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Summary of Position

The next decade will require rigorously analyzed mathematical developments, customized to the
interests of the Department of Energy (DOE), that are able to completely and accurately capture
and store critical information from large amounts of scientific data. This goal may be accomplished
through advances in (1) model and functional driven representation of data; (2) graphical and
machine learning; and (3) Bayesian methods. Moreover, such developments must keep pace with
the ever evolving computational capability and data generated across the DOE complex in order
to ensure fast acceleration towards scientific discovery at the leadership level.

Next Generation Mathematics for Data at the DOE

The DOE generates massive amounts of scientific data through many distinct modalities, most
notably, data measured from experimental and observational facilities and data generated by su-
percomputer simulations. The DOE has witnessed exponential growth of data production, a trend
that is anticipated to continue into the future [70, 72]. The life-cycle of scientific data flows through
a hierarchy of storage devices in which both the storage capacity and transmission latency generally
grows as the data moves from the point of generation to a final archival location [74]. This very
broad characterization of scientific data at the DOE describes the salient features of the framework
that is expected to continue into the near future [71], and shapes the challenges and restrictions
faced by algorithmic development in data analytics at the DOE.

This explosion of data and framework dynamics will force changes in how data is stored, an-
alyzed, and moved. One key shift that will need to occur is the functional representation of data
using either approximation or model driven approaches. At the forefront of model [10, 11, 15, 20,
49, 55, 81, 88] and functional [2, 3, 34, 60, 73, 75–80, 85–87] driven representation of data is spar-
sity, regularization, and fast optimization and reconstruction. Sparsity is inherent in a wide range
of data, and many analytics tasks for big data become possible only through detecting sparsity
patterns. Near-optimal sparse representations of data are facilitated by methods in compressed
sensing [13, 24] and statistical learning [41], both of which have been developed in the last decades.
Such methods are characterized by minimal amounts of data acquisition or measurements, as well
as sparsity-enforcing convex regularizations. Data growth at the DOE is driving the need for
innovative techniques that allow more efficient compression and reconstruction of data. Several
methodologies that have recently been explored show great potential, specifically those that in-
clude exploiting the structured sparsity of the data [1, 17, 23, 87, 89], offer new strategies of data
acquisition [84], and employ nonconvex regularizations [83]. These types of methods must be fur-
ther developed to ensure fast and optimal compression of data, in particular to minimize what is
needed to reduce computational cost, storage and transport.

Graphical and machine learning methods have risen to prominence in the last few decades,
and will be central to data analytics in the future [44]. Mathematics has played a unique role
in graphical and machine learning methods [4, 5, 26, 45, 48, 61, 63–66], from building algorithms
that take advantage of tools built for partial differential equations (PDEs) to accelerating learning
on high performance computing (HPC) platforms, as well as increasing the accuracy of classifying
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complex features. It is fair to say that PDE based methods have revolutionized image processing,
beginning with TV restoration introduced in the later part of last century [68, 69, 75], and con-
tinuing on today with missing data restoration and super resolution imaging techniques [12]. The
same thing will be true, on an even larger scale, for machine learning, where PDE based methods
are improving the architecture and non-convex optimization in deep neural nets [14], and have
been demonstrated on the exascale-ready machine Cori at NERSC to efficiently compute low rank
representations of fully connected similarity graph, the backbone calculation of spectral clustering
or semi-supervised/unsupervised machine learning methods [63]. Over the next ten years, mathe-
maticians must develop new methods capable of learning physical relationships and models directly
from data, determine confidence measures in predictions and classifications made by machine learn-
ing methods, and take full advantage of the DOE computational facilities with architecture aware
algorithms that are memory and communication reducing, thereby enabling efficient utilization of
all compute nodes. The proper incorporation of PDE based methods, such as the HPC methods
developed by the FASTMATH [50] SciDAC institute [51], will most certainly play an important
role in bringing machine learning to the exascale.

Understanding the role uncertainty plays is paramount for the methods described above to
be fully understood. Bayesian methods that yield a rigorous framework for describing statistical
models of data are well studied, and provide confidence levels for data assimilation and model cal-
ibration. Such inverse uncertainty quantification (UQ) allows one to compute, given all available
information, posterior expectations of arbitrary quantities of interest. However, capturing full in-
formation using Bayesian methods is much too costly compared to deterministic solutions without
UQ, and therefore improving computational efficiency as well as larger leadership computers are
required. Fully exploiting emerging massively parallel computing architectures, with the explosion
of data along with the growing appreciation in the scientific community of the requirement of UQ,
generates new challenges across computer science, mathematics, and statistics. A particularly fruit-
ful area of emerging research is the joint numerical and statistical analysis of Bayesian methods,
where enormous gains in computational efficiency can be found in comparison to disjoint indepen-
dent analysis of the respective components. The workhorse of Bayesian computation is indisputably
the Markov chain Monte Carlo (MCMC) [28, 31], and within MCMC the most ubiquitous classes of
algorithms are Gibbs [27] and Metropolis Hastings (MH) [42, 67]. Many of the more sophisticated
algorithms at the forefront of research in computationally intensive statistical inference rely on MH
kernels as a crucial component. Algorithms are emerging which are capable of probing posteriors
with features such as strong correlation [37, 38], functional (infinite-dimensional) parameters [9, 19],
sharp manifolds [32, 33, 35, 62], multi-modality [21, 25, 40, 57, 58, 82], or combinations thereof
[7, 15, 20, 59]. In certain scenarios it is natural to emply GPU-acceleration of the linear algebra
appearing inside the method [15]. To apply Bayesian methods to computationally expensive for-
ward simulations, or to large multivariate data, or to models with large parameter spaces, new
methods must be developed which are carefully designed according to consideration of the joint
analysis of the numerical and statistical aspects. One promising emerging avenue is the application
of multilevel [18, 29, 43] and multi-index Monte Carlo [30, 39] to problems of statistical inference
[7, 8, 16, 22, 36, 46, 47, 52–54, 56]. Some other very promising avenues is the incorporation of
Bayesian methods into graphical machine learning models developing a metric for uncertainty of
the classification – a very important quantifier in the absence of ground truth or other suitable
metrics [6].

