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ABSTRACT

The problem of performing transformations from geocentric to geodetic coordinates has
received an inordinate amount of attention in the literature. Numerous approximate methods
have been published. Almost none of the publications address the issue of efficiency and in
most cases there is a paucity of error analysis. Recéntly there has been a surge of interest in
this problem aimed at devcloping more efficient methods for real time applications such as
DIS. Iterative algorithms have been proposed that are not of optimal efficiency, address only
one error component and require a small but uncertain number of relatively expensive
iterations for convergence. In a recent paper published by the author a new algorithm was
proposed for the transformation of geocentric to geodetic coordinates.- The new algorithm
was tested at the Visual Systems Laboratory at the Institute for Simulation and Training, the
University of Central Florida, and found to be.30 percent faster than the best previously
published algorithm. In this paper further improvements are made in terms. of efficiency.
For completeness and to make this paper more readable, it was decided to revise the previous
paper and to publish it as a new report. The introduction describes the improvements in more
detail.

In the previous paper, a well known rapidly convergent iterative approach was modified to
eliminate intervening trigonometric function evaluations. A total error metric was defined
that accounts. for both angular and altitude errors. The initial guess was optimized to
minimize the error for one iteration. The resulting algorithm yields transformations correct to
one centimeter for altitudes out to one million kilometers. Due to the rapid convergence only
one iteration was used and no stopping test was needed. This algorithm was discussed in the




context of machines that have FPUs and legacy machines that utilize mathematical

subroutine packages.

INTRODUCTION

The problem of transforming from
geodetic coordinates to geocentric coordinates has
received an inordinate amount of attention for what
seems to be a relatively simple problem. The
author has encountered more than forty papers on
the problem in the literature and has included some
of the more significant ones in the references to this
paper1‘7’10‘18’20'25»?/8'31. Several different
types of approximate solutions are available
including tabulations, series expansions and
iterative approaches. A surprisingly large number
of authors believe that no closed form solution
exists, although it is easily derived2,3,10,11,25
Most authors provide very little in the way of an
error analysis. In some cases only the altitude

errors are addressed®:12:31, For applications such
as radio astronomy, the angular errors may
dominate and cannot be ignored. A notable
exception to these observations is the paper by
Borkowski published in 1989 that compares the
accuracy of several procedures, including closed

form solutions3.

Almost none of the papers address computational
efficiency. = Borkowski reports run time
comparisons, but, makes no attempt to improve
efficiency because it was not an issue for his
application. The closed form solutions involve the
algebraic solution of a quartic equation by the
classical method due to Ferrari. For closed form
solutions, some care must be-taken to avoid
computationally costly complex arithmetic and the
inevitable ill conditioning that is associated with
analytic solutions of this type. The ill conditioning
occurs becanse the direct Ferrari formulation leads
to the subtraction of numbers with large magnitude
that have opposite signs. This, in turn, requires the
use of multiple precision even on machines having
extended word length. Borkowski shows how to
formulate the quartic to avoid both the complex
arithmetic and the ill conditioning. However, this
reformulation introduces some relatively expensive
transcendental function evaluations. In addition,
the Ferrari method itself requires several relatively
time consuming square root and cube root
operations. As a result the closed form solutions
are not very efficient.

Recent developments in real time distributed
simulation, particularly the Distributed Interactive
Simulation (DIS) Program®19, have led to
renewed interest in the problem in an attempt to

attain more efficiency!2-13,31, These papers
employ essentially the same procedure to reduce
the problem to a quartic equation in a smgle
variable. In each case the resulting quartic is
solved by an iterative procedure based on Newton’s
method. These formulations lead to algorithms that
are not of optimal efficiency for the accuracy
attained. In this paper, one of the classic iterative
methods is modified to provide a very efficient and

.accurate solution to the problem. A three-

dimensional error metric is defined and the
resulting algorithm is tested, for a relatively dense
sample, for all latitudes, longitudes and altitudes
ranging from well under sea level out to ten million
kilometers. When using the WGS84 ellipsoidal
earth modell8; the maximal (total) error is less than
one centimeter over the test region. This level of
accuracy may seem excessive, given that geodetic - .
earth models represent best fits to the. real earth
shape and induce far more than one centimeter
error. However, when performing simulations, the
selected earth model is taken as exact. To verify
and validate simulations, particularly distributed -
simulations, it is essential that the coordinate
conversions be accurate.

