Exceptional service in the national interest

Laboratories

June 13, 2015
ISCA Tutorial

% U.S. DEPARTMENT OF Q:‘Qi

£ TNAT =
E i ENERGY /A" N e Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
- Natlonal Nuclear Security Adminisicaiion Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Welcome to the SST Tutorial — ®&# @i,

= We will be doing some demos using a provided VM

= Setup:
= Copy the VirtualBox VM from the provided USB drives

= Boot the VM

" Pre-compiled SST Release 5.0.1
— Path

= Configuration files for demo
— Path

2
-

ISCA Tutorial, June 13, 2015

Welcome! B850 ([5,

Morning (9a-12:30p)

Welcome and setup

The SST Framework

Demo: Running a simulation
Tour of SST Elements

Afternoon (1:30p-5p)

Tour of SST Elements (continued)
Demo: Using the statistics API
Use cases

A user perspective

Validation

Future developments
3

ISCA Tutorial, June 13, 2015

Instructors B850 ()&=

= Gwen Voskuilen
= Arun Rodrigues
= Si Hammond

= Branden Moore

4
-

ISCA Tutorial, June 13, 2015

Why SST? S50 @i

= Problem: Simulation is slow
= Tradeoff between accuracy and time to simulate
= Many simulators are serial, unable to simulate very large systems

= Problem: Lack of simulator flexibility
= Tightly-coupled simulations: faster but difficult to modify
= Difficult to simulate at different levels of accuracy

The Structural Simulation Toolkit:
A parallel, discrete-event simulation framework
for scalability and flexibility

5

ISCA Tutorial, June 13, 2015

Overview 80 ()=

= Parallel
= Built from the ground up to be scalable
= Demonstrated scaling to 512+ processors

= Flexible
= Enables “mix and match” of simulation components
= Custom architectures

= Custom tradeoff between accuracy and simulation time
= E.g., cycle-accurate network with trace-driven endpoints

6
-

ISCA Tutorial, June 13, 2015

Capabilities B8N () E.

= SST Core (framework):
= Time-scale independent: micro-, meso-, macro-scale simulations

= Provides a number of interfaces and utilities for simulation models

= Components: SST’s simulation models
= Components perform the actual simulation
= Many built-in models available: processors, memory, network
= Compatible with external models: Gem5, DRAMSIim2, many others

= QOpen API

= Easily extensible with new models
= Modular framework
= Open-source core

7

ISCA Tutorial, June 13, 2015

SST: FRAMEWORK FOR PARALLEL
SIMULATION

SST’s discrete-event algorithm S8 (i,

SST
. SST SST SST Link N\ Component
Component Link Component Component Component £ | ;iency: 2ns Type: NoC
Type: Core Type: Cache :
Event Router

SST Core

Instantiation Time
Coordination

SST Link
Latency: 4ns

Configuratio

0 Parallel SST SST SST
rgr s . . Component
Parititioning Communication Component Component _
.) Type: NoC
Type: Core Type: Cache Router

= Simulations are comprised of components connected by links

= Components interact by sending events over links
= Each link has a minimum latency

= Components can load subComponents and modules for
additional functionality

9

ISCA Tutorial, June 13, 2015

Key objects B8 (i,

= SST::Component - SST::Component
= Simulation model CPU
= SST::Link
= Communication path between two \[Bucniiapdien b
components SST::Event
= Has optional EventHandler = Load
= SST::Event :
= A discrete event %
= SST::Clock::Handler
= Function to handle a clock tick 4 EventHandler]\
= SST::SubComponent
= Add functionality to Components SST::Component
= SST::Module _ Cache)

= Add functionality to framework

10

ISCA Tutorial, June 13, 2015

Component B0 () =,

= Basic building block of a simulation model

= E.g., processor, cache, network router, etc.
" Performs the actual simulation

= Uses Links and Ports to communication with other components
= Components define ports, links connect ports between components
= Polled: Register a clock handler to poll the link
= |nterrupt: Register an event handler to be called when an event arrives
= Both: Receive events on interrupt, send events on clock

= Uses SubComponents and Modules for additional functionality

11

ISCA Tutorial, June 13, 2015

SubComponents and Modules) .

= Add additional functionality to a Component

= SubComponent (SC): friend class of component Component:
= Module (M): not a friend of component Cache
= Provide modularity Module:
* Generic interface which can be used by multiple SC/M MemNIC
= Loaded by Components at runtime I
= Tightly-coupled with a component L Component: J
= Components call SC/M as a C++ class instance Network
= Do not need to communicate via Links 1
= SC/M cannot exist by themselves ~— Module:
= Example MemNIC
= M.emNIC: Implements the network interface | Component:
(simpleNetwork), used by caches to communicate
Cache
over a network A /

12

ISCA Tutorial, June 13, 2015

Sandia
Link S8 (1)

= Connects two components
= Connect a specific “Port” on component A to a “Port” on component B

The ONLY mechanism by which components communicate

= Necessary for parallel simulation

= Has a minimum, non-zero latency for communication
= Except self-links

= Except during initialization

= Transparently handles any MPI communication

4)\ 4 N

Component A Component B

Port X
PortY

13

ISCA Tutorial, June 13, 2015

Event 80 ()=

= Unit of communication between two components

= Packet format is up to the communicating components

= Some standardized interfaces
= Facilitate “mix and match” capability
= sst/core/interfaces/
= Memory (simpleMem)
= Defines commands & event format for communication with memory
= Network (simpleNetwork)
= Defines a header for events sent through a network component

14
-

ISCA Tutorial, June 13, 2015

Component/link interface S (),

= Components use these calls to manage links and events

SST::Component::configureLink()

= Registers a link and (optionally) a handler
SST::Link::recv()

= Pull an event from a link
SST::Link::send()

= Push an event down a link

SST::Component::registerClock()

