
Photos placed in horizontal position
with even amount of white space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Structural Simulation Toolkit (SST)
June 13, 2015

ISCA Tutorial

ISCA Tutorial, June 13, 2015

SAND2015-4701C

Welcome to the SST Tutorial

2

ISCA Tutorial, June 13, 2015

 We will be doing some demos using a provided VM

 Setup:
 Copy the VirtualBox VM from the provided USB drives

 Boot the VM

 Pre-compiled SST Release 5.0.1

– Path

 Configuration files for demo

– Path

Welcome!

Morning (9a-12:30p)

 Welcome and setup

 The SST Framework

 Demo: Running a simulation

 Tour of SST Elements

Afternoon (1:30p-5p)

 Tour of SST Elements (continued)

 Demo: Using the statistics API

 Use cases

 A user perspective

 Validation

 Future developments

ISCA Tutorial, June 13, 2015

3

Instructors

 Gwen Voskuilen

 Arun Rodrigues

 Si Hammond

 Branden Moore

ISCA Tutorial, June 13, 2015

4

Why SST?

 Problem: Simulation is slow
 Tradeoff between accuracy and time to simulate

 Many simulators are serial, unable to simulate very large systems

 Problem: Lack of simulator flexibility
 Tightly-coupled simulations: faster but difficult to modify

 Difficult to simulate at different levels of accuracy

The Structural Simulation Toolkit:

A parallel, discrete-event simulation framework

for scalability and flexibility

ISCA Tutorial, June 13, 2015

5

Overview

 Parallel
 Built from the ground up to be scalable

 Demonstrated scaling to 512+ processors

 Flexible
 Enables “mix and match” of simulation components

 Custom architectures

 Custom tradeoff between accuracy and simulation time

 E.g., cycle-accurate network with trace-driven endpoints

ISCA Tutorial, June 13, 2015

6

Capabilities

 SST Core (framework):
 Time-scale independent: micro-, meso-, macro-scale simulations

 Provides a number of interfaces and utilities for simulation models

 Components: SST’s simulation models
 Components perform the actual simulation

 Many built-in models available: processors, memory, network

 Compatible with external models: Gem5, DRAMSim2, many others

 Open API
 Easily extensible with new models

 Modular framework

 Open-source core

ISCA Tutorial, June 13, 2015

7

SST: FRAMEWORK FOR PARALLEL
SIMULATION

ISCA Tutorial, June 13, 2015

8

SST’s discrete-event algorithm

 Simulations are comprised of components connected by links

 Components interact by sending events over links

 Each link has a minimum latency

 Components can load subComponents and modules for
additional functionality

ISCA Tutorial, June 13, 2015

Component Component

SST Core

Configuratio
n

Parititioning

Link

Event

Instantiation Time
Coordination

Parallel
Communication

SST
Component
Type: Core

SST
Component
Type: Cache

SST
Component
Type: Core

SST
Component
Type: Cache

SST
Component
Type: NoC

Router

SST
Component
Type: NoC

Router

SST Link
Latency: 1ns

SST Link
Latency: 2ns

SST Link
Latency: 2ns

SST Link
Latency: 1ns

S
S

T
 L

in
k

L
a
te

n
c
y
:
4
n
s

9

Key objects

 SST::Component
 Simulation model

 SST::Link
 Communication path between two

components

 Has optional EventHandler

 SST::Event
 A discrete event

 SST::Clock::Handler
 Function to handle a clock tick

 SST::SubComponent
 Add functionality to Components

 SST::Module
 Add functionality to framework

S
S

T:
:L

in
k

SST::Component
CPU

EventHandler

SST::Component
Cache

EventHandler

SST::Event
Load

ISCA Tutorial, June 13, 2015

10

Component

 Basic building block of a simulation model
 E.g., processor, cache, network router, etc.

 Performs the actual simulation

 Uses Links and Ports to communication with other components
 Components define ports, links connect ports between components

 Polled: Register a clock handler to poll the link

 Interrupt: Register an event handler to be called when an event arrives

 Both: Receive events on interrupt, send events on clock

 Uses SubComponents and Modules for additional functionality

ISCA Tutorial, June 13, 2015

11

SubComponents and Modules

 Add additional functionality to a Component
 SubComponent (SC): friend class of component

 Module (M): not a friend of component

 Provide modularity
 Generic interface which can be used by multiple SC/M

 Loaded by Components at runtime

 Tightly-coupled with a component
 Components call SC/M as a C++ class instance

 Do not need to communicate via Links

 SC/M cannot exist by themselves

 Example
 MemNIC: Implements the network interface

(simpleNetwork), used by caches to communicate
over a network

Component:
Cache

Component:
Network

Module:
MemNIC

Component:
Cache

Module:
MemNIC

ISCA Tutorial, June 13, 2015

12

Link

 Connects two components
 Connect a specific “Port” on component A to a “Port” on component B

 The ONLY mechanism by which components communicate
 Necessary for parallel simulation

 Has a minimum, non-zero latency for communication
 Except self-links

 Except during initialization

 Transparently handles any MPI communication

Component A Component B

P
o

rt
 X

P
o

rt
 Y

Link 1

ISCA Tutorial, June 13, 2015

13

Event

 Unit of communication between two components
 Packet format is up to the communicating components

 Some standardized interfaces
 Facilitate “mix and match” capability

 sst/core/interfaces/

 Memory (simpleMem)

 Defines commands & event format for communication with memory

 Network (simpleNetwork)

