
Photos placed in horizontal position 
with even amount of white space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Cybersecurity Models
Complex Systems VVUQ Workshop 2016

Kasimir Gabert, Sandia National Labs

SAND2016-5882C



Outline

 The Problem Space

 Modeling Techniques

 Example Problems

 Verification and Validation Thoughts



Scope of Cybersecurity

 (Ambitious) Goal: eliminate surprise from our computers

 It is a large field, spanning the whole computer system space: 
from subtle software / hardware bugs to the motivation of 
cyber criminals to unintended radiation from physical devices

 Luckily, in order to be useful these systems are necessarily 
engineered to reduce surprise

3



Past (Surprising) Events

 January 2010 Operation Aurora
 A series of advanced attacks first reported by Google and aimed at 

dozens of American companies. These attacks took advantage of 
previously unknown vulnerabilities in Internet Explorer and both 
exfiltrated intellectual property and accessed email of targeted users

 April 2011 Amazon Outage
 A configuration error during an upgrade disconnected a large number 

of storage machines; once the error was fixed they all automatically 
tried to replicate, causing a re-mirroring storm, thread starvation, and 
a large system failure

 April 2014 Heartbleed
 A vulnerability in the OpenSSL library was discovered allowing for 

arbitrary remote memory to be read, including private keys. This 
impacted a massive number of servers on the Internet.

4



Purpose of Cybersecurity Models

 Similar to cybersecurity: eliminate cyber surprise (using 
models!)

 We are asked to determine:
 How a network or system design change might help or hurt 

(performance, security, usability)

 How well a network can withstand or protect against an attack

 Whether a new product will make a set of systems “more secure”

 What an optimal deployment or design of a system change might be

 Some additional uses:
 Help system developers prototype as they build

 Help train individuals or teams

 Dynamically explore a system with open-ended research questions

5



Outline

 The Problem Space

 Modeling Techniques

 Example Problems

 Verification and Validation Thoughts



Differential Equation/Agent-based/
Game Theoretic Models

 Critically, these seem to require a thorough understanding of 
assumptions and important parts of the system
 Can this claim be strengthened through validation?

7

“Evaluating Moving Target Defense with PLADD”, Jones et al. 2015
PLADD: Probabilistic Learning Attacker, Dynamic Defender

“Modeling Botnet Propagation Using Time Zones”, Dagon et al. 2006
“Agent-based modeling of malware dynamics 
in heterogeneous environments”, Bose et al. 
2011



Emulation-based Models

 Because we model computers using computers, the line 
between the “real world” and a “model” is blurry
 A “real world” production virtual machine is a “model” element after 

being copied

 Emulation-based models (“Emulytics” at Sandia) take 
advantage of this blurry line by building models that consist 
mostly of virtual or physical machines running software pulled 
from the real world

 This approach can be augmented with simulation at a packet 
level or with the use of another (non-emulated) model

8



Model Assumptions / Parameters

 Numerous assumptions – known/unknown, implicit/explicit
 For every device in the network (from computers to network cables):

 The operating system or firmware, from the broad version to every 
specific configuration option in every running service

 The hardware the device is running on, all the way from rough 
specifications (amount of memory, speed of processors) down to the 
specific motherboard, all of the integrated circuits on it, and their initial 
RAM states

 The software running on top of the system and all of its options and 
compilation / configuration settings

 The users’ interactions with the device

 Networks can have thousands of devices in them

 Model-specific software, for example a tool that mimics a user or a 
change that artificially speeds up a download to save time

 Unlike atoms, a different parameter can cause a state change
9



Running an Emulytics Model

 The models are run (at clock rate) on computer systems

 We use virtualization platforms and numerous physical 
computers, each with their own complete set of assumptions 
and parameters

 A model may have significantly different output if it is 
oversubscribing the underlying hardware, experiences 
contention with other devices, or simply is not scheduled well 
across the physical cluster

 This adds a degree of non-determinism that does not seem to 
exist with many other models

10



Firewheel

 A platform developed at Sandia that eases the process of 
building, running, and studying these models

