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ABSTRACT

This paper presents the Idaho Nuclear Code.Automation (INCA) system
to be implemented during the course of the Loss-of-Coolant Accident Analysis
Program being conducted for the Atomic Energy Commission as pert of the
Loss-of-Fluid Test (LOFT) program.

Most of the knowledge, both analytical and experimental, concerning
nuclear safety analyses will ultimately reside in computer codes. The value
and reliability of this knowledge depends upon the accessibility and ease
of use of these codes. Some of the problems encountered in the present
generation of nuclear safety codes are (1) difficulty in interfacing codes,
(2) inconsistency between codes, (3) long running time, to ensure stability,
and (4) overemphasis on empirical correlations. This document describes
a comprehensive plan for developing the third generation of nuclear safety
codes with an integrated ^ode automation system that will alleviate
these difficulties.



IDAHO NUCLEAR CODE AUTOMATION (INCA) SYSTEM

I. INTRODUCTION

The purpose of this paper is to present the Idaho Nuclear Code Automation
(INCA) System which is to be incorporated into the Loss-of-Coolant Accident
Analysis Program^) being conducted for the Atomic Energy Commission as
part of the Loss-of-Fluid Test (LOFT). Most of the knowledge, both analytical
and experimental, of nuclear safety analysis will ultimately reside in
computer codes, The value of this knowledge for nuclear safety analyses
depends upon the accessibility and ease of use of these codes.
This vital knowledge represents a considerable investment.
In order to maximize the return on this investment, nuclear safety codes
must be developed within an overall code structure.

The present nuclear safety computer codes developed by Idaho Nuclear
Corporation and other organizations have been developed on the basis that
the entire nuclear plant can be divided into subsystems and that each subsystem
can be analyzed independently of the others. For example, the thermal
and hydraulic analysis of the primary loop of a pressurized water reactor
(PWR) reactor is separated in two parts: (1) the flow loop with a very
simple representation of the core and (2) the reactor core. The heat
transfer in the core has been found to influence strongly the flow in the
loop during accident conditions so that analytical decoupling is not justified.
Since, in general, these codes were not designed to be run together, considerable
effort is required to interface them. In fact, because they were not designed
to be run together, difficulties were experienced in determining whether significant
coupling occurs between the core and the loop. The investigation of the coupling was
completed by upgrading the model of the reactor core which was used in the
loop code and noting that significantly different results were obtained
between the modified and unmodified codes for the same physical problem.
An overall code structure would allow the interaction between components
to be investigsted easily* yet each of the components could be run separately
if the interaction was found negligible.

Some of the general problems which exist in the present manner of
conducting a nuclear safety analysis are:

(1) Many codes which presently exist represent duplication of effort
and yet contain contradictory models„

(2) Codes which do represent duplication of effort and should produce
the same results are difficult to compare because of different
models as well as input and output differences.

(3) Some codes produce input for other codes or require results from
the running of other codes either sequentially or iteratively. •
These codes do not interface easily and must either be interfaced
manually or considerable effort must be expended in combining
the codes. For example, a thermal and hydraulic loop code and
thermal and hydraulic core code should have compatible friction
factor models.



(4) A slight change in the physical system such as a change in the
cooling fluid quite often requires a code to be completely rewritten.

(5) Certain computations which should be the same in different codes
are not. For example, the computation of the friction factor is
required by most thermal and hydraulic codes but is often different
in each one.

(6) Certain computations which were originally the same and should
have remained the same in different codes have not. If a
particular computation is upgraded in one code, it will probably
not be ugraded in the second code.

All of these difficulties can be circumvented by use of an overall
code structure with properly constructed codes and subcodes. The development
of nodular structures similar to that presented in this paper are described
in the literature(2,3,4,5,6,7). These modular code systems have been
designed primarily for nuclear calculations under conditions that do not
apply to a loss-of-coolant accident; however, the general schemes referenced
apply to a more comprehensive system.

