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Outline

• Overview: the PISCEES project and the First 
Order (FO) Stokes model.

• The Albany/FELIX First-Order (FO) Stokes 
diagnostic solver.

• Coupling of Albany/FELIX to the CISM and 
MPAS codes for prognostic simulations of the 
ice sheet evolution. 

• Uncertainty Quantification (UQ): Bayesian 
calibration and forward propagation of 
uncertainty.

• Performance portability.

• Summary and ongoing work. 

• Questions?

Albany/FELIX = new land-ice solver 
with next-generation capabilities.
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The PISCEES Project and the 
Albany/FELIX Solver

“PISCEES” = Predicting Ice Sheet Climate & Evolution at Extreme Scales
5 year project funded by SciDAC, which began in June 2012

Sandia’s Role in the PISCEES Project: to develop and support a robust and 
scalable land ice solver based on the “First-Order” (FO) Stokes physics

Albany/FELIX Solver (steady):
Ice Sheet PDEs (First Order Stokes) 

(stress-velocity solve)

CISM/MPAS Land Ice Codes (dynamic):
Ice Sheet Evolution PDEs

(thickness, temperature evolution)

• Steady-state stress-velocity solver based on FO Stokes physics is known as Albany/FELIX*.

• Requirements for Albany/FELIX: 

• Scalable, fast, robust.

• Dynamical core (dycore) when coupled to codes that solve thickness and temperature 
evolution equations (CISM/MPAS LI codes).

• Advanced analysis capabilities (adjoint-based deterministic inversion, Bayesian 
calibration, UQ, sensitivity analysis). 

• Performance-portability. 
*FELIX=“Finite Elements for Land Ice eXperiments”

Dycore will provide actionable predictions of 21st

century sea-level rise (including uncertainty).

This 
talk
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The First-Order Stokes Model
for Ice Sheets & Glaciers

• Ice sheet dynamics are given by the “First-Order” Stokes PDEs: approximation* to 
viscous incompressible quasi-static Stokes flow with power-law viscosity.
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Albany/FELIX

• Relevant boundary conditions: 

• Stress-free BC: 				2��̇� ∙ � = 0, on Γ�
• Floating ice BC: 
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Ice sheet
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*Assumption: aspect ratio �	is small and normals to upper/lower surfaces are almost vertical.
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Algorithmic Choices for Albany/FELIX: 
Discretization & Meshes

• Discretization: unstructured grid finite element method (FEM)

• Can handle readily complex geometries.
• Natural treatment of stress boundary                                

conditions.
• Enables regional refinement/unstructured                        

meshes.
• Wealth of software and algorithms.

• Meshes: can use any mesh but interested specifically in 

• Structured hexahedral meshes (compatible with CISM).
• Tetrahedral meshes (compatible with MPAS LI) 
• Unstructured Delaunay triangle meshes with regional 

refinement based on gradient of surface velocity.
• All meshes are extruded (structured) in vertical direction as        

tetrahedra or hexahedra.
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Algorithmic Choices for Albany/FELIX: 
Nonlinear & Linear Solver

• Nonlinear solver: full Newton with analytic (automatic differentiation) 
derivatives and homotopy continuation

• Most robust and efficient for steady-state solves.
• Jacobian available for preconditioners and matrix-vector products.
• Analytic sensitivity analysis. 
• Analytic gradients for inversion. 

• Linear solver: preconditioned iterative method

• Solvers: Conjugate Gradient (CG) or GMRES
• Preconditioners: ILU or algebraic multi-grid (AMG)

Nonlinear Solve
for �(�) 	= 	0

(Newton)

Preconditioned 
Iterative Linear Solve 

(CG or GMRES):
Solve �� = �

Automatic 
Differentiation 

Jacobian:

�	 = 	
��

��
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Land Ice Physics Set 
(Albany/FELIX code) 

Other Albany 
Physics Sets

The Albany/FELIX First Order Stokes 
solver is implemented in a Sandia 
(open-source*) parallel C++ finite 

element code called…

• Discretizations/meshes
• Solver libraries 
• Preconditioners
• Automatic differentiation
• Many others!