= Register a clock frequency and a handler to be called on each clock
tick

15
-

ISCA Tutorial, June 13, 2015

Simulation lifecycle

= Birth

= |ife

Create graph of components using Python configuration file
Partition graph and assign components to MPI ranks
Instantiate components

Connect components via links

Initialize components using their init() functions

Setup components using their setup() functions

Send events
Manage clock and event handlers

= Death

Finalize components using their finish() functions
Output statistics
Cleanup simulation, delete components

Sandia
National
Laboratories

16

ISCA Tutorial, June 13, 2015

Component lifecycle B (M),

" Pre-construction: define and partition components
= (Construction: call component constructors and parse parameters
= |nitialization —init()

= Components send “init” events to each other over links

= Discover neighbors, negotiate parameters, initialize data structures, etc.
= Multiple rounds of communication until no more “init” events are sent

= Setup — setup()
= Each component does its final setup and schedules initial events

= Run

= Actual simulation

= Continues until a set time, or all components agree to finish
" Finalize — finish()

= Simulation complete

= Write statistics, free memory, etc. 17

ISCA Tutorial, June 13, 2015

Sandia
National _
Laboratories

SST in parallel

= SST was designed from the
ground up to enable scalable,

parallel simulations Comp1’ pug’ Comp3 iug COMPS " g’ Comp?
= Components are distributed

among MPI ranks =
= Links allow parallelism Same configuration file

= Hence, components should
communicate via links only

= Transparently handle any MPI
communication

= Specified link-latency determines
MPI synchronization rate

T

MPI Rank 0 | MPIRank 1 | MPIRank 2 | MPI Rank 3

18

ISCA Tutorial, June 13, 2015

Agenda B8 ()&,

Morning

Demo: Running a simulation
Tour of SST Element Libraries

Afternoon

Tour of SST Elements (continued)
Demo: Using the statistics API
Use cases

Validation

Future developments

Wrap-up

19

ISCA Tutorial, June 13, 2015

Getting and installing SST BEE @,

= Already installed in the VM, but for future reference...

= www.sst-simulator.org

= Current release (5.0.1) source download

= Directions for SVN checkout

= Caveat: SST is under active development, code in the trunk may not have
passed testing yet

= Detailed build instructions including dependencies for Linux & Mac
= Links to mailing lists for updates and support

20
-

ISCA Tutorial, June 13, 2015

http://www.sst-simulator.org
http://www.sst-simulator.org
http://www.sst-simulator.org
http://www.sst-simulator.org

Navigating the source code 8 @,

= ~/examples
= Example configuration files

= ~/sst/core
= Source for the core framework, APIs, etc.

= ~/sst/elements
= Source for the Element Libraries
= Element: Collection of components (e.g., Merlin — networks)

= ~/tools

= Standalone and component-specific tools
= SSTWorkbench: GUI for generating configuration files

21

ISCA Tutorial, June 13, 2015

Configuring a simulation S (),

= SST uses a Python configuration file
= Defines global parameters for the simulation
= Defines and configures components
= Specifies links and link latencies between components

= QOpen ‘demo.py’

oty SR et SRR

u) Cu] (wenoy] (e (1 [w
Bus :Directory: :Directory: Bus

: L2 :——{ Network L2 :

22

ISCA Tutorial, June 13, 2015

Part 1: Configure SST S (),

= Global simulation parameters

= sst.setProgramOption(“stopAtCycle”, “100ms”)

= Kill simulation (nicely!) if it runs to 100ms

= sst.setProgramOption(“timebase”, “1ns”)
= Tell SST that we’re simulating at a granularity around 1ns
= Used by SST core when time units are not specified by a component

= Not a lower limit! (clocks can be > 1 GHz)

23

I EEEEEEEE—————————
ISCA Tutorial, June 13, 2015

Part 2: Define components B (1),

= Define: sst.Component(“name”, “type”)
= Configure: addParams ({ “parameter” : value, .. })

demo.py: line 172 Component name Component type
Lt ¢/ z/'
network = sst.Component(“router”, “merlin.hr_router”)
network.addParams ({
“xbar_bw” : “51.2GB/s”, B

“link _bw” : “25.6GB/s”,
“num_ports” : 4,
“flit size” : “72B.:
“topology” : “merlin.singlerouter”,
ﬂ‘id).‘ : “‘@))’
“input_buf size” : “2KB”,
“output _buf size” : “2KB”
}) .
24

ISCA Tutorial, June 13, 2015

. | Parameters

: : S5 () e
SSTInfo: Getting component info S (@) .

" Prints parameters, port names, and statistics

Optionally filter for a specific component

$ sstinfo memHierarchy.Cache
PROCESSED 25 .so (SST ELEMENT) FILES FOUND IN DIRECTORY /home/sst/build/lib/sst
Filtering output on Element.Component = “memHierarchy.Cache”

ELEMENT 18 = memHierarchy (Cache Hierarchy)
COMPONENT © = Cache [MEMORY COMPONENT] (Cache Component)
NUM PARAMETERS = 32
PARAMETER © = cache_frequency (Clock frequency with units. For L1ls, this is
usually the same as the CPU's frequency.) [REQUIRED]‘K\\\

PARAMETER 21 = network_bw (Network link bandwidth.) [lGB/s]\ “REQUIRED” or

NUM PORTS = 4 \ Parameter \ Definition R

Port name
PORT 3 [1 Valid Events] = directory (Network link port to directory)
VALID EVENT © = MemHierarchy.MemRtrEvent .
Y =~ Definition

A

NUM STATISTICS = 32 Type of event(s) used on the link

25

Sandia
National
Laboratories

Part 3: Defining links

= Example: Connect socket 0’s L2 cache (I2cache0) to network

= Create a link: sst.Link(“name”

= Define link endpoints: connect(endpointl, endpoint2)
= Endpoint is defined as: (Component, Port, Latency)
= Note: Latencies of the two endpoints can differ

Link name
7

/

12cache@® network link = sst.Link(“l2cache® network link”)

demo.py: line 220

12cache@® network link.connect(
(12cache@, “directory”, “50ps”),
(network, “porte”, “50ps”))‘k\\

Endpoints

26

ISCA Tutorial, June 13, 2015

Running SST B0 ()

= Usage: sst [options] configFile.py
= Common options:

-v | --verbose Print verbose information during runtime

--debug-file <filename> Send debugging output to specified file (default:
sst_output)

--add-1lib-path <dirname> Add <dirname> to search path for element libraries

--heartbeat-period <period> Every <period> time, print a heartbeat message

--paritioner <zoltan | self | simple | | Specify the partitioning mechanism for parallel runs

rrobin | linear | lib.partitioner.name>

--model-options “<args>” Command line arguments to send to the Python
configuration file

--output-partition <filename> Write partitioning information to <filename>

--output-dot <filename> Output a graph representing the configuration in

“Dot” format to <filename>

27
-

ISCA Tutorial, June 13, 2015

Demo: Running the simulation ®&#

= Launch simulation
$ sst demo.py

= Qutput

Sandia
National _
Laboratories

Inserting stop event at cycle 100ms, 100000000000
ARIEL-SST PIN tool activating with 4 threads
ARIEL: Default memory pool set to ©

ARIEL: Starting program.
Performing iteration ©
Performing iteration ©
Performing iteration ©
Performing iteration ©

Simulation is complete, simulated time: 125.209 us

ARIEL: Tool is configured to begin with profiling immediately.

28

ISCA Tutorial, June 13, 2015

Agenda B8 ()&,

Morning

Tour of SST Element Libraries

Afternoon

Tour of SST Elements (continued)
Demo: Using the statistics API
Use cases

Validation

Future developments

Wrap-up

29

ISCA Tutorial, June 13, 2015

Element libraries a0 ()

= Libraries which contain a set of related components,
subComponents, and modules

= SST comes with many built-in libraries
= Processors, memory, network, etc.
= Tested for inter-library compatibility
= Also compatible with many external “libraries”

= DRAMSiIim2, Gem5, many others
= See www.sst-simulator.org for more information

30

-
ISCA Tutorial, June 13, 2015

SST5.0 element libraries B (1)

= Processors = Network driver
= Ariel — PIN-based = Ember — Pattern-based
= Prospero — Trace-based = Firefly — communication
= Miranda — Pattern-based protocols
= Memory = Hermes - MPI-like driver
interface

= MemHierarchy — Caches,
= Zodiac — trace-based

memory
= VaultSimC - Stacked memory ™ Network models
= Cassini — Cache prefetchers = Merlin — Network simulator

= QOther
= Scheduler
= simpleElementExample

31

ISCA Tutorial, June 13, 2015

SST5.0 external components — ### (.

= Processors

= Gem5* - Cycle-accurate processor model

= Qsim - Processor model
= MacSim - GPU model
= Memory
= DRAMSim?2 - DRAM
= NVDIMMSim - Non-volatile (NV) memory
= HybridSim - NV + DRAM

*Gemb5 support through v4 for an older branch of Gemb5; starting with v5.0,
support for the Gem5 stable release version is being provided within Gem5

32

ISCA Tutorial, June 13, 2015

Ariel: PIN-based processor R () 2.

= Lightweight processor core model

= Uses Intel’s PIN tools and XED decoders to analyze binaries
= Runs x86, x86-64, SSE/AVX, etc. compiled binaries
= Supports fixed thread count parallelism (OpenMP, Qthreads, etc.)

= Passes information to virtual core in SST

= |mplements SST’s memory interface to interact with a
memory model

33

ISCA Tutorial, June 13, 2015

Ariel: The tradeoff B ()=,

" Pros:

= Faster than cycle-accurate processor models (e.g., Gemb5)

= Reasonable approximation for studies on memory system
performance

= Especially for heavily memory-bound applications
= Reasonable model of thread interactions

= Cons

= Slower than trace/pattern-based processor models
= Does not give cycle-reproducible results
= Use of threads can disturb reproducibility

= Non-deterministic results

= Not compatible with non-x86 binaries

34

ISCA Tutorial, June 13, 2015

Ariel: Architecture B8 ()

SST Ariel Component
—)

Ariel PIN Tool Virtual “Ariel” Core memHierarchy Cache
(memEvent Target) i

- Virtual “Ariel” Processor

User Application

Binary D i

(Instruction Stream
1 per thread)

—)

Unmodified user binary
(use your standard compiler etc)
35

ISCA Tutorial, June 13, 2015

Ariel: Details B8D (A&

= Ariel’s virtual cores

= |nstruction information currently limited to memory ops or instructions
with no memory operands

= Clocked: Reads instruction stream in chunks but processes on clock
= Back pressure from FIFO halts real binary execution

= Does not maintain dependence order or register locations (yet)!

= Performs a TLB mapping of virtual-to-physical addresses

= Key user knobs
= Memory ops issued/cycle
= Load/store queue size

= Memory interface

= Generates memEvents which can be sent to a cache model

= Tracks basic statistics (request counts, split-cache line loads, etc.)
36

ISCA Tutorial, June 13, 2015

Prospero: Trace-based processor #8# (&,

= Trace-based processor model

= Reads memory ops from a file and passes to the simulated memory
system

= “Single core” but can use multiple trace files to emulate threaded or
MPI-style applications

= Supports arbitrary length reads to account for variable vector widths
= Performs “first touch” virtual to physical mapping

= Comes with Prospero Trace Tool to generate traces

= Or can generate your own and translate to Prospero’s format

37
-

ISCA Tutorial, June 13, 2015

Prospero: The tradeoff S [

= Pros
= Faster than Ariel and Gemb5
" Provided you can get a trace
= Good for heavily memory-bound applications

= Reasonable approximation to memory system performance

= Cons
= Traces can be very large
= Requires good I/0 system to store and read the trace

= Traces are less flexible than actual execution
= Capture a single execution stream using a single application input

38
-

ISCA Tutorial, June 13, 2015

Sandia

Miranda: Pattern-based processor 8 @i,

= Extremely light-weight processor model

" Generates specific memory address patterns

= Current patterns

= Strided accesses (single stream)
= Forward and reverse strides

= Random accesses
= GQUPS

= STREAM benchmark
= |n-order & out-of-order CPU

= 3D stencil

= Sparse matrix vector multiply (SpMV)
= Copy (~array copy)

39

ISCA Tutorial, June 13, 2015

Miranda: The tradeoffs B8 (i,

= Pros
= Very lightweight — no binary, no trace

= Good for applications whose address patterns are predictable
= E.g., not much pointer-chasing

= Cons

= Need a generator for the memory pattern of interest
= Requires a good understanding of the pattern

40
-

ISCA Tutorial, June 13, 2015

Sandia

MemHierarchy: Memory system 8 (.

= Cycle-accurate cache and memory simulation
= |nter- and intra-socket coherence
= Multiple main memory models

= Highly configurable
= Can model any number of caches (L10s!)
= Arbitrary topologies, multiple memories
= Single- and multi-socket configurations

= Capable of modeling modern memory hierarchies
= |ntel core i7, Xeon Phi
= Arm Cortex A8, A7, A15, A53, A57
= SPARCT6

41
-

ISCA Tutorial, June 13, 2015

MemHierarchy: Components S8 ().

= Cache
" |ncludes coherence protocols (MSI, MESI, etc.)

= Bus
= Directory controller

= |nter-socket coherence

= Memory controller
= Backs up simulated memory, interfaces with memory backends

= Memory backends
= Main memory simulators for DRAM, stacked DRAM, NVRAM, etc.

= TrivialCPU & StreamCPU

= Very simple memory request generators for testing

42

ISCA Tutorial, June 13, 2015

Sandia
National
Laboratories

MemHierarchy: Caches

= Store actual data

= Set associative, configurable replacement policies
= LRU, LFU, Random, MRU, NMRU (not MRU)

= Use MSHRs to buffer outstanding requests

= Can communicate via a direct link or over a bus or network

= |Implements simpleNetwork interface via the “MemNIC” module
= Can model a single shared cache or multiple cache slices
= Handles atomics, LLSC, non-cacheable requests, etc.

= Prefetch capability by using the Cassini element library

43

ISCA Tutorial, June 13, 2015

MemHierarchy: Cache structure®&#

CacheController

Routes incoming events to handlers
Manages retry of buffered events in
the MSHRs

Manages cache allocations and
evictions

s

<

Sandia
National _
Laboratories

/CacheArray
« Stores cache lines —
data and coherence
state
* Replacements via the
replacement policy

_ manager

~

MSHRs

Buffers stalled
and blocked
events

) (@

/

<

oherenceController
Manages coherence state
Receives events from CacheController
Sends outgoing events
 Forwarded requests, responses, etc.
Decides when events need to stall

/

44

ISCA Tutorial, June 13, 2015

MemHierarchy: Main memory 8% @

= MemoryController

= Contains a ‘backing store’ for simulated data

= Can communicate over a network or via a direct link with a cache or

directory

= |nterfaces with multiple memory backends

= Available backends

SimpleMem — basic read/write with associated latencies
DRAMSim2 — DRAM (external)

NVDIMMSim — Non-volatile memory (e.g., Flash) (external)
HybridSim — non-volatile memory with a DRAM cache (external)
VaultSimC — stacked DRAM

45

ISCA Tutorial, June 13, 2015

Welcome back!

Afternoon

Tour of SST Elements (continued)
Demo: Using the statistics API
Use cases

A user perspective

Validation

Future developments

Sandia
National _
Laboratories

46

ISCA Tutorial, June 13, 2015

Merlin: Network simulator B0 (1) 2

= Low-level, flexible networking components that can be used
to simulate high-speed networks (machine level) or on-chip
networks

= Capabilities
= High radix router model (hr_router)
= Topologies — mesh, n-dim tori, fat-tree, dragonfly

= Many ways to drive a network

= Simple traffic generation models

= Nearest neighbor, uniform, uniform w/ hotspot, normal, binomial
= MemHierarchy
= Lightweight network endpoint models (Ember — coming up next)

= Or, make your own
47

ISCA Tutorial, June 13, 2015

Ember: Network traffic generator & @,

= Light-weight endpoint for modeling network traffic

= Enables large-scale simulation of networks where detailed modeling
of endpoints would be expensive

= Packages patterns as motifs
= Can encode a high level of complexity in the patterns

= Generic method for users to extend SST with additional
communication patterns

= |ntended to be a driver for the Hermes, Firefly, and Merlin
communication modeling stack
= Uses Hermes message API to create communications

= Abstracted from low-level, allowing modular reuse of additional
hardware models
48

ISCA Tutorial, June 13, 2015

Ember: Overview a0 (DB,

High Level Communication Pattern and Logic
Ember Motif Generates communication events

(R
Ember Engine

Hermes API
Packetization and Byte Movement Engine
Generates packets and coordinates with network
Flit Level Movement, Routing, Delivery

Merlin Network

Event to Message Call, Motif Management
Handles the tracking of the motif

Message Passing Semantics
Collectives, Matching etc

Moves flits across network, timing etc

49

ISCA Tutorial, June 13, 2015

Ember: Motifs B850 ([5,

= Motifs are lightweight patterns of communication
= Tend to have very small state
= Extracted from parent applications

= Models as an MPI program (serial flow of control)
= Many motifs acting in the simulation create the parallel behavior

= Example motifs
= Halo exchanges (1, 2, and 3D)
= MPI collections — reductions, all-reduce, gather, barrier
= Communication sweeping (Sweep3D, LU, etc.)

50

ISCA Tutorial, June 13, 2015

Ember: Motifs (continued) S ()

= The EmberEngine creates and manages the motif
= Creates an event queue which the motif adds events to when probed

= The Engine executes the queued events in order, converting them to
message semantic calls as needed

= When the queue is empty, the motif is probed again for events

= Events correspond to a specific action

= E.g., send, recv, allreduce, compute-for-a-period, wait, etc.

51
-

ISCA Tutorial, June 13, 2015

Firefly: Network traffic SR @)

= Purpose: Create network traffic, based on application
communication patterns, at large scale

= Enables testing the impact of network topologies and technologies on
application communication at very large scale

= Scales to 1 million nodes

= Supports multiple “cores” per Node

= |nteraction between cores limited to message passing

= Supports space sharing of the network

= Multiple “apps” running simultaneously

52

ISCA Tutorial, June 13, 2015

Firefly: Simulating large networks #8# [,

= A network node consists of

= Driver (the “application”) Ember
= NIC (driver)
= Router

Firefly Hades

= Nodes are connected together via
the routers to form the network

= Fat tree, torus, etc. Firefly NIC
= Firefly is the interface between the
driver and the router <7 Merlin Router —>
= Message passing library = Firefly ‘L

Hades

= NIC = Firefly NIC
53

ISCA Tutorial, June 13, 2015

Scheduler B850 ([5,

= Models HPC system-wide job scheduling

= Three components
= Sched: schedules and allocates resources for a stream of jobs
= Node: runs scheduled jobs on their allocated resources
= Faultinjection: injects failures onto the resources

= The scheduler is currently a stand-alone element library

= The schedComponent and nodeComponent must be used together
= The faultinjectionComponent is optional

54

ISCA Tutorial, June 13, 2015

Other Libraries B850 ([5,

= More information on these and other element libraries and
external components is available on the wiki

= www.sst-simulator.org

55
-

ISCA Tutorial, June 13, 2015

http://www.sst-simulator.org
http://www.sst-simulator.org
http://www.sst-simulator.org

Extending SST RN ()=,

= SST is designed for extensibility
= Creating new Element Libraries and components
= Wrapping existing simulators to interact with other SST components
= We recommend that libraries be built outside the source tree

= Helpful information

= Example element library
= Components demonstrating links, ports, clocks, event handling, etc.
= sst/elements/simpleElementExample
= Wiki
" Getting Started Extending SST (a little out of date)
" Building Element Libraries outside SST source tree

= Mailing lists — sst-developer and sst-user

56

ISCA Tutorial, June 13, 2015

Agenda B8 ()&,

Afternoon

Demo: Using the statistics API
Use cases

A user perspective

Validation

Future developments
Wrap-up

57

ISCA Tutorial, June 13, 2015

Demo: Using the Statistics AP| #8#

= Goals of this demo

= Learn to configure a simulation to give statistics via the Statistics API

= Add a statistic to memHierarchy for some hands-on experience
extending and compiling SST

Sandia
National _
Laboratories

58

ISCA Tutorial, June 13, 2015

Statistics APl: Overview B () e,

= New in v5.0!
= Unified interface for Components to collect and return stats
= Provides users with flexibility in getting statistics

= Using the API
= Components declare and register statistics
= Name, “load level”, data type (int, double, etc.)
= Components update statistics during simulation
= User enables some or all statistics

= User determines how often and in what format (e.g., sum or
histogram) to return statistics

= User determines the output format (console, text, CSV, etc.)

59

ISCA Tutorial, June 13, 2015

Enabling statistics B (1) =,

= First, the easy case = enable all statistics for all components

= Step 1: Set load level

= Enables statistics that have a load level < set level

= Max level is 7, default is O
sst.setStatisticlLoadlLevel(7)

Step 2: Enable all statistics for all components
sst.enableAllStatisticsForAllComponents()

Step 3: Send statistics output to the console
sst.setStatisticOutput(“sst.statOutputConsole™)

60
-

ISCA Tutorial, June 13, 2015

Try it! B0 ()

= QOpen “demoStatistic.py”

= Uncomment lines 237-239 near the end of the file (under “Demo #1”)

= Run the simulation and view the output

$ sst demoStatistic.py

collection

component.statistic mode sum sum squared

cpu. r‘eac}'_r'equests .0 : Accumulator : S‘uﬁ. ud4 = 11006; }ﬁmSQ. u4 = 11006;
Count.u64 = 11006;

data type

cpu.write requests.@® : Accumulator : Sum.u64 = 5355; SumSQ.u64 = 5535;

Count.u64 = 5535;
Number of times data was added to the statistic
= Tip: Use sstinfo to view information about a component’s statistics
61

ISCA Tutorial, June 13, 2015

Output format options)

= Print statistics to a file instead of the console
= Regular file: CSV (statOutputCSV) or text (statOutputTxt)
= Compressed file: CSV (statOutputCSVGz) or text (statOutputTxtGz)
sst.setStatisticOutput(“sst.statOutputCSVv”)

= Qutput options for file outputs
sst.setStatisticOutputOption(“filepath” : “myStats.csv”)

= Specific options depend on output type

= Use “help” option to see all options and defaults

sst.setStatisticOutput(“sst.statOutputTxt”)
sst.setStatisticOutputOption(“help” : “1”)

62
-

ISCA Tutorial, June 13, 2015

Enabling statistics individually —#8# [Ez.