The referenced systems have been more concerned with linking existing
codes that may or may not be consistent. The description presented here
also utilizes this concept but goes one step further to present a method
of code development that will provide consistency between codes and a
simple method to keep all codes up-to-date and coincident with the "state
of the art" and the latest experimental results. This paper, then describes
how the loss-of-coolant accident will be separated into component parts
and analyzed in terms of a unified code structure replete with modular
codes and subcodes.

II. OBJECTIVES

The specific objectives of developing codes in this structure are to:

(1) Provide a uniform structure in which codes can be developed and
tested.

(2) Eliminate duplication of effort, where possible.

(3) Provide a method of easily comparing different versions of codes
where duplication of effort is required.

(4) Provide a method of easily interfacing codes either sequentially
or iteractively so that strong coupling effects can be investigated.

(5) Provide a structure that will allow the physical system to be
changed easily.

(6) Provide consistent calculations in different codes.



(7) Provide simultaneous updating of similar calculations in different
codes.

(8) Provide a structure which will allow portions of the system which
were not previously analyzed or cannot be analyzed at this time
to be included in the analysis.

(9) Provide a uniform and sound basis for comparing the results of
analytical models with those of scoping experiments.

III. GENERAL DESCRIPTION OF THE INCA STRUCTURE

A code system which includes both characteristics of standardization
and modularization is an automated code system. The two characteristics
a:i illustrated in Figure 1. The overlapping circles represent computer
codes which have common computational procedures. Standardization
requires that the overlapping areas be exactly the same in each code.
Modularization requires that each of these overlapping areas be modules.
Modules are defined as codes or subcodes designed to be completely inte -
changeable. Modules serve the same purpose and interface exactly the
same in the systems that use them.

f 8}
For example, Circle A could represent the computer coda CONTEMPT-PS s

Circle B the computer code RELAP3(9), and the coiranon area "x" a friction
factor subcode common to both CONTEMPT-PS and RELAP3. Standardization
requires that the friction factor calculation be the same in both codes.
Modularization requires that a different version of the friction factor
calculation be interchangeable.

The preceding discussion illustrates the basic concepts of an automated
code system. The remainder of this section describes the code automation
system that will be implemented by Idaho Nuclear Corporation. The three-
level INCA system will be described first and the characteristics of the
modules included in each level will be discussed later.

1. THE THREE-LEVEL INCA SYSTEM

Figure 2 illustrates the three-level modular structure of the INCA
system. The three levels include (1) the executive level, (2) the modular
code level, and (3) the modular subcode level. Figure 2 illustrates how
some of the codes that have been developed or used for analysis by Idaho
Nuclear Corporation would function in the overall code structure. For
example, the analysis of a containment vessel requires knowledge of the
flow rate and energy out of the broken section of the primary coolant
reactor loop of a large water reactor because this is the input to the
containment analysis. The flow rate from the primary loop in turn is
dependent upon the heat generation rate within the reactor core.
Figure 2 shows that the executive level code sequence would control the
selection of the codes required to complete this computation. This code
sequence would select the desired nuclear kinetics code to supply the
heat generation in the core. This result would then be used as an input
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to the RELAP code which performs the primary loop computations to 'otermine
the flow rate and energy out of the broken loop. This code sequence would
then control the iterations between these two codes. The computations
in these two codes do not depend upon the computations in the CONTEMPT-PS
code. This code performs the computations in the containment vessel after
the flow rate and energy from the break are computed from the previous
two codes. The Code Sequence I controls the transfer of this flow rate
and energy information into CONTEMPT-PS. After the computations in
CONTEMPT-PS are completed, control is transferred back to Code Sequence
I and the calculation is terminated.

Several modules from the subcode level are represented in Figure 2.
For simplicity, subcodes required fay the nuclear codes are not illustrated.
Different versions of the subcode modules.will be available in the system.
These different versions will, in general, represent different levels of
exactness. For example, two versions of the steam tables are shown.
If extreme accuracy is required, the ASME steam table may be used. If
reduced computer time is desired, the simplified steam table will be
selected.