 It is another large code base, filled with numerous 
assumptions, many parameters, and plenty of bugs

11



Outline

 The Problem Space

 Modeling Techniques

 Example Problems

 Verification and Validation Thoughts



First Example: Shadscale

 Project: Assist a customer in an annual tabletop cyber 
exercise by putting evidence behind discussed solutions

 Goal of the model: Given a concrete (invented) piece of 
destructive malware and a customer network, evaluate the 
different protections and mitigations the team comes up with

13



The Model

 Some considerations from the real world:
 There are tens of thousands of computers on the network

 Each has an operating system, physical hardware in some condition, 
various software installed, numerous real employee created data, etc.

 There are many routers with unknown configurations, connected in a 
mostly unknown topology

 There are thousands of employees

 We identified a single metric to evaluate mitigations with: 
Fraction of infected hosts over time

 To guide the model construction, we focused on 1) making 
sure we can output the metric and 2) making sure we can 
build each of the proposed mitigations

14



The Model Components

 Required by a mitigation:
 Windows domain

 Routers that can isolate subnets

 Firewalls on network boundaries

 Required for the output:
 Graphical interface automation in the Windows clients (the malware 

needs to be in the correct Windows security context)

 Infection server replica

 Required network infrastructure and servers to deliver and propagate 
malware

 Simple user model (access per real log files, 20% click “Run”)

15



Results

16



Shadscale Artifacts

17



Sensitivity to Parameters

 A model this simple may be a good candidate for an initial 
validation pulling from traditional validation techniques

 The model (given that the artificial malware is so simple, even 
though it is peer-to-peer) seems to really only change given a 
different user model

 We built an agent-based
model, erasing most
parameters

18



Topology Sensitivity



Topology Sensitivity



Topology Scale Sensitivity



Topology Scale Sensitivity



Second Example: I2P

 I2P (Invisible Internet Project) is a peer-to-peer overlay 
network designed to provide anonymous hosting

 Malware authors have moved communication servers into 
it—collaborating with Georgia Tech, we want to learn how to 
stop such malware

23

B

A



I2P Model Goals

1. Suppose we can temporarily turn off I2P 
traffic to an autonomous system on the
Internet. How much would we have to do
this to increase our tunnel ratios?

2. The I2P developers may be willing to
update the code to ban the malware. Will all users who 
update isolate themselves from I2P?

3. It appears that a poisoned router entry could break I2P. 
(Testing this in the model showed that it is not the case.)

4. Given a small testing infrastructure, can we perform a larger 
population estimation by varying unknown model 
parameters?

24



I2P Model

25

 I2P software installed 
on Ubuntu 14.04 
desktop clients

 I2P bootstrapping using 
our own keys

 Network from reversing 
a research paper

 User behavior: an 
infinite loop browsing 
one website



Are These Valid?

 For Shadscale, how do we know that the mitigations would be 
as effective as the results say?

 For I2P, do we know that a poisoned router entry will do 
nothing?

 How can we know that our resulting population estimate 
bounds are reasonable?

26



Outline

 The Problem Space

 Modeling Techniques

 Example Problems

 Verification and Validation Thoughts



Visive Verdict LDRD

 Work in progress

 Identified problems: 
massive number of 
parameters and difficult 
metrics / quantities of 
interest

 We are building small 
laboratory models of 
key components –
hierarchical may work

28



Possible Validation Distinguisher

 As a general validation metric, use a Turing machine as a 
distinguisher between real and emulated

 � is a probabilistic Turing machine distinguisher, � is an 
oracle for the emulator, and � is an oracle for the real world

 Difficulty is in choosing the environment for � (the probability 
space and allowed accesses to the oracles)

 ��� � = Pr � � = 1 − Pr � � = 1

29



Possible Verification

 Software quality assurance seems to translate well

 For solution verification, can we compare against a “ground 
truth” oracle, one that responds with protocol descriptions or 
intended behavior (marketing literature?)?

 We may be able to build these verification checks into the 
models and allow them to run dynamically for each 
experiment

30



Questions / Discussion

31