= Enable statistics for all components of a particular type

sst.enableAllStatisticsForComponentType(“merlin.hr_router”)

= Enable statistics for a specific component

sst.enableAllStatisticsForComponentName(“llcache 0”)

= Enable a single statistic for all components of a particular type

sst.enableStatisticForComponentType(
“memHierarchy.Cache”, “CacheHits”)

= Enable a single statistic for a single component

sst.enableStatisticForComponentName(“llcache_ 0, “CacheHits”)

= Next: customizing statistic output

63

ISCA Tutorial, June 13, 2015

Customizing a statistic S ()

= Option 1: Specify collection type
= Accumulator (default): sums the data added to the statistic
= Histogram: bins the data added to the statistic

= QOption 2: Specify output frequency
= Dump statistics at the end of simulation (default)
= Dump statistics at a regular interval during simulation

64
-

ISCA Tutorial, June 13, 2015

Customizing a statistic S).

= Accumulator example: print the sum of cache hits every 50 us

sst.enableStatisticForComponentType(

“memHierarchy.Cache”, “CacheHits”,

{ “type” : “sst.AccumulatorStatistic”,
“rate” : “50 us”

})
= Histogram example: print packet latency as a histogram
sst.enableStatisticForComponentType (
“memHierarchy.DirectoryController”, “packet latency”,
{ ‘“type” : “sst.HistogramStatistic”,
“minvalue” . 97,
“binwidth” . 27,
“numbins” : “507,
“dumpbinsonoutput” . 17,
“includeoutofbounds” : “1”
}) 68

ISCA Tutorial, June 13, 2015

Exercise: Create a new statistic #8# @&,

= Now let’s add a new statistic

Count the number of writes that arrive at the memory controller

= Steps

Define the statistic in ElementinfoStatistic

Create a variable in the Component for counting the statistic
Register the statistic

Call addData() for the statistic

Recompile

Update configuration file to print out our new statistic

66

ISCA Tutorial, June 13, 2015

Adding a statistic I () 2

= Define the statistic in ElementinfoStatistic
= Per-component structure that defines the component’s statistics

= <name, definition, load level>

= Navigate to the memHierarchy element
= sst/elements/memHierarchy/
= QOpen libmemhierarchy.cc
= Component definitions for memHierarchy
" Find Elementinfo* for the memory controller (line XXX)
= No ElementiInfoStatistic yet > Add it! Load level

static const ElementInfoStatistic memctrl_statistics[] = { ¢/
{“WriteCount”, “Number of writes received.”, “count”, 1}

}s A
\

String defining
the “unit” of the
statistic

Statistic name \ Definition

67

ISCA Tutorial, June 13, 2015

Adding a statistic (continued)) .

= Navigate to the memHierarchy element
= sst/elements/memHierarchy

= Open memoryController.h and memoryController.cc

= Define a variable for the statistic
= Add the following to the “private” section of the .h file (line 162)

Statistic<uint64 _t>* statWriteCount;

= Register the variable to correspond to a particular statistic

= Add the following line to the constructor in the .cc file (after line 164)

statWriteCount = registerStatistic<uint64 t>(“WriteCount”);

\

variable Statistic type / '\ Statistic name

68

ISCA Tutorial, June 13, 2015

Adding a statistic (continued)

= Count the statistic
= Open memoryController.cc
= Find the “handleEvent” method (line 169)

il

= Called each time a new event arrives at the memory controller

Sandia
National
Laboratories

= Add: Increment our new statistic if the event’s command (cmd) is “GetX”

190: if (cmd == GetX) statWriteCount->addData(1l);

= Now we’re ready to compile

= Navigate back up to the sst root directory

III

= Run “make all instal
$: make all install

= While that’s compiling...

= Questions?

69

ISCA Tutorial, June 13, 2015

Sandia
National
Laboratories

Adding a statistic (continued)

= Finally, edit demoStatistics.py to print the new statistic
= Re-comment the lines under “Demo #1”

= Uncomment lines under “Demo #2” (lines 244-245)
= Note: Another syntax for enabling statistics per component!

memory ©.enableAllStatistics()
memory 1.enableAllStatistics()

= And run again:

$ sst demoStatistics.py

memory O.WriteCount : Accumulator : ..
memory 1.WriteCount : Accumulator : ..

70
-

ISCA Tutorial, June 13, 2015

Final notes on the Statistics AP| #88 (@),

= The APl is new = more components will use statistics in newer
SST releases

= Also likely to see more configuration options

= The API can be used by Components and SubComponents

= But Modules cannot use statistics directly (due to inheritance structure)

71
-

ISCA Tutorial, June 13, 2015

Agenda B8 () &,

Afternoon

Use cases

A user perspective
Validation

Future developments
Wrap-up

72

ISCA Tutorial, June 13, 2015

SST: Use cases BEN (@)

= SST is capable of simulating a wide variety of systems

= Full-system simulation of a multicore with multiple types of memory
= DRAM + NVRAM + stacked DRAM

= Large networks of nodes
= Job scheduling across thousands of nodes

= Next: Some studies using SST

73
-

ISCA Tutorial, June 13, 2015

Case #1: Multi-level memory — #88 @E-.

= Future memory systems will be Multi-Level Memory

MLM can potentially offer more “usable” bandwidth, less cost

= Challenges:
= substantial software and hardware (co-)design

I)I

" no “one size fits al

SST can explore HW & SW organization

On package Memory Option

2"9-level memory

1%t-level memory

AMD Intel Marvell 24

ISCA Tutorial, June 13, 2015

Analyzing Memory Accesses

= Capture post-cache accesses

SaSEl

DDR

Directory
Controller

Histogram

Sandia
National
Laboratories

= Setup: % f L
Merli
= “Quads” of 4 cores J Router
. LI
= Histogram generator v v
. "Quad" + "Quad"
implemented as a prefetcher > O
L1 || L1 || L1 || L1 L1 || L1 || L1 || L1
Core || Core || Core || Core Core || Core || Core || Core
12 SnoopParams = { Ariel Trace Capture
"prefetcher": "cassini.AddrHistogrammer", PIN
"prefetcher.histo bin width": 4096,
"prefetcher.heap begin": "1 GiB",
"prefetcher.heap end": "9 GiB"
}
75