 Defines a header for events sent through a network component

ISCA Tutorial, June 13, 2015

14

Component/link interface

 Components use these calls to manage links and events

 SST::Component::configureLink()
 Registers a link and (optionally) a handler

 SST::Link::recv()
 Pull an event from a link

 SST::Link::send()
 Push an event down a link

 SST::Component::registerClock()
 Register a clock frequency and a handler to be called on each clock

tick

ISCA Tutorial, June 13, 2015

15

Simulation lifecycle

 Birth
 Create graph of components using Python configuration file

 Partition graph and assign components to MPI ranks

 Instantiate components

 Connect components via links

 Initialize components using their init() functions

 Setup components using their setup() functions

 Life
 Send events

 Manage clock and event handlers

 Death
 Finalize components using their finish() functions

 Output statistics

 Cleanup simulation, delete components

ISCA Tutorial, June 13, 2015

16

Component lifecycle

 Pre-construction: define and partition components

 Construction: call component constructors and parse parameters

 Initialization – init()
 Components send “init” events to each other over links

 Discover neighbors, negotiate parameters, initialize data structures, etc.

 Multiple rounds of communication until no more “init” events are sent

 Setup – setup()
 Each component does its final setup and schedules initial events

 Run
 Actual simulation

 Continues until a set time, or all components agree to finish

 Finalize – finish()
 Simulation complete

 Write statistics, free memory, etc.

ISCA Tutorial, June 13, 2015

17

SST in parallel

 SST was designed from the
ground up to enable scalable,
parallel simulations

 Components are distributed
among MPI ranks

 Links allow parallelism
 Hence, components should

communicate via links only

 Transparently handle any MPI
communication

 Specified link-latency determines
MPI synchronization rate

MPI Rank 0

MPI Rank 0 MPI Rank 1 MPI Rank 2 MPI Rank 3

Comp0 Comp2 Comp4 Comp6

Comp1 Comp3 Comp5 Comp7

Comp0 Comp2 Comp4 Comp6

Comp1 Comp3 Comp5 Comp7

Same configuration file

ISCA Tutorial, June 13, 2015

18

Agenda

Morning

 Welcome and setup

 The SST Framework

 Demo: Running a simulation

 Tour of SST Element Libraries

Afternoon

 Tour of SST Elements (continued)

 Demo: Using the statistics API

 Use cases

 Validation

 Future developments

 Wrap-up

ISCA Tutorial, June 13, 2015

19

Getting and installing SST

 Already installed in the VM, but for future reference…

 www.sst-simulator.org
 Current release (5.0.1) source download

 Directions for SVN checkout

 Caveat: SST is under active development, code in the trunk may not have
passed testing yet

 Detailed build instructions including dependencies for Linux & Mac

 Links to mailing lists for updates and support

ISCA Tutorial, June 13, 2015

20

http://www.sst-simulator.org
http://www.sst-simulator.org
http://www.sst-simulator.org
http://www.sst-simulator.org

Navigating the source code

 ~/examples
 Example configuration files

 ~/sst/core
 Source for the core framework, APIs, etc.

 ~/sst/elements
 Source for the Element Libraries

 Element: Collection of components (e.g., Merlin – networks)

 ~/tools
 Standalone and component-specific tools

 SSTWorkbench: GUI for generating configuration files

ISCA Tutorial, June 13, 2015

21

Configuring a simulation

 SST uses a Python configuration file
 Defines global parameters for the simulation

 Defines and configures components

 Specifies links and link latencies between components

 Open ‘demo.py’

CPU CPU

L1 L1

Bus

L2

CPU CPU

L1 L1

L2

Bus

Network

Memory

Directory

Memory

Directory

ISCA Tutorial, June 13, 2015

22

Part 1: Configure SST

 Global simulation parameters

 sst.setProgramOption(“stopAtCycle”, “100ms”)
 Kill simulation (nicely!) if it runs to 100ms

 sst.setProgramOption(“timebase”, “1ns”)
 Tell SST that we’re simulating at a granularity around 1ns

 Used by SST core when time units are not specified by a component

 Not a lower limit! (clocks can be > 1 GHz)

ISCA Tutorial, June 13, 2015

23

Part 2: Define components

 Define: sst.Component(“name”, “type”)

 Configure: addParams ({ “parameter” : value, … })

network = sst.Component(“router”, “merlin.hr_router”)
network.addParams({

“xbar_bw” : “51.2GB/s”,
“link_bw” : “25.6GB/s”,
“num_ports” : 4,
“flit_size” : “72B:
“topology” : “merlin.singlerouter”,
“id” : “0”,
“input_buf_size” : “2KB”,
“output_buf_size” : “2KB”

})

Component name Component type

Parameters

demo.py: line 172

ISCA Tutorial, June 13, 2015

24

SSTInfo: Getting component info

 Prints parameters, port names, and statistics

$ sstinfo memHierarchy.Cache
PROCESSED 25 .so (SST ELEMENT) FILES FOUND IN DIRECTORY /home/sst/build/lib/sst
Filtering output on Element.Component = “memHierarchy.Cache”
==
ELEMENT 18 = memHierarchy (Cache Hierarchy)
COMPONENT 0 = Cache [MEMORY COMPONENT] (Cache Component)
NUM PARAMETERS = 32

PARAMETER 0 = cache_frequency (Clock frequency with units. For L1s, this is
usually the same as the CPU's frequency.) [REQUIRED]

…
PARAMETER 21 = network_bw (Network link bandwidth.) [1GB/s]
…

NUM PORTS = 4
…
PORT 3 [1 Valid Events] = directory (Network link port to directory)