• Configure/build/test/documentation

The Albany/FELIX Solver: 
Implementation in Albany using Trilinos

Use of Trilinos components has enabled the rapid development of the 
Albany/FELIX First Order Stokes dycore!

Started 
by A. 

Salinger

“Agile Components”

*Available on github: https://github.com/gahansen/Albany

(Salinger et al., 2015).

https://github.com/gahansen/Albany
https://github.com/gahansen/Albany
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γ=10-1.0

γ=10-2.5 γ=10-6.0 γ=10-10

γ=10-10

γ=10-10

The Albany/FELIX Solver is Verified, 
Scalable, Fast and Robust!

Albany/FELIX

LifeV

Verified via MMS and 
code-to-code 
comparisons.

Robust via homotopy
continuation w.r.t. �.
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Scalable via algebraic multi-
grid (AMG) preconditioning

Algebraic 
Structured MG

Unstructured 
AMG 

Algebraic 
Structured MG
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Next Generation Capabilities 
in Albany

Albany/FELIX

• Uncertainty Quantification

– Leverages DAKOTA toolkit.

– Sampling, sensitivity analysis, parameter studies, calibration.

– Embedded techniques (Stokhos + DAKOTA). 

• Performance Portability

– Leverages C++ Kokkos package from Trilinos.

– A programming model as much as a software library.

– Provides automatic access to OpenMP, CUDA, Pthreads, etc.

– Templated meta-programming: parallel_for, parallel_reduce
(templates describe an execution space).

– Memory layout abstraction (“array of structs” vs. “struct of arrays”, 
locality).
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Ice Sheet Evolution Models

• Model for evolution of the boundaries (thickness 
evolution equation):

��

��
= ����� − � ∙ � �	��

�

(conservation of mass). 

• Temperature equation (advection-diffusion):

��
��

��
=
�

��
�
��

��
− ��� ∙ �� + 2�̇�

(energy balance). 

• Flow factor � in Glen’s law depends on temperature �: 
� = �(�).

• Ice sheet grows/retreats depending on thickness �.

time �0time �1time �0

Ice-covered (“active”) 
cells shaded in gray

(� > ����)
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Ice Sheet Evolution Models

• Model for evolution of the boundaries (thickness 
evolution equation):
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(conservation of mass). 

• Temperature equation (advection-diffusion):
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(energy balance). 

• Flow factor � in Glen’s law depends on temperature �: 
� = �(�).

• Ice sheet grows/retreats depending on thickness �.

time �2

Ice-covered (“active”) 
cells shaded in gray

(� > ����)
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Interfaces to CISM and MPAS LI for 
Transient Simulations 

7/20

Albany/FELIX (C++)
velocity solve

CISM (Fortran)
Thickness evolution,  
temperature solve, 
coupling to CESM

simple_glide

C++/Fortran
Interface, Mesh 

Conversion

MPAS Land-Ice 
(Fortran)

Thickness evolution,  
temperature solve, 

coupling to DOE-ESM

C++/Fortran 
Interface, Mesh 

Conversion

LandIce_model

CISM-
Albany

MPAS LI-
Albany

• Structured 
hexahedral meshes 
(rectangles extruded 
to hexes).

• Tetrahedral meshes (dual of 
hexaganonal mesh, 
extruded to tets).

Albany/FELIX has been coupled to two land ice dycores: Community Ice Sheet 
Model (CISM) and Model for Prediction Across Scales for Land Ice (MPAS LI) 

output fileoutput file
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Uncertainty Quantification (UQ) 
Problem Definition

Quantity of Interest (QoI) in Ice Sheet Modeling: 
total ice mass loss/gain during 21st century

→ sea level rise prediction.

There are several sources of uncertainty, most notably:

• Climate forcings (e.g., surface mass balance).
• Basal friction (�)
• Bedrock topography
• Geothermal heat flux
• Model parameters (e.g., Glen’s flow law exponent)

As a first step, we focus on effect of uncertainty in 
basal friction(�) only. 

There are several sources of uncertainty, most notably:

• Climate forcings (e.g., surface mass balance).
• Basal friction (�).
• Bedrock topography.
• Geothermal heat flux.
• Model parameters (e.g., Glen’s flow law 

exponent).

Basal sliding BC: 	
2��̇� ∙ � + ��� = 0, on Γ�

Basal boundary  Γ�
)

Ice sheet
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Uncertainty Quantification
Workflow

Step 1: Model Initialization through Bayesian 
Calibration

What are the model parameters that render 
a given set of observations? 

Step 2: Uncertainty Propagation

What is the impact of uncertain 
parameters in the model on 
quantities of interest (QOI)? 

Observations (known): measurements of ice velocity 
at top surface (����).

Parameters (unknown): basal sliding field	� �, � 	at 
basal surface.

� �, � ~������(1,0.2)

� �, � = �0+ �1� + �2� + �3�

Parameters (known from Step 1): PDF of 
� �, � .

QOI (unknown): sea-level rise during 21st

century.

Basal sliding BC: 	
2��̇� ∙ � + ��� = 0, on Γ�
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Uncertainty Quantification
Workflow (cont’d)

Goal: Uncertainty Quantification in 21st century sea level (QoI)

• Deterministic inversion: perform adjoint-based deterministic inversion to 
estimate initial ice sheet state (i.e., characterize the present state of the ice sheet 
to be used for performing prediction runs).

• Use deterministic inversion to build a Gaussian posterior for the inverse problem 
(based on recovered fields and Hessian) [Future work].

• Bayesian calibration: construct the posterior distribution using Markov Chain 
Monte Carlo (MCMC) run on an emulator of the forward model.

• Forward propagation: sample the obtained distribution and perform ensemble 
of forward propagation runs to compute the uncertainty in the QoI.
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Deterministic Inversion: Estimation 
of Ice Sheet Initial State 

Objective: find ice sheet initial state that
• Matches observations (e.g., surface velocity, temperature, etc.) 
• Matches present-day geometry (elevation, thickness).
• Is in “equilibrium” with climate forcings (SMB).

Approach: invert for unknown/uncertain ice sheet model 
parameters. 
• Significantly reduces non-physical transients without model 

spin-up.

Available data/measurements: 
• (Ice extent and surface topography.)
• Surface velocity.
• Surface mass balance (SMB).
• Ice thickness � (sparse measurements).

Field to be estimated:
• Ice thickness � (allowed to be weighted by observational 

uncertainties).
• Basal friction � (spatially variable proxy for all basal processes)

Ice sheet

�

�

Assumptions: 
• Ice flow described by FO 

Stokes equations.
• Ice is close to 

mechanical equilibrium. 
• Temperature field is 

given.  

Basal sliding BC: 	
2��̇� ∙ � + ��� = 0, on Γ�



20

Deterministic Inversion: Estimation 
of Ice Sheet Initial State (cont’d) 

First Order Stokes PDE Constrained Optimization Problem:

� �,� =
1

2
��� � − ���� 2��

����

+
1

2
�� ��� �� − ��� 2�� +

�

1

2
��� � − ���� 2�� + ℛ(�) + ℛ(�)

����

• Minimize difference between: 
• Computed and measured surface velocity (����) → common
• Computed divergence flux and measured surface mass 

balance (SMB)	→ novel
• Computed and reference thickness (Hobs) → novel

• Control variables: 
• Basal friction (�).
• Thickness (H). 

Estimated divergence (left) vs. 
reference SMB (right)

Estimated � � − ����

Estimated (left) vs. reference surface velocity (right)

Software tools for adjoint-based 
inversion:
• Albany (assembly)
• Trilinos (linear/nonlinear solvers)
• ROL (gradient-based optimization).
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Bayesian Calibration: Proof-of-
Concept using KLE

Approach: Reduce �(100�) dimensional problem to �(10) dimensional problem. 

• For initial proof-of-concept, we use the Karhunen-Loeve Expansion (KLE):

1. Assume analytic covariance kernel � �1, �2 = ��� −
�����

�

��
. 

2. Perform eigenvalue decomposition of �.

3. Expand* � − �̅ in basis of eigenvectors {��} of �, with random variables {��}:

Difficulty in UQ: “Curse of Dimensionality”
The �-field inversion problem has �(100�) dimensions! 

Inference/calibration is for coefficients of KLE      
⇒ significant dimension reduction. 

� � = �̅ +� ������(�)

�

���

Offline

Online

Albany/FELIX has been hooked up to DAKOTA/QUESO (in “black-box” mode) for 
UQ/Bayesian calibration.

�̅ = solution to 
deterministic inversion 

problem (previous slide)

*In practice, expansion is 
done on log(�) to avoid 
negative values of �.
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• Step 2 (DAKOTA): Polynomial Chaos Expansion (PCE) emulator for mismatch over 
surface velocity discrepancy.

• Step 3 (QUESO): Markov Chain Monte Carlo (MCMC) calibration using PCE emulator.

→can obtain posterior distributions on KLE coefficients.

Bayesian Calibration: Proof-of-
Concept Using KLE (cont’d)

• Step 1 (Trilinos): Reduce �(100�) dimensional problem to �(10) dimensional 
problem using Karhunen-Loeve Expansion (KLE):

1. Assume analytic covariance kernel � �1, �2 = ��� −
�����

�

��
. 

2. Perform eigenvalue decomposition of �.

3. Expand* � − �̅ in basis of eigenvectors {��} of �, with random variables {��}:

� � = �̅ +� ������(�)

�

���

�̅ = solution to deterministic 
inversion problem

Offline

Online

*In practice, expansion is 
done on log(�) to avoid 
negative values of �.
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Bayesian Calibration: Illustration 
on 4km GIS Problem 

• Mean �̅ field obtained XXXX (right).

• 10 KLE modes capture ??% of covariance energy (due to 
correlation length; only spatial correlation has been considered).

• Mismatch function (calculated in Albany/FELIX):

� �, � = �
1

��
2
� − ���� 2��

����

• PCE emulator was formed for the mismatch � �, � using uniform prior distributions.

• For calibration, MCMC was performed on the PCE with ??K samples.
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Bayesian Calibration: Illustration 
on 4km GIS Problem (cont’d)

• Insert pictures of distributions; discussion.
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Bayesian Calibration: Building 
Gaussian Distribution using Hessian

• Hessian of the merit functional (velocity mismatch) can provide a way to compute 
the covariance of a Gaussian posterior: 

����� = ������������� + �
��������

• We want to limit only the most important directions (eigenvectors) of �����.

• Issue: there are still too many (~1000) significant eigenvalues (right: log-linear 
plot of spectra for 2 sample Hessians).  

evec 1 evec 2 evec 100

evec 200 evec 500 evec 4000

Figures 
courtesy of 
O. Ghattas’ 
group (Isaac 
et al, 2004)
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Forward Propagation

Albany/FELIX

PCE Emulator

� � = �̅ +� ������(�)

�

���

DAKOTA, Albany/FELIX
QoI(�)

(total ice mass loss)

Model realizations
Forward propagation 

(e.g., 2000-2050)

• Parameter (�) distribution can either be assumed to be Gaussian (based on 
Hessian information) or can be the result of Bayesian calibration.

• Emulator is built using DAKOTA coupled with Albany/FELIX for forward runs.

• Use compressed sensing to adaptively select significant modes and basis 
from parameter space.  The hope is that only a few modes affect the QoI.

• Could use cheaper physical models to reduce computational time of 
forward model.

• MCMC (QUESO) used to perform uncertainty propagation. 

• More details: priors, etc?  
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Forward Propagation: Illustration on 
4km GIS Problem

• Left: SLR distribution from an ensemble of 66 high-fidelity simulations (ensemble members were 
differenced against a control run using the �̅ distribution.  All 66 runs ran to completion out-of-
the-box on Hopper!

• Right: PDF of SLR from the PCE build using compressed sensing with the 66 high-fidelity 
simulations.  The PDF was generated by sampling the 10D KLE modes.  

• Explain procedure!
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Forward Propagation: Illustration on 
4km GIS Problem (cont’d)

Explanations for long tail in sea level PDF: 

• Rapid sliding is confined to an area that is a small fraction of the overall ice sheet.

• A perturbation to the initial beta field that further increases � in areas where there is 
already very little sliding won’t affect the output much. 

• Decreasing � in areas where there is currently little sliding has a very large effect, since 
velocity in those regions will change significantly from the initial condition.
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Forward Propagation: Illustration on 
4km GIS Problem (cont’d)
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We need to be able to run Albany/FELIX on new architecture machines (hybrid 
systems) and manycore devices (multi-core CPU, NVIDIA GPU, Intel Xeon Phi, etc.) .

• Kokkos: Trilinos library and programming model that provides performance 
portability across diverse devises with different memory models.

• With Kokkos, you write an algorithm once, and just change a template parameter 
to get the optimal data layout for your hardware.

With I. Demeshko (SNL)

Performance-Portability via 
Kokkos
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• Right: results for a mini-app that uses finite 
element kernels from Albany/FELIX but none 
of the surrounding infrastructure.

• “# of elements” = threading index 
(allows for on-node parallelism). 

• # of threads required before the Phi 
and GPU accelerators start to get 
enough work to warrant overhead: 
~100 for the Phi and ~1000 for the GPU.

Performance-Portability via 
Kokkos (continued)

• Below: preliminary results for 3 of the finite 
element assembly kernels, as part of full Albany/FELIX code run.

Kernel Serial 16 OpenMP Threads GPU

Viscosity Jacobian 20.39 s 2.06 s 0.54 s

Basis Functions w/ FE Transforms 8.75 s 0.94 s 1.23 s

Gather Coordinates 0.097 s 0.107 s 5.77 s

Note: Gather 
Coordinates 

routine requires 
copying data from 

host to GPU.
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Summary and Ongoing Work

Summary: this talk described…

• The development of a finite element land ice solver known as Albany/FELIX written 
using the libraries of the Trilinos libraries. 

• Coupling of Albany/FELIX to the CISM and MPAS codes for transient simulations of ice 
sheet evolution. 

• Advanced, next generation capabilities (UQ, performance portability) were highlighted. 

Ongoing/future work:

• Science runs using CISM-Albany and MPAS-Albany. 

• Bayesian calibration using better bases than KLE (e.g., Hessian eigenvectors).

• Continued porting of code to new architecture supercomputers (Titan, Cori Phase I).

• Delivering code to climate community and coupling to earth system models.

Verification, science simulations, scalability, robustness, 
UQ, advanced analysis: all attained in ~1.5 FTE of effort!
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Definitions: Strong vs. Weak 
Scaling

• Strong scaling: how the solution time varies with 
the number of cores for a fixed total problem 
size.
 Fix problem size, increase # cores.
• Ideal: linear speed-up with increase in # 

cores.

• Weak scaling: how the solution time varies with 
the number of cores for a fixed problem size per 
core.
 Increase problem size and # cores s.t. # 

dofs/core is approximately constant.
• Ideal: solution time remains constant as 

problem size and # cores increases.

Scalability (a.k.a. Scaling Efficiency) = measure of the efficiency 
of a code when increasing numbers of parallel processing 

elements (CPUs, cores, processes, threads, etc.). 
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Scalability via Algebraic Multi-Grid 
Preconditioning with Semi-Coarsening

Bad aspect ratios ruin classical AMG convergence rates!
• relatively small horizontal coupling terms, hard to smooth horizontal errors
 Solvers (AMG and ILU) must take aspect ratios into account

We developed a new AMG solver based on aggressive semi-coarsening (figure below)
• Algebraic Structured MG ( matrix depend. MG) used with vertical line relaxation on

finest levels + traditional AMG on 1 layer problem

…

Algebraic 
Structured MG

Algebraic 
Structured MG

Unstructured 
AMG 

Unstructured 
AMG 

New AMG preconditioner is 
available in ML package of Trilinos!

Scaling studies (next slides): 
New AMG preconditioner vs. ILU

See (Tuminaro, 2014), (Tezaur et al.,
2015), (Tuminaro et al., 2015).
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Importance of Node Ordering & 
Mesh Partitioning

Our studies revealed that node ordering and mesh
partitioning matters for linear solver performance, 

especially for the ILU preconditioner!

• It is essential that incomplete factorization accurately 
captures vertical coupling, which is dominant due to 
anisotropic mesh.

• This is accomplished by: 

• Ensuring all points along a vertically extruded grid 
line reside within a single processor (“2D mesh 
partitioning”; top right).

• Ordering the equations such that grid layer �’s 
nodes are ordered before all dofs associated with 
grid layer � + 1 (“row-wise ordering”; bottom 
right). 0

6
⋯ ⋯⋯1

28 29 ⋯ ⋯⋯ 34
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Strong Scaling Study for a Fine-
Resolution GIS Problem

• Uniform quadrilateral mesh with 1 km horizontal resolution, 
extruded vertically using 40 layers (69.8M hex elements, 143M 
dofs). 

• Run on 1024→16,384 cores of Hopper (16-fold increase).

• Realistic basal friction coefficient and bed topographies 
calculated by solving a deterministic inversion problem that 
minimized modeled and observed surface velocity mismatch 
(Perego et al., 2014; top right).

• Realistic 3D temperature field calculated in CISM (Shannon et 
al.) 

• Preconditioner: ILU vs. new AMG (with aggressive semi-
coarsening). 

• Iterative linear solver: Conjugate Gradient (CG).
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Strong Scaling Study for a Fine-Resolution 
GIS Problem (cont’d)

ILU AMG

1024 
cores 

16,384 
cores 

1024 
cores 

16,384 
cores 

1024 core run: 

• AMG preconditioner solves are much faster than ILU (e.g., 194.3 sec 
for AMG vs. 607.9 sec for ILU).

• Primarily due to better convergence rate obtained with AMG vs. 
ILU.
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Strong Scaling Study for a Fine-Resolution 
GIS Problem (cont’d)

16,384 core run: 

• ILU preconditioner fairly effective relative to AMG when # dofs/core is modest (e.g., 10K 
dofs/core).

• ILU requires slightly more iterations/linear solve but cost/iteration is higher for AMG.
• AMG solver is very inefficient when # dofs/core is small; communication costs in 

coarse level processing dominate. 

ILU AMG

1024 
cores 

16,384 
cores 

1024 
cores 

16,384 
cores 
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Strong Scaling Study for a Fine-Resolution 
GIS Problem (cont’d)

Summary: 

• ILU preconditioner scales better in the strong sense than AMG.
• However, ILU-preconditioned solve is slower for lower #s of cores (more 

dofs/core).

ILU AMG

1024 
cores 

16,384 
cores 

1024 
cores 

16,384 
cores 
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Weak Scaling Study for a 
Moderate-Resolution AIS Problem

• 3 hexahedral meshes considered: 
• 8 km horizontal resolution + 5 vertical layers (2.52M 

dofs) → 16 cores of Hopper.
• 4 km horizontal resolution + 10 vertical layers (18.5M 

dofs) → 128 cores of Hopper. 
• 2 km horizontal resolution + 20 vertical layers (141.5M 

dofs) → 1024 cores of Hopper.

• Ice sheet geometry based on BEDMAP2 (Fretwell et al., 2013) 
and 3D temperature field from (Pattyn, 2010) 

• Realistic regularized* basal friction coefficient and bed 
topographies calculated by solving a deterministic inversion 
problem that minimizes modeled and observed surface 
velocity mismatch on finest (2km) resolution geometry 
(Perego et al., 2014; top right).

• Preconditioner: ILU vs. new AMG (with aggressive semi-
coarsening). 

• Iterative linear solver: GMRES.
*Setting � = � > 0, with � ≪ 1 under 
ice shelves.
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Basal boundary  Γ�
)

Lateral boundary 
Γ�

Ice sheet

Surface boundary Γ�Albany/FELIX Glimmer/CISM

Weak Scaling Study for a Moderate-
Resolution AIS Problem (cont’d)

(vertical > horizontal coupling) 
+ 

Neumann BCs 
=

nearly singular submatrix associated with vertical lines

Antarctica is fundamentally different than Greenland: 
AIS contains large ice shelves (floating extensions of land ice). 

• Along ice shelf front: open-ocean BC (Neumann).
• Along ice shelf base: zero traction BC (Neumann).

⇒ For vertical grid lines that lie within ice shelves, top and 
bottom BCs resemble Neumann BCs so sub-matrix 
associated with one of these lines is almost* singular. 

⇒	Ice shelves give rise to severe ill-
conditioning of linear systems! *Completely singular in the presence 

of islands and some ice tongues.
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Weak Scaling Study for a Fine-Resolution 
AIS Problem (cont’d)

ILU AMG

16 
cores 

1024 
cores 

16 
cores 

1024 
cores 

ILU vs. AMG:

• ILU solver > 10× slower than AMG solver on 1024 core problem. 
• Due to extremely poor convergence of ILU solver (~700 iterations/solve) →

resulting from ill-conditioning of underlying linear systems.
• AMG iterations do grow as problem refined (14.4 iterations/solve on 16 cores vs. 

35.5 iterations/solve on 1024 cores), but it is better suited to linear systems 
associated with AIS.
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Weak Scaling Study for a Fine-Resolution 
AIS Problem (cont’d)

ILU AMG

16 
cores 

1024 
cores 

16 
cores 

1024 
cores 

GMRES vs. CG:

• GMRES solver found to be more effective than CG, even though problem is symmetric.

• We believe GMRES is somewhat less sensitive to rounding errors associated with 
the severe ill-conditioning induced by the presence of ice shelves.

• GMRES and CG minimize different norms.
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Weak Scaling Study for a Fine-Resolution 
AIS Problem (cont’d)

ILU AMG

16 
cores 

1024 
cores 

16 
cores 

1024 
cores 

Summary:

• Severe ill-conditioning caused by ice shelves!
• GMRES less sensitive than CG to rounding errors from ill-

conditioning [also minimizes different norm].
• AMG preconditioner less sensitive than ILU to ill-conditioning.

(vertical > horizontal 
coupling) 

+ 
Neumann BCs 

=
nearly singular 

submatrix associated 
with vertical lines
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Appendix: Verification/Mesh 
Convergence Studies

Stage 1: solution verification on 2D MMS 
problems we derived.

Stage 2: code-to-code comparisons on canonical 
ice sheet problems.

Stage 3: full 3D mesh convergence study on 
Greenland w.r.t. reference solution. 

Are the Greenland problems resolved?  
Is theoretical convergence rate achieved? 

Albany/FELIX LifeV
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Appendix: Robustness of Newton’s Method 
via Homotopy Continuation (LOCA)

γ=10-1.0

γ=10-2.5
γ=10-6.0 γ=10-10

γ=10-10

γ=10-10

• Newton’s method most robust with full step + homotopy continuation of 
� → 10���: converges out-of-the-box! 
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