ISCA Tutorial, June 13, 2015

Analysis: Diverse Patterns

Physical address histograms

of accesses

of accesses

minife2.0-100x100x1
(16 cores: 32KB L1, 512k

1200
1000}
800}
Regular
400
200!
0
0.0 0.5 1.0 1.5 2.0 2.5
Addresses
miniaero-256x32x32-
8000 ' ‘(16 corgs:32K§ L1, 51
7000
6000
F Well
ew, Well-d
4000 R .
3000
2000
1000
Q
0.0 0.2 0.4 0.6 0.8 1
Addresses

lulesh2.0-100x100x100
(16 cores: 32KB L1, 512KB L2)

25000
— reads
— writes
20000
& 15000
I
I
g |
o
o
©
W
o
4 10000
5000
0 n
0 50000 100000 150000 200000 250000 300000
Pages (4K) sorted by descending order of accesses
0.0 0.5
minife2.0-100x100x100
1200 (16 core§: 32KB L1, 5}2KB L2) ‘
— reads
— writes
1000F, 19 1
7 - -
@
Q
A
('U
3 600
©
“
[s)
it
4001
j%017
200}
0 L L L L
0 20000 40000 60000 80000 100000

Pages (4K) sorted by descending order of accesses

mh

rsbench-large-300Kiter
i cores: 32KB L1, 512KB L2)

reads
writes

rregular f

1.0 15

2.0 2.5 .
Addresses le7
ulesh2.0-100x100x100
cores: 32KB L1, 512KB L2)
— reads
— writes
.
Viultiple |
.
Regions
).4 0.6 0.8 1.0 1.2
Addresses 1le9

3.0

Sandia
National _
Laboratories

76

Multi-Level Memory Simulation #&#

= Multiple memory types:
= DDR DRAM (DramSim)
= HMC-like Stacked Memory (VaultSim)
= NVRAM (NVDIMMSim)

= Addresses can be interleaved, or
blocked between memory types

dc.addParams ({
"addr range start": start pos,

"addr range end": end pos,
"interleave size": interleave size/1024,
"interleave step": interleave_step,

"entry cache size": 128*1024,
"clock": memclock,
"network address": netPort

Sandia
|I1 National _
Laboratories
Stacked
Vault
Logic
Layer
e DDR DDR
Directory Directory irectory
Controller Controller Controller
t £ 1
YYY
Merlin
Router
[y
y v
"Quad" "Quad"
L2 L2
L1 L1 L1 L1 L1 L1 L1 L1
Core || Core || Core || Core Core || Core || Core || Core
E Ariel Trace Capture _Ql—
PIN
77

MLM Explorations S (1) B

MiniFE&imula, ons&

= Analysis of application o e
memory use distribution L

= Quick exploration of “Naive” .
address assignment, capacity ..
ratios on performance -

DDR+4Only" 18%'HMC'82%'DDR" 18%HMC'36%" 18%"HMC"18%'DDR"
DDR(cache)'64%'NV" (cache)'%'64NV"

= Not shown: Feedback results
from histograms to determine
address assignment

Figure 5: MiniFE Simulation results

78

Case #2: Network B (d) -,

= What is the network latency achieved by different platforms
during a 3D halo exchange?
= Halo exchange: Exchange boundary data with neighbors
= Platform 1: “Fat” nodes — Eight 20TF/s cores per node
= Platform 2: “Medium” nodes — Two 20TF/s cores per node
= Platform 3: “Thin” nodes — One 10TF/s core per node

= Evaluate for 1K to 64K participating nodes

= Evaluate at three different link bandwidths
= 12.5GB/s, 50GB/s, 125GB/s

79

ISCA Tutorial, June 13, 2015

Network: Simulation setup B ()

= Use SST Ember to model nodes

= Lightweight model focused on communication pattern
= Estimates compute time using the node’s FLOPS
= Detailed model of communication

= Enables scaling the simulated system to a larger number of nodes
= Compared to a detailed processor model + memory model

= Use SST Firefly to model the NIC

= Use SST Merlin to model the network
= Detailed, cycle-accurate models for network (routers, links, etc.)

80

ISCA Tutorial, June 13, 2015

Link bandwidth = 12.5GB/s S () .

__ 600 4;/49_
9 - — T

~— 500 - -

aEJ =2=Thin

": 400 #-Medium
S 300 <CrFat

o

@

X

LLl

.
100

1K 2K 4K 8K 16K 32K 64K
MPI Ranks (1 Rank/Node)

81

ISCA Tutorial, June 13, 2015

Link bandwidth = 50GB/s S ()

200
— 180 _g———
2 e
2 160 <=Thin
.'g 140 #-Medium
s <C-Fat
3 120
u
&
0 ‘:ﬁ;—.—;gg
80 I I I I I I
1K 2K 4K 8K 16K 32K 64K

MPI Ranks

82

ISCA Tutorial, June 13, 2015

Link bandwidth = 125GB/s S8 @

Sandia
National _
Laboratories

125

?120 ==Thin
3115 -Medium

€110 -o-Fat

1K 2K 4K 8K 16K 32K 64K

Ranks

83

ISCA Tutorial, June 13, 2015

Case #3: Scheduling S ()

= PaCMap: Topology mapping of unstructured communication
patterns onto non-contiguous allocations (ICS 2015)

= Tuncer, Leung, and Coskun

= Problem: Want to map a job’s tasks to nodes in a way that
reduces communication overhead

= Two optimizations: (1) allocate nodes to a job and (2) map a job’s tasks
to its allocated nodes

= Traditionally: communication pattern-unaware allocation followed by
communication pattern-aware mapping

= But, overhead affected by both allocation and mapping

= Challenges: Non-contiguous allocation and irregular communication

= PaCMap: Joint, communication-aware, allocation and mapping

84

ISCA Tutorial, June 13, 2015

PaCMap: Simulation challenge #8# iJE:.

