SAND2015- 7973C

Sandia
Exceptional service in the national interest @ National
Laboratories

BERBS Snac: .
LT T e R

Techniques for the Dynamic Randomization

of Network Attributes
William M.S. Stout

andia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
orporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Overview rh) pes

= |ntroduction/Background
= Threat Model

" Implementation Details
= Port Randomization
= |P Randomization
= Route Randomization

= Experiment Setup and Results

= Conclusions

Introduction) &

Computer networks, in particular Critical Infrastructure (Cl)
systems, continue to foster predictable communication paths
and static configurations that provide a vector for accessing the
critical assets of a network.

= Among the many vulnerabilities that Cl systems possess, a
static configuration can make Cl systems attractive and easy
targets for cyber-attack.

We provide a means to address these attack vectors by
automatically reconfiguring network settings and randomizing
application communications dynamically. Applying these
protective measures will convert Cl systems into “moving
targets” that proactively defend themselves against attack.

3

Introduction) &

The goal of our research is to significantly reduce the class of
adversaries able to rely on known static Internet Protocol (IP)
addresses of Cl network devices to launch an attack. Our
approach introduces uncertainty and unpredictability for
adversaries reconnoitering a network to determine the function
of nodes on computer networks, and also for adversaries
attempting to map the topology of computer networks. It is
comprised of the following techniques:

= Network Randomization for TCP/UDP Ports
= Network Randomization for IP Addresses
= Network Randomization for Network Paths

Assumption: Threat Model) .

= The network randomization (NR) portion of our approach
assumes that an adversary has successfully gained access to a
system and is able to observe traffic within the network.

= The goal of the adversary may be D/DoS, reconnaissance,
targeting a specific service, or targeting a specific host on the
network.

= Qur goalis to prevent that adversary from learning the true IP
addresses and port numbers of the services being offered on
a network to mitigate the scope of damage of targeted
reconnaissance attacks

Implementation: Port Hopper).

= Port randomization has been implemented on each host
within a network with the aid of the netfilter kernel module.

= Port randomization implementation leverages the Network
Address Translation (NAT) iptable filter chain. Rules applied to
the NAT chain allow a user to filter just before a packet has
been routed on the incoming interface and just before a
packet leaves the outgoing interface.

= The NAT filter rules allow a user to redirect or overwrite port
numbers and IP addresses in each packet if it matches user-
specified IP header parameters

Implementation: Port Hopper).

LOCAL
¥ PROCESS
INPUT QUTPUT
]) FORWARD
PREROUTING FREROUTING ’ FORWARD FORWARD POSTROUTING POSTROUTING

Implementation: Port Hopper).

// well known ports
SportMaps = [1, 2, ..., 1023]
random. seed (time ()
// random permutation of well known ports
random. shuffle ($SportMaps)
for $1 = 0 to len($portMaps) do:
// map a random port number coming into
// a system to a well known port number
$inboundRule = iptables -t nat
—-A PREROUTING -p tcp
--dport S$portMaps[$i] -7j DNAT
--to-destination 127.0.0.1:($i+1)
// map a well known port number leaving
// a system to a random port number

SoutboundRule = iptables -t nat

-A OUTPUT
-p tcp --dport ($i+1) -j DNAT
--to-destination

127.0.0.1:$portMaps[i]
// RApply the rules to the system

syscall ($inboundRule)

syscall (SoutboundRule)

All nodes synchronize clocks and seed
the random number generator with time.

the port mappings are randomized and
iterated to create random mappings.
The random mappings are then
appended to an incoming
PREROUTING iptables NAT rule as well
as to an outgoing OUTPUT rule.

Both rules to create and invert the
mappings are necessary for both sides
of the communication channel to be
aware of the translation.

Implementation: IP Randomizer) .

= The IP address randomization application is a multi-
component module written for an OpenFlow-based software-
defined-networking (SDN) controller.

= At the heart of the IP address randomizer are three
components:
= the network randomization algorithm and OpenFlow interface (nwr)
= the random IP address generator (gen)
= the network mapping database module (netmap)

= Ancillary modules/code provide for a RESTful API via which an
external application may trigger a force-randomization action
for the network.

