the work terms. The 
first of these, the shearing forces between phases, does work on each phase but produces no 
work on the surroundings. The second of these, the transient flow forces, results from 
accelerative effects and is, thus, not actually a force term. 

3.1 Work Due to Stationary Surface Shearing Forces 

The work due to shearing forces from stationary surfaces can be obtained from 
multiplying the surface shear forGe in Equation (35) by the velocity of the surface to obtain 

a s a. v. dA = 0 
l.S l. (68) 

Since this velocity is zero, this work term is zero. This expression is equivalent to 
multiplying the stationary shear force term in Equation (44) by vf. 
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3.2 Work Due· to Intraphase Shearing Forces 

The work done on the surface of the control volume by both phases is obtained by 
multiplying the forces shown in Figure 8 by the appropriate velocities and then summing 
over the x, y, and z directions as well as over both phases. The total work due to these 
forces is given by 

t:.xt:.yt:.z 
(69) 

3.3 Work Due to Pressure Forces 

The work due to pressure forces will be calculated as the negative of the work done by 
the surroundings on the system. 

The pressure forces are exerted by phase 'a' on the control volume on the faces in the 
direction of an inward normal. These forces in the x direction are 

and 

t:.yt:.z 

·These forces are exerted with the velocity of phase 'a'. Thus, the work terms for both phases· 
and on all sides of the control volume may be written as 

!- ;X 

--az 

a 
ay 

t:.xt:.yt:.z 

The work done by the ·system on the surroundings is the negative of this expression. 

3.4 Work..Due to Body Forces 

(70) 

The work due to body forces will be derived as the work done by the system on the 
surrounding· force field. Only body forces will be considered. The force exerted on phase 'a' 
by the body force' field' is· 

Jff 
6V 

dxdydz 

4J 



where ~ is the gravitational constant in the xi direction. The force exerted by the fluid 
opposing this force is the negative of this expression. This force is being moved with the 
velocity of phase 'a'. Consequent•y, the work term associated with body forces on both 
phases is 

i i i i i i)] + p g v + p g v + p g v I ~ 6x!J.yiJ.z 
X X y y Z Z ~13 

(71) 

4. RESULTANT ENERGY EQUATION 

The resultant energy equation is obtained by substituting Expressions (63) to (66) and 
(68) to (71) into Equation (62), dividing by &b.yt:.z, and then applying!::.~~ to obtain 

where 

-· 

+ ~q + (~ i~g aacr;iv~)'i 

(~P i~g agv~)'i 
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V.I .·ADDITIONAL "RELATfONS REQUIRED TO CQMPLETE THE 'EQUAT,ION SET 

Thus far, 5 equations and 12 unknowns have been introduced. The equations are mass 
balance equations for each phase, momentum equations for each phase, and the energy 
equation. The unknowns are 

p 

d 
. - .-g .R, an m = :m ·= - m . 

The·seven-additional relations which are needed to complete the equation set are_given 
.in the following: 

(l) Relation ·between the ·partial densities and the thermodynamic densities: 

'Pg = agp 
g 

p'l = 9.. 
a p'l. 

(2) Equations-of-state for the thermodynamic .densities along the phase 'boundary 
[steam-water ·properties are given in Meyer et al (1967)] : 

= 

= 

(3) Equations-of-state for tqe thermodynamic energies along the phase boundary 
[Meyer et·a'l (1967)]: 

= 

= 
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(4) Summation of the volume fractions: 

The equations-of-state are assumed known. 

These equations form the closure of the equation set. The momentum equations 
require empirical information for evaluation of some of the coefficients in the equation. The 
following section indicates how and where estimates for these correlations may be obtained. 
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VII .·CORRELATIONSAND ANALYSES REQUIRED 

TO COMPLETE THE MOMENTUM BALANCE EQUATIONS 

The momentum balance for each phase' as given by Equation (59) contains several 
coefficients that must be estimated in order to obtain numerical resuits. These coefficients 
represent the effects on each phase of pressure and shear force distributions around .the 
discrete regions of each phase and around stationary surfaces within the flow field: 
Analogous to transient, area-averaged, one-dimensional, single-phase flow, these coefficients 
are in fact representations of local solutions of the appropriate form of the·Navier-Stokes 
equations for the geometry and flow conditions of interest. However, in most cases of 
engineering interest, experimental data must be used because analytical solutions are 
impractical. In the case of two-phase flow, even fewer analytical solutions are availaple, and 
reliance on experimental data is much more necessary. Again analogous to single-phase flow; 
the empirical correlations will be more reliable if simple physical models are employed as 
obtained from analytical solutions of simpler problems. Table I gives a summary -of the 
required coefficients. 