VALID EVENT 0 = MemHierarchy.MemRtrEvent
…

NUM STATISTICS = 32

Optionally filter for a specific component

Parameter Definition

“REQUIRED” or
default value

Port name

Definition

Type of event(s) used on the link

ISCA Tutorial, June 13, 2015

25

Part 3: Defining links

 Example: Connect socket 0’s L2 cache (l2cache0) to network
 Create a link: sst.Link(“name”)

 Define link endpoints: connect(endpoint1, endpoint2)

 Endpoint is defined as: (Component, Port, Latency)

 Note: Latencies of the two endpoints can differ

…
l2cache0_network_link = sst.Link(“l2cache0_network_link”)
…
l2cache0_network_link.connect(

(l2cache0, “directory”, “50ps”),
(network, “port0”, “50ps”))

…

Link name

Endpoints

demo.py: line 220

ISCA Tutorial, June 13, 2015

26

Running SST

 Usage: sst [options] configFile.py

 Common options:
-v | --verbose Print verbose information during runtime

--debug-file <filename> Send debugging output to specified file (default:
sst_output)

--add-lib-path <dirname> Add <dirname> to search path for element libraries

--heartbeat-period <period> Every <period> time, print a heartbeat message

--paritioner <zoltan | self | simple |
rrobin | linear | lib.partitioner.name>

Specify the partitioning mechanism for parallel runs

--model-options “<args>” Command line arguments to send to the Python
configuration file

--output-partition <filename> Write partitioning information to <filename>

--output-dot <filename> Output a graph representing the configuration in
“Dot” format to <filename>

ISCA Tutorial, June 13, 2015

27

Demo: Running the simulation

 Launch simulation

 Output

$ sst demo.py

ISCA Tutorial, June 13, 2015

Inserting stop event at cycle 100ms, 100000000000
ARIEL-SST PIN tool activating with 4 threads
ARIEL: Default memory pool set to 0
ARIEL: Tool is configured to begin with profiling immediately.
ARIEL: Starting program.
Performing iteration 0
Performing iteration 0
Performing iteration 0
Performing iteration 0
…
…
Simulation is complete, simulated time: 125.209 us

28

Agenda

Morning

 Welcome and setup

 The SST Framework

 Demo: Running a simulation

 Tour of SST Element Libraries

Afternoon

 Tour of SST Elements (continued)

 Demo: Using the statistics API

 Use cases

 Validation

 Future developments

 Wrap-up

ISCA Tutorial, June 13, 2015

29

Element libraries

 Libraries which contain a set of related components,
subComponents, and modules

 SST comes with many built-in libraries
 Processors, memory, network, etc.

 Tested for inter-library compatibility

 Also compatible with many external “libraries”
 DRAMSim2, Gem5, many others

 See www.sst-simulator.org for more information

ISCA Tutorial, June 13, 2015

30

SST5.0 element libraries

 Processors

 Ariel – PIN-based

 Prospero – Trace-based

 Miranda – Pattern-based

 Memory

 MemHierarchy – Caches,
memory

 VaultSimC - Stacked memory

 Cassini – Cache prefetchers

 Network driver

 Ember – Pattern-based

 Firefly – communication
protocols

 Hermes - MPI-like driver
interface

 Zodiac – trace-based

 Network models

 Merlin – Network simulator

 Other

 Scheduler

 simpleElementExample

ISCA Tutorial, June 13, 2015

31

SST5.0 external components

 Processors

 Gem5* - Cycle-accurate processor model

 Qsim - Processor model

 MacSim - GPU model

 Memory

 DRAMSim2 - DRAM

 NVDIMMSim - Non-volatile (NV) memory

 HybridSim - NV + DRAM

*Gem5 support through v4 for an older branch of Gem5; starting with v5.0,
support for the Gem5 stable release version is being provided within Gem5

ISCA Tutorial, June 13, 2015

32

Ariel: PIN-based processor

 Lightweight processor core model

 Uses Intel’s PIN tools and XED decoders to analyze binaries
 Runs x86, x86-64, SSE/AVX, etc. compiled binaries

 Supports fixed thread count parallelism (OpenMP, Qthreads, etc.)

 Passes information to virtual core in SST

 Implements SST’s memory interface to interact with a
memory model

ISCA Tutorial, June 13, 2015

33

Ariel: The tradeoff

 Pros:
 Faster than cycle-accurate processor models (e.g., Gem5)

 Reasonable approximation for studies on memory system
performance

 Especially for heavily memory-bound applications

 Reasonable model of thread interactions

 Cons
 Slower than trace/pattern-based processor models

 Does not give cycle-reproducible results

 Use of threads can disturb reproducibility

 Non-deterministic results

 Not compatible with non-x86 binaries

ISCA Tutorial, June 13, 2015

34

Ariel: Architecture

User Application
Binary

Ariel PIN Tool

…

(Instruction Stream
1 per thread)

…

Virtual “Ariel” Core

Virtual “Ariel” Processor

(memEvent Target)

SST Ariel Component

…

memHierarchy Cache
…

…

Unmodified user binary
(use your standard compiler etc)

ISCA Tutorial, June 13, 2015

35

Ariel: Details

 Ariel’s virtual cores
 Instruction information currently limited to memory ops or instructions

with no memory operands

 Clocked: Reads instruction stream in chunks but processes on clock

 Back pressure from FIFO halts real binary execution

 Does not maintain dependence order or register locations (yet)!