Implementation: IP Randomizer) .

NWR Module

= Listens for OpenFlow (OF) events regarding the connection of OF
compatible switches.

= Uses a deny-by-default approach, switches will only switch packets when
said packets match installed flow rules on the switch. If there is not a flow
rule that the packet may match against, the packet header is sent to the
controller to determine how to treat the packet.

= Hosts an address-resolution protocol (ARP) server.

= Only permits communication (and random IP address assignment)
between entities that are part of the network as specified, and are
directly connected to an OpenFlow-compatible switch.

= two implementations: (1) reactive IP address randomization, and; (2)
proactive IP address randomization.

= Arollinterval prescribes the timeout period for each of the randomization

flow-rules.

10
-

Implementation: IP Randomizer) .

GEN Module
= Contains the logic for random IP address generation.

" |t contains a queue data structure whose depth is initialized
with the size of network (total assignable IP addresses under
the defined network length). Its purpose is to keep track of
the used random IP addresses, so as to avoid reassignment or
collision.

= Additionally, an array is kept to track the random IP address
and the true MAC address of the endpoint. This is primarily
used for ARP responses to gateways that may not be part of
the subnetworks under randomization.

11

Implementation: IP Randomizer) .

NETMAP Module

= Provides the necessary interface backend database that
stores the true network map(s). All entries are derived from a
network specification file. The netmap component itself
consists of the several functions to aid the primary nwr
switch:

= getSource function is used by nwr to verify that a packet received
from some IP is allowed to be within the network(s) under
randomization. If the data is invalid, nothing is returned and the
packet(s) is dropped.

= getDest function does a similar test on the destination IP address for
the packet. If the destination IP address is not in the database,
nothing is returned (and the packet is dropped)

12

Sandia

Implementation: Route Randomizer @ &=..

= Torandomize paths, the network topology describing endpoints
and interconnections is needed to compute all possible network
paths between each pair of nodes that does not contain loops.

= When two endpoints communicate, a random path is selected as
the circuit switched line of communication within the overlay
network for a configurable period of time. This circuit is periodically
randomized and is user configurable on how frequently it is
randomized.

= A Breadth First Search (BFS) algorithm is used to generate all
possible paths. A stack is maintained to ensure that no paths are
included that contain loops to prevent. Since the paths packets take
within the network are constantly changing, an adversary must
correlate traffic at every switch participating in the overlay network
instead of just the entry and exit points of packets

13

Sandia

Implementation: Route Randomizer @ &=..

= Qur implementation operates within an SDN setting where the
controller is responsible for learning the topology and installing
random flows for packets to traverse.

= The initialization costs associated with the path randomization
implementation itself are the storage and computational costs to
calculate all possible non-looping paths between each pair of
nodes. Because the paths are constantly changing, our
implementation proactively installs flows to avoid the same startup
costs each time paths are randomized.

= The performance overheads vary depending on network topology,
link speeds, and additional hops taken within the randomly
selected network path.

14

Implementation: Route Randomizer @

Overlay
Network

Experiment Setup) .

= The experimental setup consisted of a highly-instrumented
testbed using virtual machines running the three different
randomization techniques.

= For the port and IP hopping techniques, each endpoint in the
virtual system ran network performance monitoring software
to capture performance data for TCP and UDP; the former
was comprised of bandwidth counts, while the latter
consisted of bandwidth, jitter and packet loss counts.
Included in the parameters for testing were the rotation
intervals for the reactive IP address randomizer.

= To test route randomization, we used the IPerf [16] tool to
measure Round Trip Times (RTT), bandwidth, and data
transfer times.