RECENT IMPROVEMENTS

The modified Bowring algorithm presentéd atthe .".

thirteenth DIS workshop has been evaluated by the
Visual Systems Laboratory at the Institute for.
Simulation and Training, University of Central
Florida, and has proven to be about thirty percent

faster than previously pubhshed algonthmsZ9 30,
Improvements contained in this paper show
promise of further increases in efficiency. A few
operations were eliminated in the step by step
procedure contained in reference 29, and are
included in the modified step by step procedure
provided in this paper.

The other principal improvement consists of
replacing the two inverse tangent evaluations
involved in the improved Bowring method by an -
equivalent in-line procedure. This will increase
efficiency at no loss in accuracy for the general
application. In the case of distributed simulation
using DIS protocol standards, the improvement is
likely to be more pronounced. This stems from the
fact that simulated entities tend: to be clustered in
relatively small geographic regions and this
property was exploited in the new algorithm
design. A detailed discussion of the design
approach is given later.



BACKGROUND

A number of reference geodes have been used in
astrogeodetic work18, These all have the form

M XK/a2+Y/a2+@2Z/c)2 =1.

In this paper, the World Geodetic System 1984
(WGS84) is used for the purpose of exposition 18,
For WGS84 a=6,378,137.0 meters and

¢ =6,356,752.3142 meters. Figure 1 below depicts
the geometry of the geocentric (Cartesian) system
and the geodetic system in three dimensions.

The geocentric coordinates of a point P are (X,Y,Z)
and the corresponding geodetic coordinates of P are
(9, A, h) where ¢ is latitude, A is longitude and h is
the height above the reference ellipsoid. The line
connecting the Z axis to P is orthogonal to the
tangent plane at the point Pe.
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Figure 1

The transformation from geodetic to geocentric
coordinates is straight.forward18 and is given by:

‘@  X=@®nN+h)cosd cosA

(3  Y=@RN+h)cos¢sinA

@ Z=RNc2 /a2'+ h) sin ¢

where

(®)  RN=a/[1-[sin2] (a2 -c2)/a2]12,

The inverse transformation is not as easy and is the
subject of this paper. The longitude A is given by

©®  A=w@rly/X)
and -t< A<

Reference (18) contains other conventions for
longitude.

Due to the symmetry of the problem in X and Y it
is sufficient to initially work with a meridional
section of the geode to determine ¢ and h. This
system is depicted in Figure 2.

The meridional ellipse is defined by

) W/a2+Z/c)2=1

and

® .w= X2+Y2)112,
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Figure 2

Some useful relations associated with this-
coordinate system are given below.

The flattening ratio f and the eccentricity e are
constants for a particular geode and are defined by .

© f=(-<)/a
10) e2 =(a2-c2)/a2.

-

It is convenient to define an additional constant e
by

1)  e2=(a2-c2)/c2.

>



Once- ¢ has been determined h can be computed
from

(12) h=(W/cosd)-RN

for ¢ in non-polar regions. In polar regions it is
preferable to use
(13) h=Z/sin ¢+RN €2-1),

where RN is the radius of curvature of the prime
vertical and is given by

(14 RN=a2/(a2cos2 ¢p+c2sin2 ¢) 12
or equivalently

(15) Rn=a/(1-e2sin2¢)I2,

ERROR DEFINITION

Suppose that (X,Y,Z) is the exact location of a
point P in the Geocentric Coordinate system. An
approximate transformation of the coordinates of P
results in another point P, having approximate
geodetic coordinates ($g,A5h5). Using the exact
relations (2,3,4) the approximate .geodetic
coordinates can be transformed into corresponding
approximate geocentric coordinates (Xg,Y 2Z32).
The error E induced by the approximation is
defined to be the Euclidean distance between P and
P,. Thatis,

(16) E=[X-X2? +(Y-Ya)?2 +(Z-Z)] 12.

E can be viewed as the radius of a ball (sphere)
centered at P in the geocentric system.

