
DOE/SC-ARM-14-010

ARM Data File Standards
Version 1.2

May 2016

ARM Standards Committee

DISCLAIMER

This report was prepared as an account of work sponsored by the U.S.
Government. Neither the United States nor any agency thereof, nor any of
their employees, makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the
U.S. Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the
U.S. Government or any agency thereof.

DOE/SC-ARM-14-010

ARM Data File Standards
Version 1.2

ARM Standards Committee

May 2016

Work supported by the U.S. Department of Energy,
Office of Science, Office of Biological and Environmental Research

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

iv

Acronyms, Abbreviations, and Terms

<#> enumerated number placeholder

AAF ARM Aerial Facility
ABLE Argonne Boundary Layer Experiment
ADI ARM Data Integrator
AGL above ground level
AMF ARM Mobile Facility
ARM Atmospheric Radiation Measurement Climate Research Facility
ASCII American Standard Code for Information Interchange file format
BoM Bureau of Meteorology
CF climate and forecast
CGA calibration, grooming, and alignment
Developer person responsible for software development
DMF Data Management Facility
DOD Data Object Design
DOE U.S. Department of Energy
DOI Digital Object Identifier
EBBR Energy Balance Bowen Ratio Station
ECOR Eddy Correlation Flux Measurement System
ECR Engineering Change Request
EWO Engineering Work Order
Facility A specific geographical location within a Site where an instrument is located.

Multiple facilities may exist for each Site. Can also designate a particular aircraft
or aerosol chamber, etc.

<field> General placeholder for a field name

GB gigabyte
GMT Greenwich Mean Time
HDF Hierarchical Data Format
IATA International Air Transport Association
Instrument A single piece of hardware or group of sensors hardware that records one or more

measurements
IOP Intensive Operational Period
JPEG Joint Photographic Expert Group file format
MAOS Mobile Aerosol Observing System
Mentor Person responsible for instrument installation and general operations
Metadata Information describing a set of data or a piece of hardware

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

v

MPEG Moving Picture Expert Group file format
MRSR Multifilter Rotating Shadownband Radiometer
MSL mean sea level
NaN Not a number indicator
NASA National Aeronautics and Space Administration
NOAA National Oceanic and Atmospheric Administration
NSA North Slope of Alaska, an ARM field site
PCM Process Configuration Management
PDF Portable Document Format
PI Principal Investigator
PNG Portable Network Graphics file format
QC quality control
RAW Data file created by instrument

RWP Radar Wind Profiler
SIRS Solar and Infrared Radiation Station
Site Geographical region within which a set of measurements are being conducted

SWAT Soil Water and Temperature System
TAR Tape ARchive
TB terabyte
Translator Person responsible for VAP development and maintenance

TWP Tropical Warm Pool, an ARM field campaign
URL Uniform Resource Locator
UTC Coordinated Universal Time
VAP Value-Added Product. A higher-order data product that includes derived

quantities not measured directly or routinely, a combination from multiple
sensors, or improvements to quality to fulfill unmet measurement needs of the
ARM Facility

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

vi

Contents

Acronyms, Abbreviations, and Terms ... iv
1.0 Standards Committee .. 1
2.0 Introduction .. 1

2.1 Intended Audience.. 1
2.2 Background .. 1
2.3 Advantages of Following Standards .. 2
2.4 Example of Tools Using Standards .. 2

3.0 The Standards Hierarchy .. 3
3.1 Required Standards .. 3
3.2 Recommended Standards ... 3

4.0 Optional Methods ... 3
5.0 Significant Changes .. 3

5.1 Changes from Version 1.1 .. 4
6.0 File Type/Format .. 4
7.0 Construction of Data Filename ... 5

7.1 File Naming Conventions for Processed Data ... 5
7.1.1 Filename Length .. 6
7.1.2 Facility Code Descriptions .. 6
7.1.3 Data Level ... 9
7.1.4 Best Estimate ... 10
7.1.5 File Duration ... 11