 Performs a TLB mapping of virtual-to-physical addresses

 Key user knobs
 Memory ops issued/cycle

 Load/store queue size

 Memory interface
 Generates memEvents which can be sent to a cache model

 Tracks basic statistics (request counts, split-cache line loads, etc.)

ISCA Tutorial, June 13, 2015

36

Prospero: Trace-based processor

 Trace-based processor model
 Reads memory ops from a file and passes to the simulated memory

system

 “Single core” but can use multiple trace files to emulate threaded or
MPI-style applications

 Supports arbitrary length reads to account for variable vector widths

 Performs “first touch” virtual to physical mapping

 Comes with Prospero Trace Tool to generate traces
 Or can generate your own and translate to Prospero’s format

ISCA Tutorial, June 13, 2015

37

Prospero: The tradeoff

 Pros
 Faster than Ariel and Gem5

 Provided you can get a trace

 Good for heavily memory-bound applications

 Reasonable approximation to memory system performance

 Cons
 Traces can be very large

 Requires good I/O system to store and read the trace

 Traces are less flexible than actual execution

 Capture a single execution stream using a single application input

ISCA Tutorial, June 13, 2015

38

Miranda: Pattern-based processor

 Extremely light-weight processor model
 Generates specific memory address patterns

 Current patterns
 Strided accesses (single stream)

 Forward and reverse strides

 Random accesses

 GUPS

 STREAM benchmark

 In-order & out-of-order CPU

 3D stencil

 Sparse matrix vector multiply (SpMV)

 Copy (~array copy)

ISCA Tutorial, June 13, 2015

39

Miranda: The tradeoffs

 Pros
 Very lightweight – no binary, no trace

 Good for applications whose address patterns are predictable

 E.g., not much pointer-chasing

 Cons
 Need a generator for the memory pattern of interest

 Requires a good understanding of the pattern

ISCA Tutorial, June 13, 2015

40

MemHierarchy: Memory system

 Cycle-accurate cache and memory simulation
 Inter- and intra-socket coherence

 Multiple main memory models

 Highly configurable
 Can model any number of caches (L10s!)

 Arbitrary topologies, multiple memories

 Single- and multi-socket configurations

 Capable of modeling modern memory hierarchies
 Intel core i7, Xeon Phi

 Arm Cortex A8, A7, A15, A53, A57

 SPARC T6

ISCA Tutorial, June 13, 2015

41

MemHierarchy: Components

 Cache
 Includes coherence protocols (MSI, MESI, etc.)

 Bus

 Directory controller
 Inter-socket coherence

 Memory controller
 Backs up simulated memory, interfaces with memory backends

 Memory backends
 Main memory simulators for DRAM, stacked DRAM, NVRAM, etc.

 TrivialCPU & StreamCPU
 Very simple memory request generators for testing

ISCA Tutorial, June 13, 2015

42

MemHierarchy: Caches

 Store actual data

 Set associative, configurable replacement policies
 LRU, LFU, Random, MRU, NMRU (not MRU)

 Use MSHRs to buffer outstanding requests

 Can communicate via a direct link or over a bus or network
 Implements simpleNetwork interface via the “MemNIC” module

 Can model a single shared cache or multiple cache slices

 Handles atomics, LLSC, non-cacheable requests, etc.

 Prefetch capability by using the Cassini element library

ISCA Tutorial, June 13, 2015

43

MemHierarchy: Cache structure

CacheController
• Routes incoming events to handlers
• Manages retry of buffered events in

the MSHRs
• Manages cache allocations and

evictions

CoherenceController
• Manages coherence state
• Receives events from CacheController
• Sends outgoing events

• Forwarded requests, responses, etc.
• Decides when events need to stall

MSHRs
• Buffers stalled

and blocked
events

CacheArray
• Stores cache lines –

data and coherence
state

• Replacements via the
replacement policy
manager

ISCA Tutorial, June 13, 2015

44

MemHierarchy: Main memory

 MemoryController
 Contains a ‘backing store’ for simulated data

 Can communicate over a network or via a direct link with a cache or
directory

 Interfaces with multiple memory backends

 Available backends
 SimpleMem – basic read/write with associated latencies

 DRAMSim2 – DRAM (external)

 NVDIMMSim – Non-volatile memory (e.g., Flash) (external)

 HybridSim – non-volatile memory with a DRAM cache (external)

 VaultSimC – stacked DRAM

ISCA Tutorial, June 13, 2015

45

Welcome back!

Afternoon

 Tour of SST Elements (continued)

 Demo: Using the statistics API

 Use cases

 A user perspective

 Validation

 Future developments

ISCA Tutorial, June 13, 2015

46

Merlin: Network simulator

 Low-level, flexible networking components that can be used
to simulate high-speed networks (machine level) or on-chip
networks

 Capabilities
 High radix router model (hr_router)

 Topologies – mesh, n-dim tori, fat-tree, dragonfly

 Many ways to drive a network
 Simple traffic generation models

 Nearest neighbor, uniform, uniform w/ hotspot, normal, binomial

 MemHierarchy

 Lightweight network endpoint models (Ember – coming up next)

 Or, make your own

ISCA Tutorial, June 13, 2015

47

Ember: Network traffic generator

 Light-weight endpoint for modeling network traffic
 Enables large-scale simulation of networks where detailed modeling

of endpoints would be expensive

 Packages patterns as motifs
 Can encode a high level of complexity in the patterns

 Generic method for users to extend SST with additional
communication patterns

 Intended to be a driver for the Hermes, Firefly, and Merlin
communication modeling stack
 Uses Hermes message API to create communications