THE BOWRING ITERATIVE PROCEDURE

‘In 1976 Bowring4 developed a very rapidly

converging iterative procedure based on Newton’s
method for computing tan ¢. The Bowring method
is in fact the standard procedure used in the
military handbook MIL-HDBK-60000818 and in
Rapp23.24, Several of the references!2,31 reject
the Bowring method for high speed computation on
the basis that the computation of tan ¢ requires
several relatively expensive trigonometric function
evaluations per step. A simple observation shows
in fact that no trigonometric calculations are
needed during the iteration. This observation,
coupled with an improvement in the initial guess
yields a very efficient procedure that is so accurate

only one iteration is required. This means that no :

termination test is needed in most applications.

" The Bowring procedure consists of introducing an

auxil_iary variable 8 such that
a7 tan ¢is1=@Z +ce’ 2sin3 Bj)/
(W -ae2 cos3 Bj)
(18)  tanBji1=(1-f) tan $j+1
with the initial value of B given by
(190 tanBg=aZ/cW.
The iteration is terminated when Itan ¢j41 - tan ¢j!

is small enough and ¢ is then computed by using
the inverse tangent function. A cursory

examination of (17) and (18) indicates that the sin, .

cos and inverse tangent must be evaluated for each
iteration. As noted in the introduction these
evaluations can be avoided and thls is the subject of
the next section. .

THE IMPROVED BOWRING METHOD

Observe that B ‘does not explicitly -appear in

equations (17), (18) or (19). Instead sin B, cos B

and tan B are required. These terms are readily
computed from basxc principles. Thatis, in'(17) let

@0). Aj=Z+ce 2sin3B;

and

(1) Bij=W-aeZcos3B;

then -

(22)  un¢i+1=Ai/Bj.

Then, by definition,

@3)  sindiel =Ai/(AiZ+Bi)12
@)  cosdis1 =Bi/(A:2+Bi212,

The values of sin Bi+] and cos Bj+] to be used in

the next iteration are obtained from equation (18). -

The initial condition (19) becomes
@5)  sinBo=aZ/ [@W)2HcZ) 212
(26)  cosBg=cW/[(aW)2+(cZ)2]1/2.

By using (20) to (26) and equation (18), all

intervening trigonometric functions are eliminated
and replaced with two square roots.

-~



The Bowring method can be further improved by a
very simple modification of the initial value of
tan. Experimentation with the Bowring procedure
has shown that the error in tan_¢ is one signed in
the first quadrant. Based on this, a multiplicative
weighting factor is introduced in equation (19) to
minimize the error E after one iteration over all
points in the first quadrant and for a suitable
interval of h values,

NUMERICAL ANALYSIS
Introducing the factor D into (19) yields
@7)  tanBg=aDZ/cW.

For a specific earth model, the value of D can be
selected to minimize the error E on a set S that can
be determined without knowing ¢ and h. The setS
is defined as all points P in the first quadrant with
coordinates (W,Z) that lie in the region bounded by
the ellipses

28)  [W/(athMin)2+ [Z/ (c+hpMin )2 =1, .

and

29  W/(@hMa]2 + [Z/ (c+hMax 2= 1.
The set S'is depicted in Figure 3.
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Figure 3

A point (W,Z) is in S if both of the following
conditions hold

(30)  [W/(athMin)I2+ [Z/ (c+hMin )2 21

(D) W/(a+hMax]2+ [Z/ c+hpMax )12 < 1.

For the WGS84 earth model a set of values of
hMin > hMax » and D were selected so that the
error E is less than 0.01 meters for each region S
after one iteration of the improved Bowring
procedure. These results are of course dependent
on the particular machine environment used and -
this will be discussed in a later section.

The resulting values of hyin, hMax and aD/c are
given in Table 1 below.

Region hMin  hMax aD/c

1 -1*105 2*106  1.0026000

2 2x106  6*106  1.00092592

3 6*106  18%106 0999250297

4 " 18*106 1*109 0997523508
" Table 1: Optimizing Factors

For efficiency the inequalities can be evaluated
sequentially in the order given in the table above.
In this case only the upper region boundary is
evaluated and the inequality can be written in the
equivalent form

(2) W12+ [Z @athMax) / c+hMax )12 <
@+ hMax)z.

This saves a multiply operation. For applications
like DIS most of the points will be inside region 1
which extends to 2000 kilometers in altitude. For
most applications it is probably sufficient to ignore
the test in (32) and to just use the region 1 constant
1.0026. Under this policy the maximum error is
less than 42 centimeters for altitudes less than ten
million kilometers.

