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We investigate a novel application of deep neural networks to modeling of errors in
prediction of surface pressure fluctuations beneath a compressible, turbulent flow. In this
context, the truth solution is given by Direct Numerical Simulation (DNS) data, while the
predictive model is a wall-modeled Large Eddy Simulation (LES). The neural network pro-
vides a means to map relevant statistical flow-features within the LES solution to errors in
prediction of wall pressure spectra. We simulate a number of flat plate turbulent boundary
layers using both DNS and wall-modeled LES to build up a database with which to train
the neural network. We then apply machine learning techniques to develop an optimized
neural network model for the error in terms of relevant flow features.

I. Introduction

Unsteady aerodynamic pressure loads resulting from turbulent flow provide a key design environment for
many aerospace structures. Examples include turbulent boundary layer pressure fluctuations on atmospheric
re-entry vehicles,! and flow within aircraft bays.? High-fidelity computational fluid dynamics models, in-
cluding Large Eddy Simulation (LES), offer the potential to directly predict unsteady loading environments
of this kind. However, turbulence modeling, particularly in the near-wall region, inevitably results in poorly
understood model form errors that can lead to unquantified uncertainties for the predictions. Here, a model
form error is defined to be an error due to an incorrect mathematical representation of a term, or terms, in
the governing equations. In the context of LES, model form error is introduced in phenomenological model-
ing of the sub-filter turbulent stress and in application of approximate turbulent stress boundary conditions
at solid surfaces.

Many previous assessments of prediction of wall-bounded turbulent flows have focused on accuracy of
predicted velocity field statistics, including mean velocity field and Reynolds stress fields. There has been a
corresponding focus on model development to accurately predict these quantities of interest. There has been
much less focus on accuracy of prediction of surface pressure fluctuations, with some recent exceptions.?”4

In this work, we bring two tools together to attempt to increase our understanding of near-wall turbulence
model form error. Direct Numerical Simulations (DNS), which exactly resolve the near wall turbulent flow,
will be used to investigate the sources of errors in these turbulence models. However, extracting sensitivity
information from the massive amounts of data generated by DNS is an enormous challenge. To tackle this
challenge, we will leverage machine learning methods.

Machine learning is a set of data-driven algorithms, including regression, classification, and clustering
techniques. Recently, there has been increasing interest in applying machine learning methods to turbulence
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modeling. Tracey et al.” used neural networks to try to predict the source terms from the Spalart-Allmaras
Reynolds Averaged Navier Stokes (RANS) model. Duraisamy et al.% used neural networks and Gaussian
processes to predict RANS source terms as well as turbulent transition intermittency factors. Parish and
Duraisamy” also suggested combining an inversion step with the machine learning step to determine the
optimal turbulence model closures for a given RANS model. Ling et al.® demonstrated that random
forest regressors could be used to predict the Reynolds stress anisotropy invariants more accurately than
conventional RANS linear eddy viscosity models. Ling et al.? also showed that neural networks could embed
Galilean invariance into a model for the full Reynolds stress anisotropy tensor. Sarghini et al.'® have also
investigated neural network models for LES subgrid scale closures. These studies demonstrate the significant
and growing interest in applying data-driven machine learning methods to turbulence modeling applications.
In the context of this paper, we will discuss how machine learning regression algorithms can be used to map
between LES and DNS wall pressure spectrum predictions.

Much of our work to date has focused on the non-locality of pressure fluctuations within a compressible
boundary layer, and the importance of including non-local information as inputs to a machine learning model
for wall pressure fluctuations.* Deep neural networks have been used to analyze pressure and velocity power
spectral densities (PSDs) within a turbulent boundary layer field (produced by DNS). The present study
aims to apply neural networks to create models that map local flow-field information, such as nearby velocity
and pressure statistics, to errors in wall pressure PSD predictions from an LES simulation. To accomplish
this, we apply DNS of compressible flat plate boundary layers at several supersonic Mach numbers, along
with corresponding wall-modeled LES simulations of the same flow conditions to build a database of model
errors in wall pressure fluctuation PSDs.

Section II presents the computational set-up of the DNS and wall-modeled LES along with some DNS
results. Section III explains the neural network implementation and toolset. Section IV describes how
these tools and data sets are used to build machine-learned models of wall-pressure fluctuation errors.
Section V presents some details of the DNS and WMLES database. In Section VI, we provide results from
the application of neural networks to the data, and in Section VII we provide some additional discussion
and conclusions.

II. Simulation Method

Both the DNS and wall-modeled LES simulations are performed using SIGMA-CFD, a multi-block,
structured grid, finite volume code.'?> The code solves the compressible Navier-Stokes equations using a
low-dissipation, fifth order upwind biased flux-reconstruction scheme. The time integration scheme is a
fourth-order Runge-Kutta method.

For the wall-modeled LES, a sub-grid stress (SGS) model and a wall-layer model are required. For this
work, we employ the standard Smagorinsky SGS model.'> For the near-wall “model,” we simply apply a
no-slip boundary condition. This leads to severe under-resolution of near-wall turbulent eddies, leading to
well-known solution deficiences. However, the purpose of the present study is to test the ability of machine
learning algorithms to represent the error in near-wall pressure fluctuations, so the choice of near-wall
treatment is not particularly important.

We simulate a spatially-developing turbulent boundary layer flowing over an adiabatic wall at several
supersonic Mach numbers. Transition of the boundary layer to a turbulent state is accelerated using the inflow
forcing technique of Li and Coleman.'* Mesh sensitivity studies have been performed to ensure adequate
resolution of the DNS mesh. A snapshot of the Mach 2.0 DNS solution for density gradient magnitude is
shown in Figure 1. This image shows the full domain, including the transitional portion of the boundary
layer and the outflow sponge region, within which the turbulent fluctuations diminish before reaching the
outflow boundary of the computational domain.

The computational domain used for the DNS simulations is 1655y x 1659 x 6dg, where &g is the initial
boundary layer thickness, determined by selecting an appropriate profile from a 2D RANS simulation. The
mesh resolution at the wall is such that in the domain of interest Ayt < 0.6, Azt < 5.0, and Azt < 4.0.
Solution verification studies on coarser and finer meshes showed this level of resolution was adequate to
ensure numerically converged results for velocity and pressure statistics. The sizes of the meshes used for
each Mach number are given in Table 1. The domain is periodic in the z-direction. An absorbing sponge
layer is applied from 1505y < x < 165Jy to prevent any issues with the outflow boundary condition. A
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Figure 1. Schematic of DNS flow configuration showing contours of instantaneous density gradient magnitude
for Mach=2.0.

Mach Number | # Cells in « | # Cells in y | # Cells in z | Total Cells
2.0 4704 193 215 195,192,480
2.5 3980 175 182 126,763,000
3.0 3435 162 157 87,365,790
3.5 3034 150 139 63,258,900

Table 1. Mesh sizes for the DNS runs at each Mach number.

Mach Number | Inflow Thickness §p | Van Driest Thickness
2.0 1.8651-107* m 3.2340 - 107° m
2.5 1.7203-107* m 3.1339-10"° m
3.0 1.6748 -107* m 3.1993-107° m
3.5 1.6930-10~* m 3.3761-10"° m

Table 2. Boundary layer thicknesses used for the inflow boudary condition forcing.

sponge layer is also applied from 65y < y < 16Jy to prevent pressure wave reflections from the top of the
domain. The inflow boundary condition uses the 2D RANS profile and applies the forcing technique of Li
and Coleman. The inflow forcing applies modal perturbations which are a function of height normalized by
the Van Driest thickness. For these runs, the Van Driest thickness for each Mach number was determined
from a theoretical boundary layer profile. These thicknesses are given in Table 2.

The DNS simulations were run using fourth-order Runge-Kutta time integration. A constant time step
of At = 7.0 10710 was used for each Mach number resulting in a maximum CFL number of under 0.25.
The DNS simulations were broken into three phases. In the first phase, the simulations were run for at least
three flow-through times to get beyond any initial transient effects. In the second phase, each Mach number
was run for between 22 and 30 flow-through times to collect statistics on the boundary layer flow. The end
of the second phase was chosen to ensure that a fully-developed turbulent boundary layer was achieved. The
properties of the boundary layer at the end of the second phase were used to determine the locations where
time histories of the flow variables were recorded for use in computing PSDs. Specifically, this information
was collected every 20 cells from 606y < = < 14509 and at 12 equally-spaced locations in the z-direction. For
each of these locations, the values of pressure, density, and velocity were recorded at six locations through
the boundary layer: at the wall, at y* = 10, at y* = 25, at y*© = 50, at y™ = 100, and at y* = 200. The
third phase was run for 15 flow-through times to record the pressure, density, and velocity time histories at
the selected locations.

The LES simulations were run using the same flow conditions and numerical scheme as for the DNS.
The LES mesh was comprised of 505 cells in the x direction, 66 cells in the y direction, and 34 cells in the
z direction, for a total of 1,233,220 cells. The domain size was identical to the DNS domain, except that
the streamwise length was increased to 180dy. This was because the boundary layer transition zone was
longer for the LES, possibly due to the much coarser mesh resolution. The longer LES domain allowed for
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Figure 2. Schematic of multilayer perceptron neural network.

a significant portion of overlap where the LES and DNS boundary layer thicknesses could be matched.

III. Neural Network Methodology

Neural networks are a type of machine learning model in which the inputs are transformed through
successive non-linear interactions. Figure 2 shows a schematic of a neural network. The input features
enter the network through the input layer. The following layers are called hidden layers. Each node in
the hidden layer is connected to every node in the following hidden layer. This type of densely connected
network is named a multilayer perceptron. At each node in the hidden layers, the output of the node is
f(wTx), where f(z) is an activation function, w is a weight vector, and z is the vector of inputs to that node
(i.e. the outputs from all the nodes in the previous layer.) Common activation functions include sigmoid
functions, hyperbolic tangent functions, and rectified linear functions. The leaky rectified linear function (i.e.
f(z) = max(0.01z,z)) was used in this study because of its strong performance with deep neural networks.!®
The weight vectors w for all nodes in the hidden layers are determined during the network training process.
The output layer yields the final network prediction. For training, we used a learning rate of .01, and a
maximum of 10,000 epochs.

There are two main phases to developing a neural network model. The first phase is the training phase
in which the network weights are set. During this phase, the training data, a subset of the total data set,
are used to calibrate the model. This is done by minimizing the mean squared error between the network
predictions and the data labels. The minimization proceeded through back propagation using the Adam
optimizer.'® The second phase is the walidation phase in which the network makes predictions on the
validation subset of the data. Importantly, the validation data should be separate from the training data so
that the network performance is evaluated on data it has not seen before. The network predictions on this
validation data can be compared to the data labels to determine the accuracy of the network predictions.

In this paper, we describe the results of neural networks that were trained to predict either the wall
pressure PSD, or the difference between the true wall pressure PSD from DNS and the LES prediction. The
inputs to the neural network include the LES predictions of the discrete pressure PSD at the wall as well
as other LES pressure spectra at specified distances away from the wall. The data label is the difference
between the LES and DNS discrete wall pressure PSD. Therefore, for a given flow field, each point along
the wall represents a distinct data point at which we would like to be able to correct the LES prediction of
the pressure PSD. The networks were implemented using the Lasagne!” python package, which is built on
Theano.*8

For our experiments, we created three different types of networks. The first is a standard multi-layer
perceptron (MLP). There are 159 input nodes, corresponding to the dimensionality of the input PSD feature
vectors. The first full-connected hidden layer is 795 nodes, followed by 583 nodes on the second, 371 nodes on
the third, and ending with an output layer of 159 nodes, corresponding to the dimensionality of the output
PSD feature vectors.

The second network was a convolutional network (CNN). CNNs were inspired by the architecture of the
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cat and monkey visual cortex,'® where the visual field is divided into various receptive fields, areas that
correspond to different neural activations. Although the receptive fields focus on small portions or aspects of
the visual field, collectively they span the entirety of the visual field. Similarly, in CNNs, the receptive fields
are implemented as filters that apply to a smaller window of the input space, and are convolved across that
space. During the learning process, useful values of the filter are learned through backpropagation as with
the standard MLP layers. The output of these convolution layers are then usually sent through a pooling
layer, which reduces the dimensionality of the output, producing a summary of what the filter has detected,
and providing translation invariance. Max pooling, which takes the maximum output of a convolution layer
within a specified pool size, is one of the more popular pooling methods. For this research, we implemented
a CNN with 159 input nodes, followed by a one-dimensional convolutional layer with a window size of 3, and
then a max pool layer of size 2. This was succeeded by two fully-connected output layers of 159 nodes each.

