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Introduction

Computer networks, in particular Critical Infrastructure (CI) 
systems, continue to foster predictable communication paths 
and static configurations that provide a vector for accessing the 
critical assets of a network. 

 Among the many vulnerabilities that CI systems possess, a 
static configuration can make CI systems attractive and easy 
targets for cyber-attack. 

We provide a means to address these attack vectors by 
automatically reconfiguring network settings and randomizing 
application communications dynamically. Applying these 
protective measures will convert CI systems into “moving 
targets” that proactively defend themselves against attack.
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Introduction

The goal of our research is to significantly reduce the class of 
adversaries able to rely on known static Internet Protocol (IP) 
addresses of CI network devices to launch an attack. Our 
approach introduces uncertainty and unpredictability for 
adversaries reconnoitering a network to determine the function 
of nodes on computer networks, and also for adversaries 
attempting to map the topology of computer networks. It is 
comprised of the following techniques:

 Network Randomization for TCP/UDP Ports

 Network Randomization for IP Addresses

 Network Randomization for Network Paths
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Assumption: Threat Model

 The network randomization (NR) portion of our approach 
assumes that an adversary has successfully gained access to a 
system and is able to observe traffic within the network. 

 The goal of the adversary may be D/DoS, reconnaissance, 
targeting a specific service, or targeting a specific host on the 
network. 

 Our goal is to prevent that adversary from learning the true IP 
addresses and port numbers of the services being offered on 
a network to mitigate the scope of damage of targeted 
reconnaissance attacks
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Implementation: Port Hopper

 Port randomization has been implemented on each host 
within a network with the aid of the netfilter kernel module.

 Port randomization implementation leverages the Network 
Address Translation (NAT) iptable filter chain. Rules applied to 
the NAT chain allow a user to filter just before a packet has 
been routed on the incoming interface and just before a 
packet leaves the outgoing interface. 

 The NAT filter rules allow a user to redirect or overwrite port 
numbers and IP addresses in each packet if it matches user-
specified IP header parameters
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Implementation: Port Hopper
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Implementation: Port Hopper
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// well known ports

$portMaps = [1, 2, ..., 1023]

random.seed(time())

// random permutation of well known ports

random.shuffle($portMaps)

for $i = 0 to len($portMaps) do:

// map a random port number coming into

// a system to a well known port number

$inboundRule = iptables -t nat

-A PREROUTING -p tcp

--dport $portMaps[$i] -j DNAT 

--to-destination 127.0.0.1:($i+1)

// map a well known port number leaving 

// a system to a random port number 

$outboundRule = iptables -t nat

-A OUTPUT

-p tcp --dport ($i+1) -j DNAT 
--to-destination 

127.0.0.1:$portMaps[i]

// Apply the rules to the system

syscall($inboundRule)

syscall($outboundRule)

• All nodes synchronize clocks and seed 
the random number generator with time. 

• the port mappings are randomized and 
iterated to create random mappings. 
The random mappings are then 
appended to an incoming 
PREROUTING iptables NAT rule as well 
as to an outgoing OUTPUT rule.

• Both rules to create and invert the 
mappings are necessary for both sides 
of the communication channel to be 
aware of the translation. 



Implementation: IP Randomizer

 The IP address randomization application is a multi-
component module written for an OpenFlow-based software-
defined-networking (SDN) controller.  

 At the heart of the IP address randomizer are three 
components: 
 the network randomization algorithm and OpenFlow interface (nwr)

 the random IP address generator (gen)

 the network mapping database module (netmap)

 Ancillary modules/code provide for a RESTful API via which an 
external application may trigger a force-randomization action 
for the network.  
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Implementation: IP Randomizer

NWR Module

 Listens for OpenFlow (OF) events regarding the connection of OF
compatible switches. 

 Uses a deny-by-default approach, switches will only switch packets when 
said packets match installed flow rules on the switch.  If there is not a flow 
rule that the packet may match against, the packet header is sent to the 
controller to determine how to treat the packet.

 Hosts an address-resolution protocol (ARP) server. 

 Only permits communication (and random IP address assignment) 
between entities that are part of the network as specified, and are 
directly connected to an OpenFlow-compatible switch.  

 two implementations: (1) reactive IP address randomization, and; (2) 
proactive IP address randomization. 

 A roll interval prescribes the timeout period for each of the randomization 
flow-rules.   
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Implementation: IP Randomizer

GEN Module

 Contains the logic for random IP address generation.  

 It contains a queue data structure whose depth is initialized 
with the size of network (total assignable IP addresses under 
the defined network length).  Its purpose is to keep track of 
the used random IP addresses, so as to avoid reassignment or 
collision.  