CONTEMPT-PS requires some of the same subcode modules which RELAP3
requires. Consistency of the subcode models used by these two codes is
desirable and will be insured by the code automation system. If cne of
these subcodes is updated, the updated version will be used by both
RELAP3 and CONTEMPT-PS with no modification in either RELAP3 or CONTEMPT-PS.

Figure 2 refers to only a few code sequences, codes, and subcodes
which will be included in the INCA system. For example, an alternate
code sequence containment analysis consists of utilizing the energy and
flow rate data stored in the data bank from previous accident anal-
yses The flow rate would be used as direct input to the CONTEMPT-PS
module. No other modular code would be used in this code sequence.
A third containment analysis consists of utilizing a standard heat
generation distribution in RELAP3. After RELAP3 calculates the flow
rate and energy out of the break, the CONTEMPT-PS code would be called
and the remainder of the run would proceed as in the first code sequence
described.

In general, the executive level controls the ordsr in which modular
codes are executed as well as the specification of the data bank allocations.
It also specifies or prepares the data which are to be in the immediate
core. The executive level codes will be written in a combination of IBM
job control language (JCL) and FORTAN statements. Input and output will
usually be through the data bank. The input data may have been generated
by other modular codes and the output intended for use in other modular
codes. The data bank will be used to store information for later computer
runs as well as information on design basis accidents. The data bank
will also contain conversion codes that will edit and prepare the output .
or one or more codes as input for another code. Modular codes usually
require that the numbers that they use and generate be in immediate core
storage although there are exceptions (such as PDq-7^10'). Modular
subcodes will usually not require any storage of numbers. Modular codes and
subcodes are written in standard FORTRAN language.



This section has described the general structure of the INCA system
and how the varous components function. The next section will describe
the general structure and characteristics of these components.

2. STRUCTURE OF THE INCA COMPONENTS

Although some of the characteristics of each level of the INCA system
will be different, certain characteristics will be common to all three
levels. For example, the resulting codes and code structure will be as
independent of a particular computer as possible. Each of the components
will be . as standardized and as modular as possible. Such standardization requires
that guidelines be established prior to code development. Thus, the information
to be required by and obtained from a module must be specified independently
of the model used to construct the module.

The following rules are to be adhered to in the development of all components
in the code structure. Some of the rules in the following sections will
appear to be so obvious as to be unnecessary, but experience
indicates that particular attention must be given to them if the INCA
system is to be successful.

(a) A standard nomenclature for FORTRAN variables will be utilized to
allow the user to become quickly familiar with a code and also.tc aid
in the diagnosis of programming errors.

(b) In order to preserve the replacement features of modular * Ddes
and subcodes, all versions of the same module must have the same name.
The only method of distinguishing between different versions of the same
code will be an identifying date on a comment card immediately following
the FORTRAN subroutine or function statement in a module. Selection
between versions will be made by specifying the computer library in which
the various versions are stored.

(c) The intent and function of a modular code or subcode will be
decided prior to code development. After the code or subcode has
been inserted ia the INCA structure, this intent and function should not
be expanded or contracted. If splitting a module into two parts becomes
necessary, both parts will be renamed and the original name used to form
a subprogram which calls both of the newly formed modules.

(d) Only FORTRAN IV will be used so that the INCA structure will be as
independent of the particular computer as possible.

(e) Clear and understandable FORTRAN programming will he used at all
times.

For example, long algebraic expressions can be very difficult to interpret
unless the statements are continued at logical places. For example,
the FORTRAN statement



RUV • 0.5* (RfiO(I+l) + ROH(I))*

1 . 0.5* (U(I+1) + U(I))*

2 0.5* (V(I+1) + V(I))

is much more understandable than the equivalent

RUV - 0.125* (EHO(I+1) + RHO(I))* (U(I-

+1)

Several different symbols will not be used for the same quantity
because of resulting difficulties in understanding a program.