Lastly, we implemented a convolution-deconvolution network (CDNN). The architecture for this ”mirrors”
the convolutional network. As with the CNN, there were 159 input nodes, followed by convolutional, max
pool, and fully-connected layers with the same parameters. However, these are succeeded by an unpooling
layer, and deconvolutional layer, and finally an output layer of 159 nodes. This takes the form inspired by
the work of Hinton et al. on autoencoders for learning compressed data representations.?®

In all networks, we used 80% training data, and 20% testing data. Of the training data, 20% was used
as validation data to avoid overfitting. We used several different methods of splitting the data along the
streamwise direction. The first was using a random selection of data. However, there was a concern that
partitioning the data in this way would allow spatially contiguous points to be used for training and testing.
If the contiguous points were similar enough to share physical dynamics, then we could be unintentionally
overfitting. So we implemented a sequential split, which took the first part of the data to use as training,
and the second part for testing. We introduced a buffer of two data points between the training and testing
data to help reduce overfitting between the edge points. However, there was a concern that downstream
dynamics may not be captured by training only on the upstream data. So lastly, we implemented a bracketing
partition, where training data came from both the upstream and downstream data, and testing data was
extracted from the middle of the flow. A buffer of two data points was added both before and after the
test set. In the sequential and bracketing partitioning techniques, the same partitioning was also enforced
between the training and validation data.

IV. ML Analysis of Model Errors

The overall objective of this work is to create, using ML methods, a model that maps LES state variables
to errors in prediction of surface pressure PSDs. Figure 3 illustrates the proposed framework for creating
this model, or “map”. During the training process, both DNS and wall-modeled LES simulations are used
to produce surface pressure fluctuation statistics. The DNS data, D, are the truth against which the wall-
modeled predictions, P, are assessed. Various candidate LES flow-field features are also saved, such as local
state quantities, local state statistics, or non-local distributions of states or statistics. The candidate feature
set is generated a priori using domain expertise and understanding from turbulent flow theory. The data
D, predictions P, and feature set {F*} are used to train a machine learning map that takes as inputs a
subset of {Fx} and outputs a model error, a measure of the discrepancy between prediction and truth.
Feature-selection algorithms may also be used to extract the most useful flow-field features for prediction of
model error.

The present study is the first exploration of the feasibility of the proposed framework. Our features
are chosen to be simply pressure PSDs at points within the boundary layer above the prediction point on
the wall. Note that other relevant flow statistics can be added to the candidate feature set, such as the
wall-normal Reynolds stress, a quantity which turbulence theory tells us is strongly related to boundary
layer pressure fluctuations. We plan to explore other such features in future studies.

V. Flow Simulation Database

The first step in the workflow is the generation of a quality DNS database for use as input into the ML
machinery. Towards this end, we performed DNS simulations of turbulent boundary layers at Mach 2.0, 2.5,
3.0 and 3.5.

In Figure 4, we compare mean and RMS velocity profiles to previously published DNS results for a Mach
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Figure 3. Method for creating a machine learning model that maps LES flow-field features to model error.

2.0 boundary layer.?! Figure 6 shows comparisons for a Mach 3.0 boundary layer. In Figure 5, we compare
the wall pressure PSD from the Mach 2.0 DNS with published results. These comparisons show excellent
agreement, providing confidence in the current DNS database as a useful surrogate for providing the desired
true solution.

We then ran wall modeled LES (WMLES) simulations, matching the free stream conditions from the DNS
cases. Figures 7 and 8 compare mean and RMS velocity profiles from the WMLES with the DNS results shown
previously at Mach 2.0 and Mach 3.0, respectively. In order to present this comparison, we chose stream-wise
locations in order to match the values of Rey from the DNS with those from the LES. Substantial error is
seen in both the mean and RMS velocity profiles; the wall shear is under-predicted, resulting in an upward
shift of the non-dimensional mean velocity profile. The peak RMS velocity fluctuations are over-predicted, a
typical behavior that results from poor near-wall resolution and an inadequate near-wall turbulence model.

Figure 9 shows pressure PSDs for the Mach 2.0 DNS and WMLES runs at several heights in the boundary
layer. There are significant differences between the DNS and WMLES spectra. At lower frequencies, the LES
over-predicts the pressure spectra, while at higher frequencies the LES spectra diminish very rapidly with
frequency compared with the DNS. This behavior is fairly representative across the various Mach numbers
that were simulated.

VI. Machine Learning Results

We have created and evaluated several neural networks. For each of the four Mach numbers for which we
have simulation data, we evaluated three neural network architectures: MLP, CNN, and CDNN. For each
of these cases we also investigated two approaches to splitting the data into training sets and testing sets:
sequential and bracketed, discuessed in Section III. We also consider input data from five nominal heights in
the boundary layer (listed in section IT). Due to the large number of permutations, we present representative
comparisons.