 Abstracted from low-level, allowing modular reuse of additional
hardware models

ISCA Tutorial, June 13, 2015

48

Ember: Overview

User
BinaryEmber Engine

Hermes API

Firefly

Merlin Network

Ember Motif

Message Passing Semantics
Collectives, Matching etc

Packetization and Byte Movement Engine
Generates packets and coordinates with network

Flit Level Movement, Routing, Delivery
Moves flits across network, timing etc

Event to Message Call, Motif Management
Handles the tracking of the motif

High Level Communication Pattern and Logic
Generates communication events

ISCA Tutorial, June 13, 2015

49

Ember: Motifs

 Motifs are lightweight patterns of communication
 Tend to have very small state

 Extracted from parent applications

 Models as an MPI program (serial flow of control)

 Many motifs acting in the simulation create the parallel behavior

 Example motifs
 Halo exchanges (1, 2, and 3D)

 MPI collections – reductions, all-reduce, gather, barrier

 Communication sweeping (Sweep3D, LU, etc.)

ISCA Tutorial, June 13, 2015

50

Ember: Motifs (continued)

 The EmberEngine creates and manages the motif
 Creates an event queue which the motif adds events to when probed

 The Engine executes the queued events in order, converting them to
message semantic calls as needed

 When the queue is empty, the motif is probed again for events

 Events correspond to a specific action
 E.g., send, recv, allreduce, compute-for-a-period, wait, etc.

ISCA Tutorial, June 13, 2015

51

Firefly: Network traffic

 Purpose: Create network traffic, based on application
communication patterns, at large scale
 Enables testing the impact of network topologies and technologies on

application communication at very large scale

 Scales to 1 million nodes

 Supports multiple “cores” per Node
 Interaction between cores limited to message passing

 Supports space sharing of the network
 Multiple “apps” running simultaneously

ISCA Tutorial, June 13, 2015

52

Firefly: Simulating large networks

 A network node consists of
 Driver (the “application”)

 NIC

 Router

 Nodes are connected together via
the routers to form the network
 Fat tree, torus, etc.

 Firefly is the interface between the
driver and the router
 Message passing library  Firefly

Hades

 NIC  Firefly NIC

Ember
(driver)

Firefly Hades

Firefly NIC

Merlin Router

ISCA Tutorial, June 13, 2015

53

Scheduler

 Models HPC system-wide job scheduling

 Three components
 Sched: schedules and allocates resources for a stream of jobs

 Node: runs scheduled jobs on their allocated resources

 FaultInjection: injects failures onto the resources

 The scheduler is currently a stand-alone element library
 The schedComponent and nodeComponent must be used together

 The faultInjectionComponent is optional

ISCA Tutorial, June 13, 2015

54

Other Libraries

 More information on these and other element libraries and
external components is available on the wiki
 www.sst-simulator.org

ISCA Tutorial, June 13, 2015

55

http://www.sst-simulator.org
http://www.sst-simulator.org
http://www.sst-simulator.org

Extending SST

 SST is designed for extensibility
 Creating new Element Libraries and components

 Wrapping existing simulators to interact with other SST components

 We recommend that libraries be built outside the source tree

 Helpful information
 Example element library

 Components demonstrating links, ports, clocks, event handling, etc.

 sst/elements/simpleElementExample

 Wiki

 Getting Started Extending SST (a little out of date)

 Building Element Libraries outside SST source tree

 Mailing lists – sst-developer and sst-user

56

ISCA Tutorial, June 13, 2015

Agenda

Afternoon

 Tour of SST Elements (continued)

 Demo: Using the statistics API

 Use cases

 A user perspective

 Validation

 Future developments

 Wrap-up

ISCA Tutorial, June 13, 2015

57

Demo: Using the Statistics API

 Goals of this demo
 Learn to configure a simulation to give statistics via the Statistics API

 Add a statistic to memHierarchy for some hands-on experience
extending and compiling SST

ISCA Tutorial, June 13, 2015

58

Statistics API: Overview

 New in v5.0!

 Unified interface for Components to collect and return stats

 Provides users with flexibility in getting statistics

 Using the API
 Components declare and register statistics

 Name, “load level”, data type (int, double, etc.)

 Components update statistics during simulation

 User enables some or all statistics

 User determines how often and in what format (e.g., sum or
histogram) to return statistics

 User determines the output format (console, text, CSV, etc.)

ISCA Tutorial, June 13, 2015

59

Enabling statistics

 First, the easy case  enable all statistics for all components

 Step 1: Set load level
 Enables statistics that have a load level ≤ set level

 Max level is 7, default is 0

 Step 2: Enable all statistics for all components

 Step 3: Send statistics output to the console

ISCA Tutorial, June 13, 2015

sst.setStatisticLoadLevel(7)

sst.enableAllStatisticsForAllComponents()

sst.setStatisticOutput(“sst.statOutputConsole”)

60

Try it!