(f) No attempt will be made to save a small amount of computer time
at the expense of complicating the programming. For example, transfer of
information to a modular subcode through a FORTRAN common statement is
slightly faster than through an argument list. However, use of the common
statement would make the subcode nonmodular and time consuming to change.
In general, if 20% of the running time of an often used code can be
saved, the programming time required to increase the efficiency of the
code is justified. The increase in efficiency is often obtained by
the use of the symbolic language. Obviously the symbolic language of one
computer is not useable on another. Thus, if the computational efficiency
of a code can be increased only by converting it to a code that does not
fit into the automated code structure, this may only be done if the
original automated version of the code is retained and always updated
before the nonautomated version is updated.

(g) The most efficient programming consistent with rules (e) and (f)
will be used. For example, defining a constant within a FORTRAN DO LOOP
requires much more computer time than defining the constant outside the
loop. Thus, the latter procedure will be followed.

(h) Nothiig will be done in the module that could adversely affect
any other module in the machine. For example, a general clearing of a
portion of the core should not be done because some information being
used in another module could be destroyed. All zeros required by a
code will be set to zero by rigorous coding.

(i) The statement cumbers in each completed module will be arranged
numerically and incremented by cives to allow statements to be located
quickly. Each card will be numbered in columns 73 to 80 with an identifica-
tion which consists of the i'-.rst three letters of the subprogram name and
five numbers which should increase by ten for each card to allow the
insertion of other cards. A small program will be available which
produces this type of deck from an unordered and unnumbered deck.



(j) A code manual will be produced for each executive code sequence, -
modular code, and modular subcode, One of the components of this writeup
will be a flow chart for each modult which describes the significant blocks
in the module. Comment cards will be included in the source deck which
corresponds to this flow chart.

This introduction has described the rules which will be followed in
the development of all the components of the INCA system. The following
sections describe the rules which will be adhered to for a particular .
code level.

2.1 Executive Codes

An executive ^ode (or a code sequence) is made up of a FORTRAN main
program and job control language (JCL) statements. It is used to control
the sequence in which modular codes are executed and to control the flow
of information from one code to another. In general, an executive code
is modular in nature but is specific to the problem being solved and the
computer being used. However, an executive code in FORTRAN is required
for each modular code to execute that code on all computers which can
accept FORTRAN.

The following rules will be adhered to in developing executive codes.

(a) The FORTRAN portion of the executive code will be small in size.
Its primary function will be to specify the order in which the selected
modular codes are. to be run. It may include an iteration procedure and
appropriate convergence testing statements to determine when the output
of two codes are consistent.

(b) Conversion routines will.be called by the executive code to
convert output from one code to input to another code.

(c) One of the primary functions of the JCL portion of the executive
code will be to select the units used for reading information from disk,
tapes, and punched cards and writing information on disks, tapes, and paper.

(d) The other primary function of the JCL portion of the executive code will
be to specify the overlay structure. This overlay structure is designed
to optimize computer time and space and will depend upon the particular
computer being used.

(e) The JCL portion of the executive code, by specifying the '.
library source, also selects the version of a modular code or subcode that
is to be used.

2.2 Modular Codes

A modular code is made up of a principal FORTRAN subroutine and associated
FORTRAN subroutines and function subprograms. Modular codes behave in the
same manner and have the same characteristics as a FORTRAN main program does
except for the fact that the location of the input and output information
of a modular code is controlled by an executive code. The modular code
activates modular subcodes by an appropriate "call" statement. All of



the FORTRAN subroutines and function subprograms called need not be modular
subcodes because they may be pertinent only to one modular code.

The following rules will be adhered to in developing modular codes.