 Additionally, an array is kept to track the random IP address 
and the true MAC address of the endpoint.  This is primarily 
used for ARP responses to gateways that may not be part of 
the subnetworks under randomization. 
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Implementation: IP Randomizer

NETMAP Module

 Provides the necessary interface backend database that 
stores the true network map(s).  All entries are derived from a 
network specification file. The netmap component itself 
consists of the several functions to aid the primary nwr
switch:
 getSource function is used by nwr to verify that a packet received 

from some IP is allowed to be within the network(s) under 
randomization. If the data is invalid, nothing is returned and the 
packet(s) is dropped. 

 getDest function does a similar test on the destination IP address for 
the packet.  If the destination IP address is not in the database, 
nothing is returned (and the packet is dropped)
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Implementation: Route Randomizer

 To randomize paths, the network topology describing endpoints 
and interconnections is needed to compute all possible network 
paths between each pair of nodes that does not contain loops. 

 When two endpoints communicate, a random path is selected as 
the circuit switched line of communication within the overlay 
network for a configurable period of time. This circuit is periodically 
randomized and is user configurable on how frequently it is 
randomized. 

 A Breadth First Search (BFS) algorithm is used to generate all 
possible paths. A stack is maintained to ensure that no paths are 
included that contain loops to prevent. Since the paths packets take 
within the network are constantly changing, an adversary must 
correlate traffic at every switch participating in the overlay network 
instead of just the entry and exit points of packets
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Implementation: Route Randomizer

 Our implementation operates within an SDN setting where the 
controller is responsible for learning the topology and installing 
random flows for packets to traverse. 

 The initialization costs associated with the path randomization 
implementation itself are the storage and computational costs to 
calculate all possible non-looping paths between each pair of 
nodes. Because the paths are constantly changing, our 
implementation proactively installs flows to avoid the same startup 
costs each time paths are randomized. 

 The performance overheads vary depending on network topology, 
link speeds, and additional hops taken within the randomly 
selected network path.
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Implementation: Route Randomizer
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Experiment Setup

 The experimental setup consisted of a highly-instrumented 
testbed using virtual machines running the three different 
randomization techniques.

 For the port and IP hopping techniques, each endpoint in the 
virtual system ran network performance monitoring software 
to capture performance data for TCP and UDP; the former 
was comprised of bandwidth counts, while the latter 
consisted of bandwidth, jitter and packet loss counts.  
Included in the parameters for testing were the rotation 
intervals for the reactive IP address randomizer.  

 To test route randomization, we used the IPerf [16] tool to 
measure Round Trip Times (RTT), bandwidth, and data 
transfer times.
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Experiment Results
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Test Duration (s) Technique BW Percentage
240 Port hopper 0.977628
480 Port hopper 0.981913
240 IP-proactive 0.998191
480 IP-proactive 0.998593
240 IP-reactive 10s 0.711685

IP-reactive 30s 0.908663
IP-reactive 60s 0.952302

IP-reactive random 0.955762
480 IP-reactive 10s 0.724593

IP-reactive 30s 0.910393
IP-reactive 60s 0.967297

IP-reactive random 0.953270



Experiment Results
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RTT (ms)
10s Data 

Transfers 
(GB)

Bandwidth 
(Gbit/s)

1MB 
Transfer 

(ms)
Baseline 50.90798 22.25135 19.21674 69.11273
Random 

Path
62.64078 21.59769 20.59946 101.96778

No Randomization vs. Path Randomization



Experiment Results
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Experiment Results
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Experiment Results
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Conclusions

 Our experimental results show that the port randomization 
approach provides the least amount of performance impact, 
while successfully maintaining connectivity of a 
communication session.  

 While port hopping works well to thwart application-based 
attacks, it still does not address protocols below TCP/UDP 
(e.g., ICMP).  Addressing those types of attacks, as well as 
others mentioned, may be done with the IP Randomization 
techniques.  

22



Conclusions

 The experimental results for the IP address randomization 
showed that while the two approaches successfully 
maintained connectivity between two hosts communicating 
with one another, impacts to performance were greater than 
the port hopper, most notably with the reactive IP address 
randomization approach.  

 The advantage to the reactive IP address randomization 
approach is that resources and flow-rules are only used when 
communication is required; the reactive IP address 
randomization approach may suit well for low-bandwidth 
applications such as SCADA.  
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Conclusions

 For systems that require greater bandwidth coupled with 
delay-intolerance, the proactive IP address randomization 
approach should be considered. 

 Path randomization should be used with care since additional 
hops through the overlay network may cause potentially 
unacceptable delays. 

 In time critical applications, limiting the number of additional 
random hops in the overlay network should be considered.
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