16

Experiment Results =

Test Duration (s) Technique BW Percentage
240 Port hopper 0.977628
480 Port hopper 0.981913
240 [P-proactive 0.998191
480 [P-proactive 0.998593
240 [P-reactive 10s 0.711685

[P-reactive 30s 0.908663

[P-reactive 60s 0.952302

[P-reactive random 0.955762

480 [P-reactive 10s 0.724593
[P-reactive 30s 0.910393

[P-reactive 60s 0.967297

IP-reactive random 0.953270

Experiment Results

Sandia
|I1 National

Laboratories

No Randomization vs. Path Randomization

10s Data) 1MB
RTT (ms) Transfers Bags.v:/ld)th Transfer

(GB) (Ghit/s (ms)
Baseline 5000793 3225135 1921674 011273
Random o, /7g 21.59769 20.59946 101.96778

Path

° Sandia
m National _
xperiment Results
Port Hopper UDP/Bit Loss Port Hopper UDP/lJitter

0.9000 0.3000
0.8000

0.7000 P 0.2500
0.6000 2 02000

w 0.5000 - = 240s c —— 240s

8 PP = 0.1500

S 0.4000 //,,—_’_____ - === 480s g — === 480s

.4: P4 - -

@ 0.3000 /55/ ——— base-240s = 0.1000 base-240s
0.2000 /19;’ === base-480s 0.0500 ====base-480s
0.1000 b+
0.0000 44 . : 0.0000 [' ' ' ' *

)]

-0.1000

20 40 60 80 100

120

Data Rate in Mbits

20 40 60 80 100 120
Data Rate in Mbits

Experiment Results h .

IP-Proactive UDP/Bit Loss IP-Proactive UDP/Jitter
1.8000 0.3000
1.60
14033 / O — 0.2500
1.2000 / = g 0.2000
w 1.0000 / "“'—------) A05 c 240s
g / - "= 0.1500
= 0.8000 /’/ == =-480s 8 === 480s
@ 0.6000 ‘ — hase-240s = 0.1000 — hase-240s
0.4000 - -
--=" = ===hase-480s 0.0500 === base-480s
0.2000 /.."
0_m00 — - 00000 T T T T T 1
02000 O 20 40 60 80 100 120 0 20 40 60 80 100 120
Data Rate in Mbits Data Rate in Mbits

Experiment Results

Bit Loss

IP-Reactive UDP/Bit Loss

—— 10/240s
== ==10/480s

e 30/240s
= = = = 30/480s

e 60/240s
- = =-60/480s

e Rand/240s

' = === Rand/480s
20 40 60 80 100 120

base-240s

Data Rate in Mbits = === hase-480s

Sandia
m National
Laboratories

Jitter in ms

0.35

0.3

0.25

0.2

0.15

0.1

0.05

IP-Reactive UDP/lJitter

40 60 80 100 120
Data Rate in Mbits

e 10/240s
=== 10/480s
e 30/240s
=== 30/480s
= 60/240s
=== 60/480s
= Rand/240s
=== Rand/480s
e—— hase-240s

=== base-480s

Conclusions)

= Qur experimental results show that the port randomization
approach provides the least amount of performance impact,
while successfully maintaining connectivity of a
communication session.

= While port hopping works well to thwart application-based
attacks, it still does not address protocols below TCP/UDP
(e.g., ICMP). Addressing those types of attacks, as well as
others mentioned, may be done with the IP Randomization
techniques.

Conclusions)

= The experimental results for the IP address randomization
showed that while the two approaches successfully
maintained connectivity between two hosts communicating
with one another, impacts to performance were greater than
the port hopper, most notably with the reactive IP address
randomization approach.

= The advantage to the reactive IP address randomization
approach is that resources and flow-rules are only used when
communication is required; the reactive IP address
randomization approach may suit well for low-bandwidth
applications such as SCADA.

Conclusions)

= For systems that require greater bandwidth coupled with
delay-intolerance, the proactive IP address randomization
approach should be considered.

= Path randomization should be used with care since additional
hops through the overlay network may cause potentially
unacceptable delays.

= |n time critical applications, limiting the number of additional
random hops in the overlay network should be considered.

Sandia

Exceptional service in the national interest @ National
Laboratories

s—ry a%%ﬁrm{"‘—'—fﬁiﬂ-; -

w"’ :
o

BB

. ¥ ; - o v rin ol A R
S R R

Questions/Comments

Techniques for the Dynamic Randomization of Network Attributes
William M.S. Stout

DEPARTMENT OF

T YA =g
ENERGY //.l' v" m‘ﬂ Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
National Nuclear Security Administratior Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