For a given point P with coordinates X,Y,Z the
above equations can be assembled into a step by
step procedure for a single iteration. It is assumed
that fixed constants such as e, e¢2,f, and so on are
pre-computed.

step 1. Using (8) compute W= (X2+Y?2)1/2,

step 2. Use equation (32) along with Table 1 to
determine which region P is in and thereby
determineaD /c. . :

step3. Compute Tg=Z(aD/c).

step4. Compute So = [Z(@D /c)] 2+ W22,




step 5. Compute sin 8¢ =T /Sg and
cos Bg =W /S0.

step 6. Compute T1 =Z +ce”2 sin3 By. -

step7. Compute (S1) 2=
[T112 +[W -ae2 cos3 Bg)2.

step 8. Square both sides of (23) to get
sin2 ¢1=T2; / $2;.

step 9. Ready to get h. First from (5) get
RN=a/(1-e2sin 2¢7)1/2,

step 10. If sin2 ¢7 > sin267.5 degrees then
sin ¢1 =(sin2 ¢1) 12 and
h=2Z/sin ¢1 +RN (€2-1).

step 11. Else from (24)

cos &1 =W -ae2cos3 80]/S
and

h=W/cos ¢j-RN.

step 12. Compute ¢ from tan-1( sin ¢1/cos ¢1 )and

A from tan"1( Y/X ) using the in-line arc tangent
algorithm discussed below.

Because only a single iteration is used equation
(18) is not needed. If a second iteration is desired
step 6 needs to be modified to account for (18).

This algorithm will fail if ¢ = 7/2 or -w/2 (or is very
close to one of these values). In this case X is zero
(or nearly zero) and both ¢ and h are known
- immediately. In implementing the algorithm in
software, it is important to include tests for these
cases and take the appropriate action.

Note that only the squares of X and Y are involved
in the procedure and W is positive. The sign of Z
then determines the sign of ¢, so that the procedure
yields the proper value of f for all quadrants, Note
that the test.on 67.5 degrees latitude defines the
region between the Arctic and Antarctic circles.

All of the square root evaluations and the inverse
tangent evaluations can be eliminated from the
above procedure by using in-line code. Whether
this should be done or not depends on the particular
computer environment being uséd. Older (legacy)
environments usually have their mathematical
functions implemented in software. In such cases,
repeated subroutine calls can be relatively
expensive27 and there is a substantial payoff in
terms of reduced execution time when in-line

routines are implemented. It should be noted that
some legacy machines, such as the CRAY family,
have a hardware implementation of the inverse
square root that is used as a basis for very efficient
transcendental subroutines. For most current
workstations the mathematical routines are
embedded in a Floating Point Unit (FPU) to
provide efficient processing. Most square root
implementations on FPU equipped machines take
the equivalent of about five floating point
operations per call. However, there is a substantial
variation in the processing time for the
transcendental functions from one machine to
another. Generally, when using an FPU equipped
system, in-line code for the mathematical functions
is not competitive with the built-in mathematical
routines. One exception to this is given below
where the square root in step 9. is evaluated using
an in-line procedure.

In-line square root evaluation involves the use of
Newton's method for finding square roots and has
been used to great advantage in embedded
systems28. The following sequence converges to
the square root of A given an accurate enough
initial value9

B(3)  X+1=0.5(xj +Akj).
The term (1 - €2 sin 2¢)1/2 of step 9. can be

expanded- in a rapidly convergent binomial series .
because the term U = e2 sin 2¢ is'very small. A

"two term binomial series for the initial guess

coupled with one iteration of (33) along with some
simplification yields

(349 - v=05-0.250
(35) (1-e2sin 7—f)1/2~V+(V-(_).25)/V. :

Use of equations (34) and (35) is at least as fast as
calling a square root routine even when an FPU is
being used and 'has no impact on the overall
accuracy of the basic algorithm.
For machines that do not have a fast square root
function the square roots in steps 9 and 10 can also
be eliminated. This involves the use of a sequential
square root method based on two iterations of
(33)28. The value of Sg computed in step 4. is’
used as an initial guess for two iterations of (33).
This approach has no effect on the total error for

h less than a million kilometers.

IN-LINE ARC TANGENT EVALUATION

In compute intensive systems the computation of
transcendental functions is often a major issue.



The algorithm presented at the DIS Workshop in
September of 1995, involves two inverse tangent
subroutine calls. Just these two calls are estimated
to take between 35 and 45 percent of the entire
computation time for the whole algorithm. To gain
additional efficiencies, these subroutine calls have
been replaced by an equivalent in-line procedure
in this paper.