(a) Modular codes will be large and could, in fact, be run completely
independently of the code system. A modular code will be large enough
that to define a rigid interface between it and all other modular codes
in the system will be impractical. Instead, input and output will be
defined as if the modual code existed alone. Conversion routines will
exist in the data bank which will convert the output of one code to the
input of another code. The code will be modular in nature, however,
because; different versions of the same modular code will require the
S&IKS input and produce the same output.

s?i> A modular e.odo will store information when it is in the computer.
Ss«s&erfi KVjch erv> generated in. the code will be stored in the data bank
ii ti«aso iHiToers are required by another code or if these numbers are
t-& bo txi^d \>y the sjajtse code after it has been recalled to the computer
by the £.icectitiv<::. A modular code will also supply absolute dimensions
(i'OKl'RÂ  dimension statements) for the subcodes which it calls.

(c) Variable dimensioning will be used in modular codes in the following
siann̂ sr. -A modular code will be made up of at least two FORTRAN subroutines.
The fSrst subroutine is referred to as the dimension subroutine. It will
supply the .absolute dimensions to the principal FORTRAN subroutine. For
examplec variable dir.-ensior.ing could be accomplished in the code ANDAR(

a)
with the following FORTRAN statements. (ANDARD is the dimension subroutine
.of ANDAU. )

SUBROUTINE ANDARD

DIMENSION TROD (1000(, RHOR (1000), TR (100)

READ (5, 1) NA, NR .

1 FORMAT (215)

CALL ANDAR (NA, NB, TROD, RHOR, Ttf)

RETURN

END

SUBROUTINE ANUAR (NA, NR, TOD, RHOR, TW)

DIMENSION TORD (NA, NR), RHOR (NA, NR), TW(1)

o

o

o

o

RETURN

END

7a) This~ode Is not to be included in the INCA structure but is a fictitious
code used f°r illustration only.

9



In certain instances, the use of dynamic dimensioning will be advantageous
in addition to variable dimensioning. Dynamic dimensioning is advantageous
to increase the size of one or more arrays and decrease the size of one or
more other arrays.. Dynamic dimensioning could be combined with variable
dimensioning in the ANDAR code with the following FORTRAN statements

SUBROUTINE ANDARD

DIMENSION POOL (2100)

READ (5.1) NA, NR

1 FORMAT (215)

NTROD = 1

NRHOR = NTROD + NA*NR

NTW = NRHOD + NA*NR

CALL ANDAR (NA, NR, POOL (NTROD), POOL (IMRHOR), POOL (NTW))

RETURN

END-

SUBROUTINE ANDAR (NA, NR, TROD, RHOR, Ttf)

DIMENSION TORD (NA, NR), RHOR (NA, NR), TO(1)

o

o

RETURN

END

In this example, a single array is used for allocation of computer
storage-. An additional array would be required if arrays of fixed point
numbers are used. The arguments in the "CALL" to ANDAR include array
names in a very simple and meaningful manner. For example, a name, NRHOR,
is given to the initial location of the array KHOR. This naming of locations
clearly identifies the array which is desired in the "call" statement. The
subroutine ANDAR has been left unchanged in the transition from a variable-
dimensioned program to a variable and dynamic dimensioned code. These
examples illustrate the manner in which variable and dynamic dimensioning
will be implemented.

10



The manpower required to convert an existing code to variable and dynamic
dimensioning using the INCA technique will be small, few mistakes will be
made, and only the dimension subroutine need be recompiled if the absolute
dimensions are changed.

(d) The FORTRAN "common" statement will be used to transfer information
within a given modular code but not to a modular subcode.

(e) A modular code will be capable of operating on any computer which
accepts FORTRAN without any change in the coding of the module. The only
exception to this rule is the dimension statement in the dimension routine
which may have to be decreased for a machine with a small storage capability.
Variable dimensioning makes decreasing the dimension statement a simple
change and one without likelihood of errors.

(f) A standard list of test, problems will be set up for each modular
code. This standard set of problems will be run each time a change is
made to the modular code to determine what effect the change will have
upon the results.