= Big challenge for simulation
= System has 30K-90K+ cores across thousands of nodes
= Workloads run 1K-3K jobs, each with up to 115K tasks

= |nterested in system performance over a period of two weeks
= Decision for current job affects future job’s performance

= Experimental methodology
= Workloads: Trace-based

= Create macro-level performance estimate

= Coarse-grained performance estimate calibrated using data from real
hardware

= Tradeoff fidelity for simulation speed

= Uses scheduler, METIS, LibTopoMap for partitioning and scheduling

85

ISCA Tutorial, June 13, 2015

PaCMap: Results S (),

Cumulative running time for jobs in (a) LLNL-Atlas and (b) CEA-Curie
for different allocator-mapper pairs

x 10° Bl best—fit L Imcix1 []PaCMap

1.1

—
o
¢

cumulative running
time in hours
—b

0.9 g
RGrB PaCMap RGrB PaCMap
(a) (b)
= PaCMap reduces cumulative running time by 2-3% (3000 node hours) over

two weeks

= For jobs with 1K+ tasks, PaCMap reduces network traffic volume by up to
30% (not shown) 86

ISCA Tutorial, June 13, 2015

Sandia

A user perspective S (.

= Sebastien Rumley, Columbia University

87
-

ISCA Tutorial, June 13, 2015

Agenda

Afternoon

Validation

= Wrap-up

Future developments

Sandia
National
Laboratories

88

ISCA Tutorial, June 13, 2015

Validation B850 ([5,

= On-going effort to validate simulation against real hardware

= Compare performance, bandwidth, etc. using kernels & mini-Apps

= Mini-Apps: DOE benchmarks based on production codes
— Mantevo Suite: miniFE, miniAMR, miniGhost, etc.

= Micro-benchamrks: STREAM, LMBench, GUPS
= Quantize accuracy of high vs. low detail processing models

= |nitial results
= Memory studies focus on bandwidth and latency
= Have resulted in some bug fixes to memHierarchy

= Discovered bug where the Intel PIN tool for Ariel was not able to
follow a forked child despite setting the correct PIN parameters

89
-

ISCA Tutorial, June 13, 2015

Sandia
National
Laboratories

Validation study #1

= Validate that observed and configured cache latencies match
= Validate latencies independently for L1 and L2
= Evaluate using BlackjackBench

= Ariel processor + memHierarchy L1, L2, and memory

= Results

The number of memory accesses reported by Ariel matches the count
estimated from the application source

= As expected, load latencies change at cache size boundaries
When data fits in L1, average load latency matches configured latency
= Latency for L2 is less than expected

= MemHierarchy computes latency correctly

= Caused by complex interaction between Ariel and application
— Especially when using gettimeofday system call

90

ISCA Tutorial, June 13, 2015

Validation study #2) ..

= Validate the bandwidth and latency reported by VaultSim and
DRAMSIim
= Evaluate using the Mantevo miniApp suite

= Ariel processors + memHierarchy caches and memory + merlin network

= Results

= Coarse grain: VaultSim performs better than DDR3 (as expected)

= Fine grain: Working to establish that latencies between caches and
memory are correct (in progress)

= Led to modification of the memNIC to support larger buffers
= Led to improved latency statistics for caches

= Takeaway: Care must be taken in setting bandwidth, clock rates, buffer
sizes, etc. across many components and links to achieve specified

bandwidth
91

ISCA Tutorial, June 13, 2015

Agenda

Afternoon

* Future developments

Sandia
National
Laboratories

92

ISCA Tutorial, June 13, 2015

Current development efforts — #8# @i,

= Re-integrating SST & Gemb5

= Previous integration was with a branch of Gem5, emulation mode only

= New integration is with the main Gemb5 stable release
= Ability to run full-system

= Testing of the new integration is underway
= |ntegration is owned by Gem5

= Parallel simulation via threads
= SST core relies on MPI for parallel simulation
= Recently began an effort to integrate threading into the SST core
= Enable parallel simulation via threads or MPI + threads

93

ISCA Tutorial, June 13, 2015

Current development efforts — #8# @i,

= SST Macro integration

= SST Macro: effort to enable flexible, full-system simulations
= Coarse grained architecture and OS models
= Direct compilation of “skeleton” application source code

= Combined focus on hardware and software design
= Co-design of app, runtime, middleware, and hardware

= SST Macro also does parallel discrete-event (PDES)

= Effort to integrate macroscale PDES algorithms (MPI + PThread) into
SST core

94
-

ISCA Tutorial, June 13, 2015

Sandia
National
Laboratories

Finally: Getting help

= SST wiki contains lots of information (www.sst-simulator.org)
= Downloading, installing, and running SST
= Element libraries and external components
= Guides for extending SST
= |nformation on APIs

= |nformation about current development efforts

= SST maintains mailing lists for additional support
= sst-user: For questions on building, compiling, extending, and using SST
= sst-developer: For questions on developing SST components
= sst-announce: Release announcements
= sst-commit: Notification of commits to the SVN repository
= Subscribe via the wiki

95
-

ISCA Tutorial, June 13, 2015

Wrap-up B () =,

= SST is a parallel, flexible simulation framework
= Can simulate many systems at many granularities
= Capable of simulating modern architectures
= Modular design for extensibility

= Please keep us posted on your uses of SST as well as any
capabilities you’ve added or would like to see added

= Thank you for attending!

96

ISCA Tutorial, June 13, 2015

Sandia

Exceptional service in the national interest National
Laboratories

I=]

l ISCA Tutorial

L

|

S

1 June 13, 2015

5‘;*“\\‘ U.S. DEPARTMENT OF 7 W A b@fﬂ
‘\‘%\ /ég NERGY ;ﬂ” v" D:‘ﬂ Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
i ‘National Nusiear Securiy Adminissration

Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