 Open “demoStatistic.py”
 Uncomment lines 237-239 near the end of the file (under “Demo #1”)

 Run the simulation and view the output

 Tip: Use sstinfo to view information about a component’s statistics

ISCA Tutorial, June 13, 2015

$ sst demoStatistic.py
…
…
…
cpu.read_requests.0 : Accumulator : Sum.u64 = 11006; SumSQ.u64 = 11006;

Count.u64 = 11006;

cpu.write_requests.0 : Accumulator : Sum.u64 = 5355; SumSQ.u64 = 5535;
Count.u64 = 5535;
…

component.statistic
collection

mode sum sum squared

Number of times data was added to the statistic

data type

61

Output format options

 Print statistics to a file instead of the console
 Regular file: CSV (statOutputCSV) or text (statOutputTxt)

 Compressed file: CSV (statOutputCSVGz) or text (statOutputTxtGz)

 Output options for file outputs

 Specific options depend on output type
 Use “help” option to see all options and defaults

ISCA Tutorial, June 13, 2015

sst.setStatisticOutputOption(“filepath” : “myStats.csv”)

sst.setStatisticOutput(“sst.statOutputTxt”)
sst.setStatisticOutputOption(“help” : “1”)

sst.setStatisticOutput(“sst.statOutputCSV”)

62

Enabling statistics individually

 Enable statistics for all components of a particular type

 Enable statistics for a specific component

 Enable a single statistic for all components of a particular type

 Enable a single statistic for a single component

 Next: customizing statistic output

ISCA Tutorial, June 13, 2015

sst.enableAllStatisticsForComponentType(“merlin.hr_router”)

sst.enableStatisticForComponentType(
“memHierarchy.Cache”, “CacheHits”)

sst.enableAllStatisticsForComponentName(“l1cache_0”)

sst.enableStatisticForComponentName(“l1cache_0”, “CacheHits”)

63

Customizing a statistic

 Option 1: Specify collection type
 Accumulator (default): sums the data added to the statistic

 Histogram: bins the data added to the statistic

 Option 2: Specify output frequency
 Dump statistics at the end of simulation (default)

 Dump statistics at a regular interval during simulation

ISCA Tutorial, June 13, 2015

64

Customizing a statistic

 Accumulator example: print the sum of cache hits every 50 us

 Histogram example: print packet latency as a histogram

ISCA Tutorial, June 13, 2015

sst.enableStatisticForComponentType(
“memHierarchy.Cache”, “CacheHits”,
{ “type” : “sst.AccumulatorStatistic”,

“rate” : “50 us”
})

sst.enableStatisticForComponentType (
“memHierarchy.DirectoryController”, “packet_latency”,
{ “type” : “sst.HistogramStatistic”,

“minvalue” : “0”,
“binwidth” : “2”,
“numbins” : “50”,
“dumpbinsonoutput” : “1”,
“includeoutofbounds” : “1”

})
65

Exercise: Create a new statistic

 Now let’s add a new statistic
 Count the number of writes that arrive at the memory controller

 Steps
 Define the statistic in ElementInfoStatistic

 Create a variable in the Component for counting the statistic

 Register the statistic

 Call addData() for the statistic

 Recompile

 Update configuration file to print out our new statistic

ISCA Tutorial, June 13, 2015

66

Adding a statistic

 Define the statistic in ElementInfoStatistic
 Per-component structure that defines the component’s statistics

 <name, definition, load level>

 Navigate to the memHierarchy element
 sst/elements/memHierarchy/

 Open libmemhierarchy.cc

 Component definitions for memHierarchy

 Find ElementInfo* for the memory controller (line XXX)

 No ElementInfoStatistic yet  Add it!

static const ElementInfoStatistic memctrl_statistics[] = {
{“WriteCount”, “Number of writes received.”, “count”, 1}

};

Statistic name Definition

Load level

String defining
the “unit” of the
statistic

ISCA Tutorial, June 13, 2015

67

Adding a statistic (continued)

 Navigate to the memHierarchy element
 sst/elements/memHierarchy

 Open memoryController.h and memoryController.cc

 Define a variable for the statistic
 Add the following to the “private” section of the .h file (line 162)

 Register the variable to correspond to a particular statistic
 Add the following line to the constructor in the .cc file (after line 164)

Statistic<uint64_t>* statWriteCount;

statWriteCount = registerStatistic<uint64_t>(“WriteCount”);

variable Statistic nameStatistic type

ISCA Tutorial, June 13, 2015

68

Adding a statistic (continued)

 Count the statistic
 Open memoryController.cc

 Find the “handleEvent” method (line 169)

 Called each time a new event arrives at the memory controller

 Add: Increment our new statistic if the event’s command (cmd) is “GetX”

 Now we’re ready to compile
 Navigate back up to the sst root directory

 Run “make all install”

 While that’s compiling…
 Questions?

190: if (cmd == GetX) statWriteCount->addData(1);

ISCA Tutorial, June 13, 2015

$: make all install

69

Adding a statistic (continued)

 Finally, edit demoStatistics.py to print the new statistic
 Re-comment the lines under “Demo #1”

 Uncomment lines under “Demo #2” (lines 244-245)

 Note: Another syntax for enabling statistics per component!

 And run again:

memory_0.enableAllStatistics()
memory_1.enableAllStatistics()

$ sst demoStatistics.py
…
…
memory_0.WriteCount : Accumulator : …
memory_1.WriteCount : Accumulator : …

ISCA Tutorial, June 13, 2015

70

Final notes on the Statistics API

 The API is new  more components will use statistics in newer
SST releases
 Also likely to see more configuration options

 The API can be used by Components and SubComponents
 But Modules cannot use statistics directly (due to inheritance structure)

ISCA Tutorial, June 13, 2015

71

Agenda

Afternoon

 Tour of SST Elements (continued)

 Demo: Using the statistics API

 Use cases

 A user perspective

 Validation

 Future developments

 Wrap-up

ISCA Tutorial, June 13, 2015

72

SST: Use cases

 SST is capable of simulating a wide variety of systems
 Full-system simulation of a multicore with multiple types of memory

