skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Detailed Modeling Study of Propane Oxidation

Conference ·
OSTI ID:15013956

A detailed chemical kinetic mechanism has been used to simulate ignition delay times recorded by a number of experimental shock tube studies over the temperature range 900 {le} T {le} 1800 K, in the pressure range 0.75-40 atm and in the equivalence ratio range 0.5 {le} {phi} {le} 2.0. Flame speed measurements at 1 atm in the equivalence ratio range 0.4 {le} {phi} {le} 1.8 have also been simulated. Both of these data sets, particularly those recorded at high pressure, are of particular importance in validating a kinetic mechanism, as internal combustion engines operate at elevated pressures and temperatures and rates of fuel oxidation are critical to efficient system operation. Experiments in which reactant, intermediate and product species were quantitatively recorded, versus temperature in a jet-stirred reactor (JSR) and versus time in a flow reactor are also simulated. This data provide a stringent test of the kinetic mechanism as it must reproduce accurate quantitative profiles for all reactant, intermediate and product species. The JSR experiments were performed in the temperature range 1000-1110 K, in the equivalence ratio range 0.5 {le} {phi} {le} 4.0, at a pressure of 5 atm. These experiments are complemented by those carried out in a flow reactor in the temperature range 660-820 K, at 10 atm and at an equivalence ratio of 0.4. In addition, burner stabilized flames were simulated, where chemical species profiles were measured at atmospheric pressure for two propane-air flat flames. Overall, reasonably good agreement is observed between the model simulations and the experimental results.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
15013956
Report Number(s):
UCRL-CONF-203063; TRN: US200803%%765
Resource Relation:
Conference: Presented at: Western States Section of the Combustion Institute 2004 Spring Meeting, Davis, CA, United States, Mar 29 - Mar 30, 2004
Country of Publication:
United States
Language:
English