TABLE I 

COEFFICIENTS APPEARING IN MOMENTUM BALANCE EQUATIONS 

.Shear Forces 

Pressure Forces 

Transient Effects 
of Shear and 
Pressure Forces 

Area per Unit 
Volume 

Interphase 
Coefficients 

Stationary Surt:aces 
Co-efficients 

f:!l' 
s 

Proper evaluation· of these eight terms is' important if the baJance equations are to 
describe accurately tWo-phase flows With mass exchange processes. These coefficients are 
discussed in this section with emphasis on the special requirements of two-phase flows. That 
is, the phase distribution patterns that arise in two-phase flows are presented along with 
methods of describing the effects of these patterns on the momentum of each phase. A 
heuristic· discussion is presented here because a complete discussion of the determination of 
these constitutive relations is beyond the scope of this report. 
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The seriated (discrete-continuous) nature of two-phase, single-component flows has 
been noted earlier. The results of various experimental studies have indicated that several 
phase distribution patterns exist in these flows and, in fact, accurate determination of the 
conditions for a particular pattern would lead to greater understanding of the basic nature 
of two-phase flow. That is, if a given flow regime could be predicted to always be present 
for a fixed flow field and boundary conditions, improved accuracy could be attained with 
two-phase flow empirical correlations. One reason the ranges of conditions under which 
these correlations are derived should always be adhered to, if accuracy is to be considered, is 
that the phase distibution pattern has an effect on the quantities of interest, that is, on the 
pressure gradient, heat transfer coefficients, and liquid-vapor velocities, among others. 

The various phase distribution patterns depend on many flow field properties and 
bounding surface thermal-hydraulic conditions. Brodkey (1967) and Hewitt and Hall-Taylor 
(1970) have given discussions of the flow regimes for vertical and horizontal flow channels. 
Figure 14 illustrates the possible flow regimes for the case of subcooled liquid entering the 
bottom of a heated array of rods and changing .phase to become superheated steam at the 
exit of the array. The flow regimes are indicated for both a low and a high surface heat flux. 
Clearly, all or only a few of the regimes may be present depending primarily on the extent 
of net vapor phase generation possible for the flow _into the channel and the heat flux at the 
bounding surfaces. Further discussion of flow regimes can be found in the books of Brodkey 
and Hewitt and Hall-Taylor. 

An accounting of all occurrences in each flow regime is a complicated task. For 
example, in the early stages of bubble or froth flow, as shown in Figtire 14(a), vapor regions 
are not distributed totaily across the flow channel. Thus, if one-dimensional calculations are 
employed, an average vapor volume fraction across the whole channel would be required 
which clearly involves an approximation. Additionally, in this flow regime as the flow 
progresses up the channel, the vapor regions (bubbles) are of a wide range of sizes. In the 
annular, or film, flow regime, vapor generation at the heated surface may be suppressed 
under some conditions. The flow of the vapor phase past the liquid film surface will 
generate surface waves that may grow into roll waves on the bounding surface. Breakup of 
the tips of these waves adds liquid droplets to the vapor core, some of which may deposit on 
the liquid surface. In the mist and liquid deficient regimes, the vapor forms the continuous 
phase and discrete regions of liquid droplets of various sizes exist across the flow channel. 
As in the bubble regime, the discrete regions may not be distributed totally across the flow 
channel and may not attain contact with the heated surface under some conditions. The 
preceding is only a brief summary of a very large number of occurrences associated with 
two-phase, single-component flows with phase change. 

The problem then is to account for the physical situation shown in Figure 14 with the 
coefficients of Table I. As a specific example, the force coefficients for interphase 
momentum exchange Bab and Cab are considered. For the case of a single solid particle at 
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Fig. 14 F1ow and heat transfer regimes in rod array with vertical upflow. 
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rest in an infinite flow field at steady state conditions, these coefficients are well defmed. 
These well known coefficients could be used as a first approximation for interphase 
momentum transfer in the flow regimes that consist of a discrete phase contained in a 
continuous phase. However, improvement of the description of this process can be obtained 
by incorporating the following information into the coefficients. 

Firstly, liquid and vapor, unlike solid particles, will undergo deformation in response 
to the forces acting on them. The shape of the region determined by these forces in turn will 
influence the forces accounted for by the coefficients Bab and Cab· Secondly, the presence 
of stationary surfaces, adjacent particles, and trailing and following particies is known to 
also affect the forces acting on the particles. Lastly, the occurrence of mass exchange 
processes at the liquid-vapor interfaces will affect the velocity gradient at surfaces and thus 
affect the coefficients accounting for interphase forces. Boundary layer studies with blowing 
or suction have included an analogous effect. 