In order to test the accuracy of our machine learning approaches, we first attempt to predict the spectra
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Figure 6. Comparisons of mean streamwise velocity and density-scaled RMS velocity fluctuations with previous
DNS results of Bernardini and Pirozzoli.2!

at the wall using spectra at various heights in the boundary layer using only our DNS data. Table 3 provides
information on the training and testing sets used for these DNS to DNS comparisons. This table provides
the range of Reynolds numbers and the number of points in the training and testing sets for each Mach
number and data splitting approach.

For these DNS to DNS comparisons, we considered two sets of training data. The first set of data
consisted of PSDs in units of Pa?/Hz. The second set of data consisted of PSDs in decibel units of dB/Hz.
Figure 10 shows the predicted spectra for these two sets of training data.Both plots are presented in units
of dB/Hz to provide a common basis for comparison. This figure is for Mach 2.0 DNS using the MLP NN
to predict the spectra at the wall using the spectra at y* = 50.

In order to provide a more quantitative comparison, we compute the ML prediction error as the difference
between the predicted spectra and the true spectra. This error is computed after the predicted spectra have
been converted to dB/Hz. Figure 11 shows the ML prediction error for the two sets of training data. The
conclusion that can be reached from this comparision is that at high frequencies the error is lower when
the training data is in units of dB/Hz. An explanation for this behavior is that when the training data is
in units of Pa?/Hz the values of the PSD at high frequencies are several orders of magnitude smaller than
the values of the PSD at low frequencies. The NN training thus applies a higher importance to the lower
frequency values because the high frequency values are very small in magnitude. This results in a NN that
places emphasis on the accuracy of the lower frequency values. By converting the training data to dB/Hz,
which involves taking a logarithm, the values of the PSD at both high and low frequencies have the same
order of magnitude. The resulting NN therefore applies a more equal weight to all frequencies. This is a
representative case and similar results have been observed for the other permutations of Mach number, NN
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Figure 7. Comparisons of mean streamwise velocity and density-scaled RMS velocity fluctuations with previous
DNS results of Bernardini and Pirozzoli.??

architecture, splitting method, and heights in the boundary layer.

Figure 12 shows a summary of the RMS of the ML prediction errors, summed over all frequencies and
all testing points, for each of the NN architectures and training data splitting methods. For these plots,
the error at each height index is computed as the average of the RMS errors at each point in the testing
set. The plots show how the error changes as the height of the input PSD is varied. It might be expected
that the error would increase as the height above the wall is increased. This behavior can be seen in the
results using the bracketed split to the training data, but the trend is not apparent for the sequentially split
data. Figure 13 shows how the RMS of the ML prediction error varies at each point in the testing set for
Mach 2.0. It was anticipated that the error would be largest at the locations furthest from the training data.
This would be at the middle of the bracketed set and the last point in the sequential set. However, this
particular data does not show this anticipated trend. Figure 14, for Mach 3.5, on the other hand does show
the anticipated trends. It has been observed that some cases exhibit the trends while others do not, making
general conclusions difficult. Nonetheless, the prediction errors are relatively small in all cases, O(1dB) or
less, demonstrating the robustness of the algorithm for this problem.

In some cases, it has been observed that when training with PSD data in Pa?/Hz, the resulting predictions
of the wall spectra can be negative at some frequencies. This is an unphysical result, which could be
eliminated by imposing a constraint on the machine learning procedure. The negative values cause problems
when we subsequently convert from Pa?/Hz to dB/Hz or plot on a log scale. To avoid these numerical issues,
we clip the predicted PSDs to have minimum values of 1.0 - 1076, This is not an issue when training with
PSD data in dB/Hz since these values are expected to be both positive and negative, providing another
reason to train with dB/Hz data. For the reasons discussed above, we will limit the rest of the comparisons
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Figure 8. Comparisons of mean streamwise velocity and density-scaled RMS velocity fluctuations with previous
DNS results of Bernardini and Pirozzoli.?!

in this paper to training data in units of dB/Hz.

The above results demonstrate the accuracy of our ML methods by using DNS spectra at various heights
to predict the DNS spectra at the wall. However, the main goal of this work is to be able to predict the error
in WMLES generated wall pressure spectra. In other words, we are going to attempt to predict the difference
in the WMLES and DNS pressure spectra at the wall using the WMLES pressure spectra at various heights
in the boundary layer. To accomplish this we match locations with the same values of Rep between the
WMLES and DNS runs so that we are taking the difference between two flow states that are similar in a
well-defined sense. This matching procedure leaves us with a subset of the original data.