7.2 Guidelines for Original RAW Filename .. 11
7.3 File Naming Conventions for RAW ARM Data .. 11
7.4 File Naming Conventions for TAR Bundles .. 12
7.5 File Naming Conventions for Field Campaign TAR Bundles ... 13
7.6 Other Data Formats .. 13
7.7 Guidelines to Name Quick-Look Plot Filenames ... 14
7.8 Case-Sensitive File Naming ... 14

8.0 Guideline for netCDF File Structure .. 15
8.1 Dimensions ... 15

8.1.1 Time Dimension .. 15
8.2 Time ... 15

8.2.1 base_time and time_offset Fields .. 15
8.2.2 time Field... 16
8.2.3 Time Bin Boundary ... 17

8.3 Coordinate Dimensions .. 18

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

vii

8.3.1 Reference for Coordinate Units ... 18
8.3.2 Referencing AGL and MSL .. 19
8.3.3 Coordinate Bin Dimension .. 19
8.3.4 Additional Dimension ... 20
8.3.5 Cell Method Attribute ... 20

8.4 Location Fields ... 21
8.5 Guidelines for Construction of Field Names .. 22

8.5.1 Field Names Hierarchy .. 23
8.5.2 Field Name Abbreviations and Descriptors .. 24

8.6 State Indicator Field ... 25
8.6.1 Exclusive States ... 25
8.6.2 Inclusive States .. 26

8.7 Field Attributes ... 27
8.7.1 Required Field Attributes .. 27
8.7.2 Required with Conditions .. 27
8.7.3 Standard_Name Attribute .. 28
8.7.4 ARM Standard Field Attribute Names .. 28
8.7.5 Sensor Height .. 29
8.7.6 Attribute Datatype ... 29

8.8 Global Attributes .. 29
8.8.1 Required and Recommended Global Attributes .. 29

8.9 Quality Control Parallel Fields ... 33
8.9.1 Bit-Packed Numbering Discussion ... 33
8.9.2 Standard Bit-Packed Quality Control Fields ... 33
8.9.3 Integer Quality Control Fields ... 40

8.10 Guidelines to Describe Source ... 41
8.10.1 Source Field Attribute –Time Independent ... 42
8.10.2 Source Field –Time Dependent ... 42

8.11 ADI Transform Parameters Using cell_transforms .. 44
8.11.1 Transform Type ... 45
8.11.2 Additional Parameters ... 45

8.12 Process for Evaluating Exceptions ... 45
8.12.1 Identifying Exceptions .. 45
8.12.2 Exception Request ... 46
8.12.3 The Review Process .. 47
8.12.4 Options for the Standards Committee ... 47

9.0 CF standard_name Recommendations ... 48
Appendix A : Bin Values Changing Each Time Step ... A.1
Appendix B : Descriptors, Units, and Prefixes ..B.1

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

viii

Appendix C : ARM netCDF Data File Example ...C.1

Tables

1 Table 1. ARM Standards Committee .. 1
2 Table 2. Field attributes. .. 35

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

1

1.0 Standards Committee
This document was prepared by the 2015 Standards Committee consisting of:

Table 1. ARM Standards Committee

Group Primary Member Incoming Member*

VAP Manager Chitra Sivaraman (PNNL) Brian Ermold (PNNL)

Metadata Reviewer Rick Wagener (BNL) David Troyan (BNL)

Data Archive Harold Shanafield (ORNL) Bhargavi Sriram (ORNL)

DQ Office Ken Kehoe (OU) [Chair] Josh King (OU)

Translator/Mentor Laura Riihimaki (PNNL) Jenni Kyrouac (ANL)

* The incoming member will assume the role of primary member after a term except for the VAP Manager who will
not step down from the primary member status. A new incoming member will be chosen every cycle.

ANL = Argonne National Laboratory ATK = Alliant Techsystems Inc.

