skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Probing Flavor Asymmetry of Anti-quarks in the Proton by Drell-Yan Experiment SeaQuest

Abstract

A new measurement on the avor asymmetry between d and u in the proton is reported in this thesis. The proton contains a substantial number of antiquarks which arise from dynamical interactions of gluons such as gluon dissociation to a quark-antiquark pair, g ! q + q, and from non-perturbative processes as described by the pion-cloud model, for example. The antiquarks in the proton undertake an important role in determining the dynamic characteristics of the internal structure of the proton, although its distribution in the proton and its origin are not fully understood. Understanding sea quarks in hadron is an important subject for QCD. The SeaQuest experiment at Fermi National Accelerator Laboratory (Fermilab) is a xed target experiment using the 120 GeV proton beam extracted from the Fermilab Main Injector. One of the goals of the experiment is to measure the avor asymmetry between d quark and u quark in the proton as a function of the target Bjorken x using the Drell-Yan process in the p-p or p-d reactions. This process takes place in hadron-hadron collisions when a quark in one hadron in the beam and an antiquark in other hadron in the target annihilate into a virtual photonmore » that decays into a lepton pair. The avor asymmetry between d and u quarks was found by deep-inelastic scattering experiment NMC at CERN. The E866/NuSea experiment at Fermilab obtained the avor asymmetry in the proton for 0:015 < x < 0:35 using the 800 GeV proton beam extracted from the Fermilab Tevatron. The result indicates the dominance of d; it is 70% larger than u at lower x. The SeaQuest experiment was planned to do a new precise measurement at higher x region. The lower energy beam (120 GeV) increases the Drell-Yan cross section and suppresses the background primarily arising from J/ decays. Therefore, SeaQuest will obtain more statistics in a shorter time than the E866 experiment. After detector construction, detector commissioning and accelerator upgrade, physics data taking started in 2013. The SeaQuest spectrometer is designed to detect dimuon from the Drell-Yan process. It consists of targets, two di-pole magnets, and four tracking detector groups. The third tracking detector group has two drift chambers. One was newly fabricated in Japan by the Japanese group in SeaQuest collaboration and was shipped to Fermilab. The other one was constructed by SeaQuest collaborator in Fermilab under the initiative of the Japanese group. I worked on the construction and installation of the detectors, data taking and data analysis in SeaQuest. I extracted the avor asymmetry as a function of Bjorken x using the SeaQuest data for the rst time. This thesis shows the results using a part of data taken in 2014 and 2015. The asymmetry was extracted for much wider Bjorken x region than the previous experiment. The measured Bjorken x range covers up to 0.58. The result shows that the ratio of d=u is always higher than 1 at 0:1 < x < 0:45, in contrast to the E866 result. For 0:45 < x < 0:58, the result shows that the ratio is close to unity. Predictions made by current PDF parameterizations are in agreement with the present result. Also, a prediction obtained by one of the non-perturbative models, pion-cloud model, is closer to the SeaQuest result than the E866 result. This result of d=u asymmetry at the wide Bjorken x region, 0:1 < x < 0:58, is very important information to understand the inner structure of the proton and the origin of the sea quarks in the proton.« less

Authors:
 [1]
  1. Tokyo Inst. Tech.
Publication Date:
Research Org.:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP)
OSTI Identifier:
1325974
Report Number(s):
FERMILAB-THESIS-2016-16
1486941
DOE Contract Number:  
AC02-07CH11359
Resource Type:
Thesis/Dissertation
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS

Citation Formats

Miyasaka, Shou. Probing Flavor Asymmetry of Anti-quarks in the Proton by Drell-Yan Experiment SeaQuest. United States: N. p., 2016. Web. doi:10.2172/1325974.
Miyasaka, Shou. Probing Flavor Asymmetry of Anti-quarks in the Proton by Drell-Yan Experiment SeaQuest. United States. https://doi.org/10.2172/1325974
Miyasaka, Shou. 2016. "Probing Flavor Asymmetry of Anti-quarks in the Proton by Drell-Yan Experiment SeaQuest". United States. https://doi.org/10.2172/1325974. https://www.osti.gov/servlets/purl/1325974.
@article{osti_1325974,
title = {Probing Flavor Asymmetry of Anti-quarks in the Proton by Drell-Yan Experiment SeaQuest},
author = {Miyasaka, Shou},
abstractNote = {A new measurement on the avor asymmetry between d and u in the proton is reported in this thesis. The proton contains a substantial number of antiquarks which arise from dynamical interactions of gluons such as gluon dissociation to a quark-antiquark pair, g ! q + q, and from non-perturbative processes as described by the pion-cloud model, for example. The antiquarks in the proton undertake an important role in determining the dynamic characteristics of the internal structure of the proton, although its distribution in the proton and its origin are not fully understood. Understanding sea quarks in hadron is an important subject for QCD. The SeaQuest experiment at Fermi National Accelerator Laboratory (Fermilab) is a xed target experiment using the 120 GeV proton beam extracted from the Fermilab Main Injector. One of the goals of the experiment is to measure the avor asymmetry between d quark and u quark in the proton as a function of the target Bjorken x using the Drell-Yan process in the p-p or p-d reactions. This process takes place in hadron-hadron collisions when a quark in one hadron in the beam and an antiquark in other hadron in the target annihilate into a virtual photon that decays into a lepton pair. The avor asymmetry between d and u quarks was found by deep-inelastic scattering experiment NMC at CERN. The E866/NuSea experiment at Fermilab obtained the avor asymmetry in the proton for 0:015 < x < 0:35 using the 800 GeV proton beam extracted from the Fermilab Tevatron. The result indicates the dominance of d; it is 70% larger than u at lower x. The SeaQuest experiment was planned to do a new precise measurement at higher x region. The lower energy beam (120 GeV) increases the Drell-Yan cross section and suppresses the background primarily arising from J/ decays. Therefore, SeaQuest will obtain more statistics in a shorter time than the E866 experiment. After detector construction, detector commissioning and accelerator upgrade, physics data taking started in 2013. The SeaQuest spectrometer is designed to detect dimuon from the Drell-Yan process. It consists of targets, two di-pole magnets, and four tracking detector groups. The third tracking detector group has two drift chambers. One was newly fabricated in Japan by the Japanese group in SeaQuest collaboration and was shipped to Fermilab. The other one was constructed by SeaQuest collaborator in Fermilab under the initiative of the Japanese group. I worked on the construction and installation of the detectors, data taking and data analysis in SeaQuest. I extracted the avor asymmetry as a function of Bjorken x using the SeaQuest data for the rst time. This thesis shows the results using a part of data taken in 2014 and 2015. The asymmetry was extracted for much wider Bjorken x region than the previous experiment. The measured Bjorken x range covers up to 0.58. The result shows that the ratio of d=u is always higher than 1 at 0:1 < x < 0:45, in contrast to the E866 result. For 0:45 < x < 0:58, the result shows that the ratio is close to unity. Predictions made by current PDF parameterizations are in agreement with the present result. Also, a prediction obtained by one of the non-perturbative models, pion-cloud model, is closer to the SeaQuest result than the E866 result. This result of d=u asymmetry at the wide Bjorken x region, 0:1 < x < 0:58, is very important information to understand the inner structure of the proton and the origin of the sea quarks in the proton.},
doi = {10.2172/1325974},
url = {https://www.osti.gov/biblio/1325974}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Jan 01 00:00:00 EST 2016},
month = {Fri Jan 01 00:00:00 EST 2016}
}

Thesis/Dissertation:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this thesis or dissertation.

Save / Share: