skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Prospect for Developing a Consolidated Bioprocessing (CBP) Strain Using Xylan as the Substrate: the Case Study of Yarrowia lipolytica

Conference ·
OSTI ID:1262665

To achieve the goal of developing a direct microbial sugar conversion platform for the production of lipids and drop-in fuels from cellulosic biomass substrate, Yarrowia lipolytica was used to investigate its potential for being developed as CBP strain by expressing cellulase and xylanase enzymes. Y. lipolytica is known to accumulate lipids intracellularly and is capable of metabolizing glucose and xylose to produce lipids; however, due to the lack of the biomass degrading enzymes, it cannot directly utilize lignocellulosic substrates as carbon sources. While research is continuing on the development of a Y. lipolytica strain able to degrade cellulose, in this study, we present successful expression of several xylanases in Y. lipolytica. To the best of our knowledge, this is the first study introducing heterologous hemicellulose genes into the genome of Y. lipolytica. SDS-PAGE and western blotting analysis showed that the endo-xylanase gene XynII and exo-xylosidase gene XlnD were successfully expressed and secreted, and the expressed xylanases were likely either not or sparsely glycosylated, which is advantageous for expression of heterologous proteins from any species. Enzymatic activity tests further demonstrated active expression of XynII and XlnD in Y. lipolytica. Furthermore, synergistic action on converting xylan to xylose was observed when XlnD worked in concert with XynII. XlnD was able to work on the xylo-oligomers generated by XynII, enhancing the xylan conversion to monomeric xylose. The successful expression of these xylanases in Yarrowia further advances us towards our goal to develop a direct microbial conversion process using this organism. and xylose to produce lipids; however, due to the lack of the biomass degrading enzymes, it cannot directly utilize lignocellulosic substrates as carbon sources. While research is continuing on the development of a Y. lipolytica strain able to degrade cellulose, in this study, we present successful expression of several xylanases in Y. lipolytica.

Research Organization:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Bioenergy Technologies Office
DOE Contract Number:
AC36-08GO28308
OSTI ID:
1262665
Report Number(s):
NREL/PO-2700-63286
Resource Relation:
Conference: Presented at the 37th Symposium on Biotechnology for Fuels and Chemicals (SBFC), 27-30 April 2015, San Diego, California
Country of Publication:
United States
Language:
English