2.3 Modular Subcodes

A modular subcode is either a single FORTRAN subroutine or a single
FORTRAN function subprogram which is activated by an appropriate "call"
statement, from a modular code or subcode. A modular subcode is intended
to perform a computational procedure which is required by several codes
and which should be exactly the same in each of these codes. A good
example is the computation of the friction factor in thermal and
hydraulic codes.

The folloxtfing rules will be adhered to in developing modular subcodes.

(a) Information will not be transferred to or from subcodes by the
FORTRAN 'common" statement. This rule avoids conflicts in the names of variables
in the calling code and the called subcode. Any difficulty associated
with long argument lists can be circumvented by formulating subcodes as
FORTRAN function subprograms and using a defining FORTRAN function statement
in the calling code.

Subcodes are small enough in size and specific enough in nature
that such a rigid interface (the augument list.) between a given subcode
and all other codes is practical to define.

(b) Numbers which are calculated by the modular subcode will not be
stored in the subcode. Thus a subcode may be called by any code
without destroying information which may be needed at
a later time. A calling modular code, a tape, or a disk may be used for
storage. For example, a rod conduction modular subcode would calculate
the temperature distribution at a new time from a temperature distribution.
at a previous time, the heat generation rate, and the boundary conditions.
The new distribution will be stored in the modular code so that the same
modular subcode can be called to calculate the new temperature distribution
in another rod without destroying ".ny stored information.

11



(c) Variable dimensioning will be used in subcodes so that arrays of differ-
ent sizes can be used with the same module. Any dynamic dimensioning
which is required will be taken care of in the calling modular code and
will be automatically included in the modular subcode.

(d) All modular subcodes will be completely investigated off-line
with a simple calling program. The desired range of all the arguments
will be checked and the limitations included within the module.

(e) A standard list of test problems will be set up for each modular
subcode. This standard set of problems will be run each time a change
is made in the subcode. The results will be used to determine what
effect the change will have upon the results.

(f) The argument list will include arguments which might be
required in future versions of a subcode. Inclusion of these arguments
will eliminate the- difficulty of changing the FORTRAN "call" statement
when a different version of a subcode is produced.

(g) A modular subcode will be capable of operating on any computer which
accepts FORTRAN IV without any change in the coding of the module.

(h) Input parameters should never be used on the left hand side
of an equal sign. This could easily cause a constant to be redefined in
a modular code itfhich is an extremely difficult mistake to find.

These preceding sections have described the modular concept, the
specific three level structure proposed for the INCA system, and some of
the detailed characteristics of the components of this system. The following
section will describe the actual code sequences, codes, and subcodes
which will be included in the INCA system.

IV. THE GENERAL CORPORATE CODE STRUCTURE !

The development of an automated code structure requires that the intents J
and purposes of the components within the structure be defined to make j
certain that all the components fit together and that expansion can take j
place without disrupting the system. The first part of this section describes ]
an example of the interrelationship between the various components of (
the system. For brevity, the example is confined to the development from J
the executive structure through the modular subcode level for the thermal- I
hydraulic codes. f

i

The second part of this section provides an example of a method for f
classifying existing codes by Idaho Nuclear Corporation and other organizations so that f
comparisons can be made between appropriate codes and the assets and f
shortcomings of each can be ascertained. Again, for brevity, the example i
is confined to the thermal-hydraulic codes. 1

'I
1. MODULES IN THE INCA SYSTEM

An organization chart of the modules in the INCA system is presented |
in Figure 3. The development of the modules in the system is consistent
with the overall code structure presented in Figure 2.

12
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2.1.1
RELAP**
Primary System
Loop Code

2.1 Transient
Thermal and
Hydraulic
Codes

2.1.2
CORTHAN**
Multichannel
Core Code

2.1.3
CONTEMPT-PS*
Containinent
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2.1.4
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* Indicates codes which can be obtained from codes which are presently available
at Idaho Nuclear Corporation.