 DRAM + NVRAM + stacked DRAM

 Large networks of nodes

 Job scheduling across thousands of nodes

 Next: Some studies using SST

ISCA Tutorial, June 13, 2015

73

Case #1: Multi-level memory

ISCA Tutorial, June 13, 2015

74

 Future memory systems will be Multi-Level Memory

 MLM can potentially offer more “usable” bandwidth, less cost

 Challenges:
 substantial software and hardware (co-)design

 no “one size fits all”

 SST can explore HW & SW organization

AMD Intel Marvell

Analyzing Memory Accesses

 Capture post-cache accesses

 Setup:
 “Quads” of 4 cores

 Histogram generator
implemented as a prefetcher

75

ISCA Tutorial, June 13, 2015

"Quad"

Core

L1

Core

L1

L2

Core

L1

Core

L1

Merlin
Router

Directory
Controller

"Quad"

Core

L1

Core

L1

L2

Core

L1

Core

L1

DDR

Histogram

Ariel Trace Capture

PIN

l2SnoopParams = {
"prefetcher": "cassini.AddrHistogrammer",
"prefetcher.histo_bin_width": 4096,
"prefetcher.heap_begin": "1 GiB",
"prefetcher.heap_end": "9 GiB"

}

Irregular

Analysis: Diverse Patterns

76

Few, Well-defined
RegionsP

h
ys

ic
a
l
a
d
d
re

ss
 h

is
to

g
ra

m
s

Regular Irregular

Multiple
Regions

Multi-Level Memory Simulation

 Multiple memory types:
 DDR DRAM (DramSim)

 HMC-like Stacked Memory (VaultSim)

 NVRAM (NVDIMMSim)

 Addresses can be interleaved, or
blocked between memory types

77

"Quad"

Core

L1

Core

L1

L2

Core

L1

Core

L1

Merlin
Router

Directory
Controller

"Quad"

Core

L1

Core

L1

L2

Core

L1

Core

L1

DDR

Ariel Trace Capture

PIN

Directory
Controller

DDR

Directory
Controller

Logic
Layer

Stacked
Vault

dc.addParams({
"addr_range_start": start_pos,
"addr_range_end": end_pos,
"interleave_size": interleave_size/1024,
"interleave_step": interleave_step,
"entry_cache_size": 128*1024,
"clock": memclock,
"network_address": netPort

})

MLM Explorations

 Analysis of application
memory use distribution

 Quick exploration of “Naïve”
address assignment, capacity
ratios on performance

 Not shown: Feedback results
from histograms to determine
address assignment

78

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

1.4"

1.6"

1.8"

DDR+Only" 18%"HMC"82%"DDR" 18%"HMC"36%"
DDR(cache)"64%"NV"

18%"HMC"18%"DDR"
(cache)"%"64NV"

MiniFE&Simula, ons&

Performance"

Perf/Cost"

F igur e 5: M iniFE Simulat ion r esul t s

Case #2: Network

 What is the network latency achieved by different platforms
during a 3D halo exchange?
 Halo exchange: Exchange boundary data with neighbors

 Platform 1: “Fat” nodes – Eight 20TF/s cores per node

 Platform 2: “Medium” nodes – Two 20TF/s cores per node

 Platform 3: “Thin” nodes – One 10TF/s core per node

 Evaluate for 1K to 64K participating nodes

 Evaluate at three different link bandwidths
 12.5GB/s, 50GB/s, 125GB/s

ISCA Tutorial, June 13, 2015

79

Network: Simulation setup

 Use SST Ember to model nodes
 Lightweight model focused on communication pattern

 Estimates compute time using the node’s FLOPS

 Detailed model of communication

 Enables scaling the simulated system to a larger number of nodes

 Compared to a detailed processor model + memory model

 Use SST Firefly to model the NIC

 Use SST Merlin to model the network
 Detailed, cycle-accurate models for network (routers, links, etc.)

80

ISCA Tutorial, June 13, 2015

Link bandwidth = 12.5GB/s

81

ISCA Tutorial, June 13, 2015

100

200

300

400

500

600

1K 2K 4K 8K 16K 32K 64K

Ex
e

cu
ti

o
n

 t
im

e
 (

u
s)

MPI Ranks (1 Rank/Node)

Thin

Medium

Fat

Link bandwidth = 50GB/s

82

ISCA Tutorial, June 13, 2015

80

100

120

140

160

180

200

1K 2K 4K 8K 16K 32K 64K

Ex
e

cu
ti

o
n

 t
im

e
 (

u
s)

MPI Ranks

Thin

Medium

Fat

Link bandwidth = 125GB/s

83

ISCA Tutorial, June 13, 2015

85

90

95

100

105

110

115

120

125

1K 2K 4K 8K 16K 32K 64K

E
x
e
c
u

ti
o

n
 t

im
e
 (

u
s
)

Ranks

Thin

Medium

Fat

Case #3: Scheduling

 PaCMap: Topology mapping of unstructured communication
patterns onto non-contiguous allocations (ICS 2015)
 Tuncer, Leung, and Coskun

 Problem: Want to map a job’s tasks to nodes in a way that
reduces communication overhead
 Two optimizations: (1) allocate nodes to a job and (2) map a job’s tasks

to its allocated nodes

 Traditionally: communication pattern-unaware allocation followed by
communication pattern-aware mapping