BNL = Brookhaven National Laboratory LANL = Los Alamos National Laboratory

LLNL = Lawrence Livermore National Laboratory ORNL = Oak Ridge National Laboratory

OU = University of Oklahoma PNNL = Pacific Northwest National Laboratory

2.0 Introduction

2.1 Intended Audience

This document is intended for ARM infrastructure and any data user needing further explanation of the
format of ARM data file standards.

2.2 Background

The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research
Facility performs routine in situ and remote-sensing observations to provide a detailed and accurate

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

2

description of the Earth atmosphere in diverse climate regimes. The result is a huge archive of diverse
data sets containing observational and derived data, currently accumulating at a rate of 30 terabytes (TB)
of data and 150,000 different files per month (http://www.archive.arm.gov/stats/). Continuing the current
processing while scaling this to even larger sizes is extremely important to the ARM Facility and requires
consistent metadata and data standards. The standards described in this document will enable
development of automated analysis and discovery tools for the ever growing data volumes. It will enable
consistent analysis of the multiyear data, allow for development of automated monitoring and data health
status tools, and allow future capabilities of delivering data on demand that can be tailored explicitly for
the user needs. This analysis ability will only be possible if the data follows a minimum set of standards.
This document proposes a hierarchy of required and recommended standards.

All new data sets must adhere to required ARM standards to be published in ARM archives, unless an
exception is granted. The historical data will be brought into compliance with the standards as it is
reprocessed.

Where feasible, the standards listed in this document follow the climate and forecast (CF) convention.
Using the CF standards will increase the usability of the data to the broader scientific community. A full
description of the CF convention can be found at http://cfconventions.org/.

Benefits of adhering to these standards include:

• consistency across datastreams

• code reuse by using consistent formats

• simple and consistent software able to read all standardized netCDF files

• files (netCDF data files) both human- and machine-readable as much as possible.

2.3 Advantages of Following Standards

Adhering to the standards put forth in this document will allow automated utilities to function with
minimal updates. Overall, if data products meet a required set of standards, the software products used to
assess and/or display them can be developed much more efficiently. Adherence to the standards will lead
to better quality and more readily understandable netCDF files. The standards present a consistent “look
and feel” to data users who are familiar with ARM standards.

As more products adhere to the standards, fewer exceptions must be added to data product software, such
as Value-Added Products (VAPs), when ingesting various input datastreams. For developers,
encountering fewer exceptions results in reduced chances to introduce software errors and quicker
development time. This lowers the costs for development, and unintended costs to the ARM Facility
through reprocessing tasks.

2.4 Example of Tools Using Standards

The ARM Facility has many individual software tools using the standards listed in this document.
Conforming to the standards enables the ARM Facility to function efficiently and accomplish

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

3

significantly more with fewer resources. Some examples of software tools dependent on adherence to the
standards include:

• DQ Explorer, DQ Inspector, NCVweb, and ARM*STAR at the Data Quality Office

• DSView, Ingest and VAP processing at the Data Management Facility

• Data Discovery, storage, custom data files at the ARM Data Archive

• Process Configuration Management and Metadata Management Tool at the External Data Center.

Links to these tools can be found at http://i.arm.gov.

3.0 The Standards Hierarchy
The standards are divided into two groups.

3.1 Required Standards

Required standards must be met to comply with the ARM standard. To reference a standards version
number, all required standards must be met except those allowed to deviate by the Exceptions Committee.
Unless otherwise indicated, all standards listed are required. If the required standards are not met, data
will not be published in the ARM Data Archive unless an exception is granted.

A few required standards are required with conditions. The few cases are explicitly described in this
document. If the conditions are not met, the standard is not required. (e.g., missing_value attribute).

3.2 Recommended Standards

Recommended standards are encouraged standards that increase the usability of the final data products by
both the ARM infrastructure and ARM data users. Following recommended standards enables automatic
status monitoring, automated extraction tools, and consistency of the data. The recommended standards
will be labeled as recommended in this document. Not following these standards may result in the data set
not being monitored for data quality status and not discoverable through the ARM operational tools.