Table 4 provides information on the training and testing sets used for the WMLES spectra to wall spectra
model error comparisons. This table provides the range of Reynolds numbers and the number of points in the
training and testing sets for each Mach number and data splitting approach. The training and testing sets
are greatly reduced from the previous DNS to DNS comparisons. This reduction in the amount of training
data was expected to have some impact on the accuracy of our ML predictions.

Figure 15 shows the true and predicted wall spectra model error for the Mach 3.0 case for input PSDs
at three different heights. Overall, the predictions show very good agreement with the true model error,
especially given the reduction in training data. Figure 16 shows these same comparisons, but the plots
are zoomed in to better show the differences at lower frequencies. Figure 17 shows the ML prediction
error, i.e. the difference between the true and predicted wall spectra model error, at each height. There is
little difference in the error between these three heights. For this particular case, i.e. Mach number, NN
architecture, etc., the input PSD for lower y™ value seems to produce greater error at high frequencies than
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Figure 9. Comparisons of pressure spectra at several location in the boundary layer.

Mach Number | Split Method | # Training Points | # Testing Points Rey, Training Rey, Testing
2.0 Sequential 96 23 1286 to 1919 1938 to 2070
2.0 Bracketed 94 23 1286 to 1602, 1786 to 2070 | 1622 to 1766
2.5 Sequential 81 19 1331 to 1981 2004 to 2138
2.5 Bracketed 79 19 1331 to 1656, 1848 to 2138 | 1681 to 1825
3.0 Sequential 70 16 1379 to 2055 2082 to 2217
3.0 Bracketed 68 16 1379 to 1716, 1914 to 2217 | 1740 to 1886
3.5 Sequential 63 11 1384 to 2067 2098 to 2218
3.5 Bracketed 61 11 1384 to 1723, 1920 to 2218 | 1756 to 1888

Table 3. Training and testing sets for the DNS spectra to DNS wall spectra neural networks.

the input PSDs further from the wall. However, this is not the general trend for all of the NN predictions.

Figure 18 shows the true and predicted wall spectra model error for the Mach 3.5 case with an input
PSD at y* = 312 for the three different NN architectures. Again, the predictions show very good agreement
with the true model error, especially given the reduction in training data. Figure 19 shows these same
comparisons, but the plots are zoomed in to better show the differences at lower frequencies. Figure 20
shows the ML prediction error for each NN architecture at this Mach number and input PSD.. All three
architectures appear to be equally accurate for this case.

Figure 21 shows how well each NN architecture performs overall. There are three plots in this figure, one
for each NN architecture. In these plots, each point shows the predicted model error vs. the true model error
for each Mach number, input PSD, training point, and data splitting method. The dashed line shows an
ideal prediction, while the dotted lines show 4+3 dB. These plots show a consistent unformity of model error
prediction across the three NN arcitectures; there are no significant outlying points with large prediction
error. We observe that the CDNN distribution is slightly wider than the MLP or CNN cases.
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Mach 2.0, MLP NN, Sequential Splitting, PSD data in Pa’/Hz Mach 2.0, MLP NN, Sequential Splitting, PSD data in dB/Hz
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Figure 10. A comparison between predicted spectra using two sets of training data with different units. These
plots are for an MLP NN with the sequential split of the Mach 2.0 training data, but similar results are
observed for other permutations.

Mach Number | Split Method | # Training Points | # Testing Points Reg, Training Reg, Testing
2.0 Sequential 60 14 1286 to 1688 1708 to 1792
2.0 Bracketed 58 14 1286 to 1478, 1603 to 1792 | 1500 to 1590
2.5 Sequential 31 6 1331 to 1583 1607 to 1648
2.5 Bracketed 29 6 1331 to 1458, 1540 to 1648 | 1483 to 1516
3.0 Sequential 24 5 1379 to 1622 1652 to 1681
3.0 Bracketed 22 5 1379 to 1492, 1582 to 1681 | 1522 to 1552
3.5 Sequential 22 4 1384 to 1622 1657 to 1680
3.5 Bracketed 20 4 1384 to 1486, 1588 to 1680 | 1521 to 1554

Table 4. Training and testing sets for the WMLES spectra to wall spectra error neural networks.