 But, overhead affected by both allocation and mapping

 Challenges: Non-contiguous allocation and irregular communication

 PaCMap: Joint, communication-aware, allocation and mapping

ISCA Tutorial, June 13, 2015

84

PaCMap: Simulation challenge

 Big challenge for simulation
 System has 30K-90K+ cores across thousands of nodes

 Workloads run 1K-3K jobs, each with up to 115K tasks

 Interested in system performance over a period of two weeks

 Decision for current job affects future job’s performance

 Experimental methodology
 Workloads: Trace-based

 Create macro-level performance estimate

 Coarse-grained performance estimate calibrated using data from real
hardware

 Tradeoff fidelity for simulation speed

 Uses scheduler, METIS, LibTopoMap for partitioning and scheduling

ISCA Tutorial, June 13, 2015

85

PaCMap: Results

86

ISCA Tutorial, June 13, 2015

Cumulative running time for jobs in (a) LLNL-Atlas and (b) CEA-Curie
for different allocator-mapper pairs

 PaCMap reduces cumulative running time by 2-3% (3000 node hours) over
two weeks

 For jobs with 1K+ tasks, PaCMap reduces network traffic volume by up to
30% (not shown)

A user perspective

 Sebastien Rumley, Columbia University

ISCA Tutorial, June 13, 2015

87

Agenda

Afternoon

 Tour of SST Elements (continued)

 Demo: Using the statistics API

 Use cases

 A user perspective

 Validation

 Future developments

 Wrap-up

ISCA Tutorial, June 13, 2015

88

Validation

 On-going effort to validate simulation against real hardware
 Compare performance, bandwidth, etc. using kernels & mini-Apps

 Mini-Apps: DOE benchmarks based on production codes

– Mantevo Suite: miniFE, miniAMR, miniGhost, etc.

 Micro-benchamrks: STREAM, LMBench, GUPS

 Quantize accuracy of high vs. low detail processing models

 Initial results
 Memory studies focus on bandwidth and latency

 Have resulted in some bug fixes to memHierarchy

 Discovered bug where the Intel PIN tool for Ariel was not able to
follow a forked child despite setting the correct PIN parameters

ISCA Tutorial, June 13, 2015

89

Validation study #1

 Validate that observed and configured cache latencies match
 Validate latencies independently for L1 and L2

 Evaluate using BlackjackBench

 Ariel processor + memHierarchy L1, L2, and memory

 Results
 The number of memory accesses reported by Ariel matches the count

estimated from the application source

 As expected, load latencies change at cache size boundaries

 When data fits in L1, average load latency matches configured latency

 Latency for L2 is less than expected

 MemHierarchy computes latency correctly

 Caused by complex interaction between Ariel and application

– Especially when using gettimeofday system call

ISCA Tutorial, June 13, 2015

90

Validation study #2

 Validate the bandwidth and latency reported by VaultSim and
DRAMSim
 Evaluate using the Mantevo miniApp suite

 Ariel processors + memHierarchy caches and memory + merlin network

 Results
 Coarse grain: VaultSim performs better than DDR3 (as expected)

 Fine grain: Working to establish that latencies between caches and
memory are correct (in progress)

 Led to modification of the memNIC to support larger buffers

 Led to improved latency statistics for caches

 Takeaway: Care must be taken in setting bandwidth, clock rates, buffer
sizes, etc. across many components and links to achieve specified
bandwidth

91

ISCA Tutorial, June 13, 2015

Agenda

Afternoon

 Tour of SST Elements (continued)

 Demo: Using the statistics API

 Use cases

 Validation

 A user perspective

 Future developments

ISCA Tutorial, June 13, 2015

92

Current development efforts

 Re-integrating SST & Gem5
 Previous integration was with a branch of Gem5, emulation mode only

 New integration is with the main Gem5 stable release

 Ability to run full-system

 Testing of the new integration is underway

 Integration is owned by Gem5

 Parallel simulation via threads
 SST core relies on MPI for parallel simulation

 Recently began an effort to integrate threading into the SST core

 Enable parallel simulation via threads or MPI + threads

ISCA Tutorial, June 13, 2015

93

Current development efforts

 SST Macro integration
 SST Macro: effort to enable flexible, full-system simulations

 Coarse grained architecture and OS models

 Direct compilation of “skeleton” application source code

 Combined focus on hardware and software design

 Co-design of app, runtime, middleware, and hardware

 SST Macro also does parallel discrete-event (PDES)

 Effort to integrate macroscale PDES algorithms (MPI + PThread) into
SST core

ISCA Tutorial, June 13, 2015

94

Finally: Getting help

 SST wiki contains lots of information (www.sst-simulator.org)
 Downloading, installing, and running SST

 Element libraries and external components

 Guides for extending SST

 Information on APIs

 Information about current development efforts

 SST maintains mailing lists for additional support
 sst-user: For questions on building, compiling, extending, and using SST

 sst-developer: For questions on developing SST components

 sst-announce: Release announcements

 sst-commit: Notification of commits to the SVN repository

 Subscribe via the wiki

ISCA Tutorial, June 13, 2015

95

Wrap-up

 SST is a parallel, flexible simulation framework
 Can simulate many systems at many granularities

 Capable of simulating modern architectures

 Modular design for extensibility

 Please keep us posted on your uses of SST as well as any
capabilities you’ve added or would like to see added

 Thank you for attending!

ISCA Tutorial, June 13, 2015

96

Photos placed in horizontal position
with even amount of white space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Structural Simulation Toolkit (SST)
June 13, 2015

ISCA Tutorial

ISCA Tutorial, June 13, 2015