Convergence of data- and model-driven discovery is clearly a cross-disciplinary problem that will
need dedicated researchers and a commitment to seamless integration of computational facilities
and data generated at the DOE . In order to achieve this goal, mathematical development in
algorithms and theory is needed to effectively connect the resources at the DOE.
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[66] E. Merkurjev, T. Kostić, and A. Bertozzi. An MBO scheme on graphs for classification and
image processing. SIAM Journal on Imaging Sciences, 6(4):1903–1930, 2013.

5



[67] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equation of state
calculations by fast computing machines. The Journal of Chemical Physics, 21(6):1087–1092,
1953.

[68] J. Morel and S. Solimini. Variational Methods in Image Segmentation. Birkhauser Boston Inc.,
Cambridge, MA, USA, 1995.

[69] D. Mumford and J. Shah. Optimal approximations by piecewise smooth functions and associ-
ated variational problems. Communications on Pure and Applied Mathematics, 42(5):577–685,
1989.

[70] Department of Energy Scientific Grand Challenges Workshop Series. Architectures and tech-
nology for extreme scale computing, 2009.

[71] Dept of Energy Scientific Grand Challenges Workshop Series. Cross-cutting technologies for
computing at the exascale, 2009.

[72] Dept. of Energy Scientific Grand Challenges Workshop Series. Discovery in basic energy sci-
ences: The role of computing at the extreme scale, 2009.

[73] S. Osher, Z. Shi, and W. Zhu. Low dimensional manifold model for image processing. UCLA
CAM report 16-04, 2016.

[74] DOE ASCAC Data Subcommittee Report. Synergistic challenges in data-intensive science and
exascale computing, 2013.

[75] L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms.
Phys. D, 60(1-4):259–268, November 1992.

[76] T. Sanders, A. Gelb, and R. Platte. Composite SAR imaging using sequential joint sparsity.
Journal of Computational Physics, 338:357 – 370, 2017.

[77] T. Sanders, A. Gelb, R. Platte, I. Arslan, and K. Landskron. Recovering fine details from
under-resolved electron tomography data using higher order total variation regularization. Ul-
tramicroscopy, 174:97 – 105, 2017.

[78] Z. Shi, S. Osher, and W. Zhu. Weighted nonlocal laplacian on interpolation from sparse data.
Journal of Scientific Computing, Apr 2017.

[79] Z. Shi, W. Zhu, and S. Osher. Low dimensional manifold model in hyperspectral image recon-
struction. CoRR, abs/1605.05652, 2016.

[80] Z. Shi, W. Zhu, and S. Osher. Low dimensional manifold model with semi-local patches. UCLA
CAM report 16-63, 2016.

[81] A. Stuart, A. Shukla, and K. Law. Analysis of the 3DVAR filter for the partially observed
Lorenz’63 model. Discrete and Continuous Dynamical Systems, 34(3):1061–1078, 2013.

[82] R. Swendsen and J.-S. Wang. Replica Monte Carlo simulation of spin-glasses. Physical Review
Letters, 57(21):2607, 1986.

[83] H. Tran and C. Webster. Unified sufficient conditions for uniform recovery of sparse signals via
nonconvex minimizations. submitted to Constructive Approximation, 2017.

[84] H. Tran and C. Webster. A uniform bound of sample complexity for sparse Legendre ap-
proximation via `1 minimization in arbitrary polynomial subspace. submitted to Journal of
Complexity, 2017.

[85] H. Tran, C. Webster, and G. Zhang. Analysis of quasi-optimal polynomial approximations for
parameterized PDEs with deterministic and stochastic coefficients. Numerische Mathematik,
2017.

[86] G. Wasserman, R. Archibald, and A. Gelb. Image reconstruction from Fourier data using
sparsity of edges. Journal of Scientific Computing, 65(2):533–552, Nov 2015.

[87] W. Zhu, B. Wang, R. Barnard, C. Hauck, F. Jenko, and S. Osher. Scientific data interpolation
with low dimensional manifold model. UCLA CAM report 17-22, 2017.

6



[88] D. Zosso, J. An, J. Stevick, N. Takaki, M. Weiss, L. Slaughter, H. Cao, P. Weiss, and A. Bertozzi.
Image segmentation with dynamic artifacts detection and bias correction. Inverse Problems and
Imaging, 11(3):577–600, 2017.

[89] D. Zosso, K. Dragomiretskiy, A. Bertozzi, and P. Weiss. Two-dimensional compact variational
mode decomposition. Journal of Mathematical Imaging and Vision, 58(2):294–320, 2017.

7