The strategy for in-line transcendental function
evaluation has received considerable attention,
particularly over the last decade. Virtually every
month, the USENET Group
COMP.ARCH.ARITHMETIC contains
argumentative discussions of how best to
efficiently compute transcendental functions for
real time applications. The favored approach is to
replace built-in subroutine calls with a combination
of table look up and interpolation. The arguments
revolve around how-dense the tables need to be
and the order of the interpolation function. If the
table is very dense and the partition is not uniform,
searching the table becomes the dominant
consideration. When the table is coarser the
complexity of the interpolation scheme is more

important. Inevitably the efficiency of a particular .

choice depends on the application. For some of the
transcendentals the range of the function is
bounded and a uniform step size can be used. This
makes the search part of the table look up very
efficient. The range of the inverse tangent function
is unbounded which makes the use of an equal step
size less accurate. In such a case, a mathematical
transformation is introduced that maps the range of
the function onto a finite interval. In DIS
applications, simulated entities tend to be clustered
in very small geographical areas. For example, in
the Desert Storm operation nearly all of the
engaged ground combatants were contained in-a
one-degree-by-one degree latitude-longitude box.
In a DIS based simulation of Desert Storm
individual simulation nodes are apt to have all of
their entities contained in even smaller regions.
There are a number of approaches that could be
used to exploit this natural clustering. Whatever
strategy is used, the resulting algorithm must be
capable of handling several widely separated
regions and must be automatically reconfigurable
for new scenarios.

In this paper a known procedure for computing
inverse tangents is modified for use in step 12. The
basic mathematics are contained in Hart et al.%.
The geographical clustering is exploiied by
utilizing a re-entrant table search strategy. In
combination these strategies yield inverse tangent
results that are accurate to more than eight
significant figures. This is sufficient to keep the

total error in the coordinate transformation less
than one centimeter. Based on expernmems
conducted on an SGI Indlgo, the execution time for
a single inverse tangent is reduced by about fifty
percent when operating in double precision.

The notation used in Hart is used to make it easier
to refer to the reference. Accordingly, the interval
[0, «] is mapped onto a finite interval by the
following procedure. Define grid points Xj and
evaluation nodes xj by:

@36 Xp=0
BT  Xj=tan[(2i-1)r/(4s)] i=1,....s
G8)  Xigp=«

(39  xj=tn[QiDn/@s)]  i=l,..s+l

These points are interlaced as follows:

@40y 0= X0<X1<x2<X2<x3< .X1<

As<Xs<Xs41<Xs41=

" Using the identity for addition of arc tangents an

argument x in [-Xj-1, Xjl , i = 2,...s+1 is
transformed to an argument t in [-X1,X 1] by the
following formulas

@) t=1fx- (Uxi2+ D] Uxi+%)
and )
(42)  arctan (X) = arctan (xj) + arctan (t).

Arctan (t) is evaluated by a rational polynomizal
approximation defined for the reduced interval
[-X1,X1].  Approximations of varying accuracy are
given in Hart fors=1,2,3,...8.

The design of an efficient algorithm requires the

selection a value of s and an approxlmatmg
function that meets the accuracy requlrements of
the application while economizing on processing
time. As previously noted for DIS applications
simulated entities tend to be geographically
clustered. This would suggest that a relatively fine
grid be used since search time would be minimal

- when re-entrant search is employed. This would in

turn allow the use of a very low order
approximation on [-X1,X 1] that would be very fast.
In Hart, the maximum value of s is 8 and this
would lead to an evaluation grid of 16 points that
are 22.5 degrees apart. This spacing is too large
and requires a relatively high order approximating
function.




The basic concept outlined above has been used'to

design a very fast and sufficiently accurate
algorithm. This was done by setting s equal to 90
so that the grid spacing is one degree (expressed in
radians). The approximating function was chosen
to be of the form

(43)  arctan (f) = t(a] +apt2)
where aj and ag are constants.