Mach 2.0, MLP NN, Sequential Splitting, Input PSD at y* = 50
6 T T T

—— Trained using PSD data in Pa’/Hz
—-—-Trained using PSD data in dB/Hz
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Figure 11. A comparison of the ML prediction error using two sets of training data with different units.
These plots are for an MLP NN with the sequential split of the Mach 2.0 training data, but similar results are
observed for other permutations.
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Mach 2.0, Sequential Splitting, PSD data in Pa*/Hz Mach 2.0, Sequential Splitting, PSD data in dB/Hz

N
~
=
[N}

—©-MLP —5-MLP
—%—CNN —CNN

[

N
L

[

[
I

~N [ CDNN N CDNN
e E— =
E ~
<10} ] g 0 |
g h
3 3
= g
=8 1 =09t .
g &
@ 6 1 %08 F 1
,% =1
2 g ¢
= =07
§ bS]
3
~ ~
0.6
0 | | . 05 . . .
1 2 3 4 5 1 2 3 4 5
Height Index Height Index
Mach 2.0, Bracketed Splitting, PSD data in Pa’/Hz Mach 2.0, Bracketed Splitting, PSD data in dB/Hz
0.6 T T T 0.55 T T T
—©- MLP —&-MLP D
—5CNN p —5¢ CNN
~ 0.55 CDNN B x 05 r CDNN B
= =
~ ~
[as] m
= <
§ 05 | J § 0.45 1
s &
8 I
= 0.45 b < 047 B
£ El
z &
154 53] q
: g
S 04 B £ 0.35
= =
b} 2
Q Qo
~ 035 . = 03
0.3 : : : 0.25 : : :
1 2 3 4 5 1 2 3 4 5
Height Index Height Index

Figure 12. A summary of the RMS of the ML prediction errors for each of the NN architectures and training
data splitting methods as the height of the input PSD varies.

Mach 2.0, MLP NN, PSD data in dB/Hz, y* = 50
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Figure 13. A comparison of the RMS of the ML prediction errors at each point in the testing set.
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Wall Spectra Model Error at Rey = 1681, dB/Hz
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Figure 15. A comparison of the true and predicted WMLES model error for
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Mach 3.0, CNN, Sequential Splitting, Input PSD at y™ = 12.7 Mach 3.0, CNN, Sequential Splitting, Input PSD at y™ = 63.6
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Figure 16. A comparison of the true and predicted WMLES model error for three input PSD locations,
zoomed in to show lower frequency behavior.
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Figure 17. A comparison of the ML prediction errors for the WMLES model error as the height of the input
PSD is varied.
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Mach 3.5, MLP, Bracketed Splitting, Input PSD at y™ = 312.0 Mach 3.5, CNN, Bracketed Splitting, Input PSD at y™ = 312.0
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Figure 19. A comparison of the true and predicted WMLES model error for one choice of Mach number,
input PSD location, and data splitting method, zoomed in to show lower frequency behavior.
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Figure 20. A comparison of the ML prediction errors for the WMLES model error as the NN architecture is
varied for one choice of Mach number, input PSD location, and data splitting method.
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Figure 21. A comparison of the true and predicted WMLES model error for each NN architecture.
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VII. Discussion and Future Work

In this study we examined the ability of various neural networks to predict errors in simulated wall
pressure spectra, using nearby pressure spectra as inputs to the networks. Since our training and testing
domains were distinguished by different streamwise locations in physical space, we were effectively making
predictions at a different Reynolds number given training over some other range of Reynolds numbers.
Admittedly, the range of Reynolds numbers considered is very modest, since the training and testing data
were drawn from the same simulation of a spatially developing boundary layer. However, we were able to
verify the ability of neural networks to represent these spectral relationships in a turbulent flow, and compare
the performance of several different network architectures.

In future work, we will consider more difficult parameter variations between training and testing. For
example, using our current flow simulation database, we can make predictions at one Mach number using a
network trained on other Mach numbers. We will also broaden our set of candidate features, with an aim
towards more practical application of neural networks in the turbulence modeling setting. For example, in
a large-eddy simulation, a typical near-wall model requires specification of an instantaneous surface shear
stress as a function of flow quantities that are local in both space and time. Neural networks or other
machine learning approaches can be used to discern important local features that are useful for modeling this
relationship; ultimately the machine learning map, suitably trained, could itself function as the turbulence
model.
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