** Indicates codes which will be developed.

FIGURE 3 (cont.) Plate 2.1
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3.1 Thermal and
Hydraulic Subcodes

3.1.1
FRICA**
Axial Friction
Factor

3.1.2
FRICL**
Lateral Friction
Factor

3.1.5
PROP*
Therraodynamic
Properties

3.1.6 »
QGEN*
Heat Generation
in the Reactor

1
3.1.9
HTXQ**
Heat Exchanger

3.1.10
PUMP**
Pump Characteristics

3.1.3
HCORR*
Heat Transfer
Correlations

3.1.4
QCRIT*
Critical Heat Flux
Correlations

3.1.7
ELBOW**
Flow Through a Variable
Area Pipe with a
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That is, development of modules will proceed along three levels (1) the
executive code sequence level, (2) the modular code level, and (3) the
raodual subcode level. Codes which may be obtained from codes which are
presently available at Idaho Nuclear Corporation are designated vith an
asterisk. The present names of these codes have been retained where
possible to preserve the identification of well accepted codes. Codes
which will be developed are identified with a double asterisk.

Some of the executive code sequences which will be developed are shown
in Figure 3, Plate 1. The fact that these executive codes will be quite
simple to develop is one of the principal advantages of the modular system.
Thus, any code sequence which may be required in the future can be constructed
quite easily from the modular codes and subcodes because the executive
code merely provides storage allocation on peripheral devices and communica-
tion between codes.

The principal classification of modular codes is shown in Figure 3,
Plate 2. The areas of immediate interest are the transient thermal and
hydraulic codes, transient fuel rod codes, nuclear codes, structural codes,
and fission product behavior codes. Item 2.1 is described in more detail
in Figure 3, Plates 2.1.

The modular subcodes which are to be included in the INCA S3rstem are
also classified into several areas which correspond to the modular code
classification (Figure 3, Plate 3). Since any code may use any subcode,
this classification is somewhat superficial. For example, a thermal and
hydraulic code may call a fuel rod subcode. The subcodes, which are
to be developed as thermal and hydraulic subcodes, are illustrated in
Figure 3, Plate 3.1. The other subcodes indicated in Plate 3 refer to
miscellaneous subcodes such as IBM scientific subroutines (for example,
matrix inversion routines).

The thermal and hydraulic subcodes are illustrated in Figure 3, Plate 3.1.
Some of these subcodes will be developed in the course of conducting the loop
code development (RELAP).* The other sutcodes will be developed in a separate
project. All of these smbcodes are needed at the present time.

This section has described briefly the organization of the executive
cedes, the modular subcodes which are part of the INCA system. Modular
codes in this system are comparable in certain instances to codes which
have been and are being developed at other organizations. The following
section provides a basis for comparing different codes.

2. CODE CLASSIFICATION STRUCTURE

Since many of the codes which have been produced by the nuclear industry
are intended to serve the same objectives, the ability to compare these codas
is necessary to determine which are the better codes and the better techniques.
This section presents an example of a method for classifying codes to
provide a basis for comparing them. For brevity, the example is confined
to the thermal-hydraulic codes. This method of evaluating codes will
also prove useful to the Atomic Energy Commission in evaluating the
codes usad by vendors in licensing reactors.
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Each code will be catalogued with identifying numbers which represent
its classification. For example, the thermal and hydraulic codes are
described by eleven categories. The collection of numbers wich represents
the cl.nis a given code falls into will be referred to as its classification
set. All thermal and hydraulic codes which describe slip flow should have
a nwrcber 2 for its fourth number in its classification set. Thus codes
which A s c r i b e ;-lip flow can b e selected very easily. In addition, slip
flew codes which are also loop codes would have in addition a 3 in the
sixth number of its classification set.

Pertinent categories are tabulated in this section only for the
thenr.-il ir-'dr.'iul ic modular code development area. These categories are
subdivide-' into clssres. The number of categories and classes will be
expanded in the future if required.