Low order approximating functions for arc tangent
are not included in Hart. These constants could be
determined to minimize the relative error in
evaluating the arctangent on [-X1,X1]. This is
- exactly what is done in Hart for the higher order
approximations. To retain the desired one
centimeter accuracy of the total error of the
coordinate transformation "a slightly different
approacit was required.” The two unknown
constants were selected to minimize the total error
of the transformation process. This resulted in the
" following optimized coefficients:

@4)  a1=0.9999 9999 87
@5)  a2=-33329900000

In addition to the mapping equations, the table and

the low order approximating function, a re-entrant
table search algorithm was used to determine the

sub-interval that contains x. In the re-entrant -

search the indices for the sub-interval for a
particular pass through the algorithm are saved and
used for the next pass. The next search is always
started at one of these indices. When the input data
are clustered this process finds the appropriate sub-
interval very rapidly but still operates for points not
inside the cluster.

ERROR EVALUATION

The number representation of the machine on
which the experimental calculations were
performed has a 23 bit mantissa. Single precision
on such-a machine will-lose’ about a meter of
accuracy in representing numbers like a2 and ¢. As
a consequence double precision was used for all
calculations. -

To asséss the error in the algorithm a test program
was developed that defined very dense sets of exact
points (h,f,) on a rectangular grid. These points
were converted exactly by (2), (3) and (4) into a
corresponding set of geocentric points (X,Y,Z).
The 12 step algorithm was applied to obtain a set of
approximate points and the error E was determined.

The maximum error over the entire region was
recorded. In no case did the error exceed one
centimeter on the region encompassing all latitudes
and longitudes for all h (in meters) in [-105,1011].
When step 9 was modified to use (34) and (35) the
error was still less than one centimeter over the -
same region.

TIMING ESTIMATES

The only way to really assess run time is to
implement the algorithm on a particular machine
and test it. However, some idea of the relative cost
of the algorithm can be obtained by using operation
counts. This permits comparisons between
algorithms that are less machine dependent.

The paper by-Wise31-uses such an approach and
provides a convenient means of comparison. Wise
used the number of floating point operations, floats
for short, as a measure of computational cost. He
assumed that multiply, divide and add all take the .
same computational time. This is a relatively good
assumption but is clearly machine dependent.
Based on some empirical evidence he concluded
that it took five floats for a-square root and twelve
for the trigonometric functions. The algorithm
proposed by Wise was then estimated to take 56 +
44 floats where i is the number of iterations used.
He assumed that reasonable care was takén in the
programming process. to eliminate redundant.
calculations. In a later paperl? Lin and Ng
proposed a similar procedure that had an estimated
computational cost that was 20 percent less than
the Wise algorithm. This would result in 0.8( 56 +
44i). The error criterion used-in both papers was to
achieve a 50 centimeter accuracy in h and there
was little or no discussion of the effect of the
angular errors. It should be noted that the error .
criterion used in this paper guarantees that the error
in h is less than one centimeter.

The computational cost of the procedure of the

previous paper29 was estimated using. the
assumptions-made by Wise. Logical tests were
ignored because there-are very few of them and
because they are relatively fast compared to floats.

It .is presumed that Wise -made a similar ..

assumption. Because of the logical tests the run. .

time will depend on the location of P. To simplify

the analysis it is assumed that the altitude of P is
less than 2000 kilometers and that P lies between
the Arctic and Antarctic circles. The resulting total
number of floats is 78. Table 2 below shows the
comparison with the algorithms mentioned above.



i. 56 +44i 0.8(56 +441i) AVN, Heft 12, pp 436-439 (Wichmann,
1 100 80 Karisruhe).
2 144 115
3 188 150 2. Borkowski, K. M., "Transformation of
Geocentric to Geodetic Coordinates Without
Table 2: Computational Cost Estimates Approximations,” Astrophys. Space Science, 139,

. pp 1-4, 1987 and 146, pp 201, 1988.
Wise presented examples for his procedure that

meet the 50 centimeter error (in h) requirement. 3. Borkowski, K. M., "Accurate Algorithms to
Between -15,000 and 17,000 meters one iteration Transform Geocentric to Geodetic Coordinates,"
was sufficient. Between 17,000 meters and Bulletin Geodesique, 63, 1989, pp. 50-56.

350,000 meters two iterations were required and

Wise commented that this operating range would 4. Bowring, B., R., "Transformation from Spatial
suffice for all aircraft and many ballistic missiles. to Geophysical Coordinates,” Survey Rev., V 23,
Between 350,000 and a million meters it took three 181, 323-327, 1976.

iterations and this suffices for medium altitude
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