In the annular flow regime shown in Figure 14(a), the interphase momentum 
exchange occurs at the vapor core-liquid film interface and between the liquid regions in the 
vapor core and the vapor. The coefficients Bab and Cab in this regime must account for the 
unique nature of the vapor flow past a wavy liquid surface. That is, as discussed by Cohen 
and Hanratty (1968) and Hewitt and Hall-Taylor (1970), the velocity distribution in the 
vapor does not correspond to that expected by analogy to roughened surfaces. In addition, 
the nonrigid liquid surface and the breakup of the tips of the waves is expected to also 
influence the velocity gradient at the interface. Again, as in the bubble flow regime, with 
one-dimensional calculations, the vapor volume is not uniformly distributed across the flow 
channel, and thus approximations will be associated with these calculations in this regime. 

The surface areas per unit volume, Aab and A:, will also be required to account for 
flow regime effects. For example, if no vapor covers part of a s~tionary surface, A~ is zero; 
and if the vapor is the only phase adjacent to the surfaces, A~ is the total area per unit 
volume available. Since the interphase area is composed of phase regions of various sizes, an 
average value will be determined or the effect of a distribution of sizes may be included in 
this term. Of course, if only one phase is present, the forms of Aab and A: must reflect this 
fact also. 

The preceding brief discussion evidences that ultimately, to employ the model 
developed in this work, the conditions that determine which phase distribution pattern will 
exist must be understood. Determination of the phase distribution pattern is clearly an area 
that requires study and research of two-phase, single-component flows at a basic level. 
Additionally, interpretation of experimental data with a model that accounts for the effects 
of each phase will enable direct incorporation of experimental results into theoretical 

models. 
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· We have previously .indicated that the interphase and phase-to-stationary-surface 
coefficients of Table I can be estimated from existing data of single-phase and particle-fluid 
flows. Modifications that account for the .uniqueness of two-phase, single-component flows 
with phase change have been noted as being necessary. These modifications and other 
additional information require~ for the coefficients can be obtained from both experimental 
data and theoretical analyses. In particular, theoretical analyses need be conducted only on· 
a simpler problem that simulates the required situation and the results formulated in terms · 
of the information contained in the field balance equation in order to. improve the halance 

equations. 
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Vill. CONCLUSIONS 

' A set of equations has been derived for an unequal phase velocity and equal phase 
temperature seriated continuum. These equations have been reduced to a solvable form. 
That is, a complete set of equations has been' formed, 12 equations and 12 unknowns, and 
how the correlations needed in this model may be estimated· has been discussed. One point 
should be noted concerning the transient flow forces included in these equations. If these 
terms are neglected, Jarvis (1965) points out that the equation set is elliptic in nature and is 
not a properly posed initial value problem. Hence, the conclusion is that these terms are 
important for a complete solution of these equations. 

We have noted in Section I that several methods have been used to derive momentum 
balance equations for two-phase or multiphase, multicomponent flows. The wide range of 
different flow situations of interest in the multiphase, multicomponent area has led to 
several sets of momentum equations in the literature. In general, these equations have 
resulted from different interpretations of the makeup of the_ flow field and the properties of 
the field. We have assumed that the material within the flow field may be considered 
continuous for some purposes and considered discrete for others. And whereas the primary 
area of interest is the . simultaneous flow of the vapor and liquid phases of a 
single-component fluid, the resul~ing momentum balance, Equation (59), is applicable to 
other multiphase flow situations. 

The momentum balance of Equation (59) applies to each phase in the flow field and 
also to each coordinate direction. The velocity employed in the derivation and resulting 
equations is a time- and volume-averaged value of each coordinate direction component. The 
constitutive relations accounting for the forces acting on each phase are also expressed as 
vector quantities and, in addition, by virtue of the averaging process employed in the 
derivation, the effect of stationary surfaces that bound the flow field is included in the 
momentum balance -equation. The accuracy and completeness of the constitutive equations 
necessary to account for the forces acting on each phase will ultimately determine the 
accuracy of momentum balance equations of multiphase, multicomponent flows. In Section 
VII, brief discussion was given indicating methods of determining the information required 
to complete our forms of the constitutive equations for the case of flow of the liquid and 
vapor phases of a single-component fluid with evaporation and condensation occurring. 
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