2,1. C1 it.1; s ijj c r. tin •:_ of The trial and Hy draulic Codes

Tne categories which are to be used to classify thermal and hydraulic
codes are:

(;j) Time state

00 Equations of change solved

(c) Equation of state

(d) Flow state

(e) Thermal state

(f) Geometry

(g) Dimensions

(h) Boundary conditions

(i) Method of solution

(j) Restrictions necessary to insure stability

(k) Accuracy limitation

Each of these categories has several classes. If a class must be split, all
previously classified codes will be listed in both classes until the class
to which it belongs can be determined.

Although a thermal and hydraulic code will contain
many special components, the basic nature of the code can be exhibited
by explaining how this code describes the flow through a straight section
of pipe of constant area. This pipe should be divided into several subvolurnes
or increments. This analysis should be appended to the code classification.
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A code is classified according to the claims of the developer independent
of whether the claims are justified or not. The code is then reviewed
using these claims as a basis for comparison.

The following is a detailed break down of the previous categories.

(a) Time State

(1) Transient

(2) Steady state

(b) Equations of change solved

(1) Continuity and momentum (usually incompressible)

(2) Energy and the steady state continuity

(3) Continuity, momentum, and energy

(4) Energy and continuity

(c) Equation of state

(1) p = constant

(2) p = p(H) or H = H(p)

(3) p = p(P, H) or H = H(P,p)

(4) P = P(p, H)

(5) dP = (J|) dp

where p = density, H = enthalpy, and P = pressure

(d) Flow state

(1) No slip

(2) Slip allowed

(e) Thermal state

(1) Equal phase temperatures (one temperature- or enthalpy used to
represent the entire temperature profile in a channel)

(2) Nonequal phase temperatures (two temperatures or enthalpies used;
one represents the average vapor enthalpy, the other represents
the average liquid enthalpy)

(3) Complete enthalpy or temperature distribution in a channel or
pipe considered
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(f) Geometry

(1) Core code

(2) Upper and lower plenum code

(3) Primary loop code

(4) Containment code

(') Secondary loop code

(g) Dimensions

(1) ID cartesian

(2) 2D cartesian

(3) 3D cartesian

(4) Cylindrical (r, $)

(5) Cylindrical (r, z)

(6) Volumetric

(h) Boundary conditions

(1) Nonloop code requiring information at inflow boundaries. For
example, a core code which only requires boundary conditions
at the inlet.

(2) Nonloop code requiring information at inflow and outflow boundaries.
For example, a core code which requires pressure specification
at the inlet and outlet of the coro.

(3) Loop code which describes only a closed loop and required no
boundary conditions»

(4) Loop code which can describe breaks in the line as well as TEE
joints in the line.

(i) Method of solution

(1) Green's function or integral equation

(2) Completely explicit, numerical

(3) Completely implicit, numerical

(4) Combined explicit and implicit numerical; that is, some of the
equations are solved explicitly and some are solved implicitly

(5) Characteristic solution
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(6) Quasi-steady state

(7) Orthogonal series solution

(8) LOS ALAMOS methods, such as MAC(1 ' and PIC(

(9) Scheme not reported

(j) Restrictions necessary to insure stability

(1) Limited by the speed of sound At/Az < k/v where k is a constant close
to 1; that is, 1/2 < k < 2 " s

(2) Limited by the local fluid velocity

(3) None reported

(k) Accuracy limitation

(1) Pressure calculation requires a very accurate enthalpy calculation

(2) Calculation is limited by truncation error term in one or more
of the equations

(3) Depends upon evaluating derivatives in the steam tables

(4) None reported

IV. CONCLUSIONS

The system discussed provides two fundamentally attractive advantages
to the AEC and the nuclear industry: (1) it will alleviate many of the
past problems and errors in design and safety analyses and prevent their
recurrence in present and.future analyses, and (2) it will provide sound
technical retioiale for answering the ever present questions raised by
the industry, the AEC, and the public on the conservatism built into
analyses.
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