4.0 Optional Methods
Some netCDF fields (i.e., quality control, source, or state indicator field) or metadata (e.g., cell_methods)
are optional and up to the discretion of the developer/mentor/translator to implement. All instances of
optional methods are labeled as optional in this document. If an optional field or metadata is used, the
required and recommended standards listed in those sections apply.

5.0 Significant Changes
This section lists changes to the existing de facto standards that may require the most attention.

• changing from .cdf to .nc file extension

http://i.arm.gov/

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

4

• require both base_time & time_offset, and time in Climate and Forecast convention methods

• additional time cell boundaries for time-averaged data

• additional coordinate cell boundaries for coordinate-averaged data

• removal of qc_time as a required field

• explicit criteria for filename data level

• reduction in use of abbreviations in field names

• explicit method for state indicator fields

• addition of datastream and platform_id global attributes

• missing_value field attribute required with conditions

• standard_name field attribute required if a primary field and the standard name exists in the climate
and forecast table

• explicit method for integer quality control fields

• explicit method for source fields.

5.1 Changes from Version 1.1

• Allowing a datastream class name to end in a number for enumerated cases

• Expanded definitions of all facility codes

• Standard method for describing ARM Data Integrator parameters used in transformations

• Definition of a Value-Added Product (VAP) and metadata

• Consolidated to a single suggested units table

• How to indicate multiple missing values in a single variable

• Allowing the exclusion of site and facility indicator from source field

• Requiring DOI in netCDF datastream. Link to DOI generator at ARM Archive.

6.0 File Type/Format
RAW instrument data is typically written in ASCII, binary or netCDF data formats. Most formats are
decided by the instrument vendor, not by the ARM Facility. If an option is available, use best judgment
when choosing a vendor data file format.

Version 3/classic format netCDF is the ARM Facility choice for final data format because it supports
efficient data storage and reliable/robust documentation of the data structure. More information about
netCDF is available at http://www.unidata.ucar.edu/packages/netcdf/faq.html.

High-volume data may be treated as a special case and allowed to use netCDF version 4 to take advantage
of the compression option. Use of netCDF 4 to take advantage of the compression abilities requires a

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

5

significant reduction in file size (a minimal reduction of 50% data volume) or increase in usability of the
data. Use of netCDF 4 will be granted through the Exception Committee process.

ASCII, binary, and HDF formats are used for some external data products. When using ASCII or binary
data formats, a description of the file structure and its proposed documentation must be easily available to
the user. HDF is the standard for most satellite data. More information about HDF is available at
http://www.hdfgroup.org and http://www.hdfeos.org.

7.0 Construction of Data Filename

7.1 File Naming Conventions for Processed Data

ARM netCDF files are named according to the following naming convention. All characters are
lowercase except for facility indicator. Only “a-z”, “A-Z”, “0-9”, and “.” characters are allowed.

(sss)(inst)(qualifier)(temporal)(Fn).(dl).(yyyymmdd).(hhmmss).nc

where:

(sss) is the three-letter ARM site identifier (e.g., sgp, twp, nsa, pgh, nim, ena, mag). The identifier is
defined by a geographic reference or the International Air Transport Association (IATA) three-letter
airport code to indicate approximate location. Fixed sites are named after a geographic reference, while
ARM Mobile Facility (AMF) deployments use the IATA code. For remote deployments not near an
airport or deployments on moving platforms it has become practice to use a 3-letter acronym of the
campaign/experiment, e.g., mag, acx, awr. Exceptions may be made for large geographic areas for
satellite data (e.g., gec, nac). For ARM Aerial Facility (AAF) deployments the site code will be chosen
from the airport the aircraft departs from unless the flight path is large and choosing a geographical area is
more appropriate. When the AAF is flying over a fixed or AMF site, that site name will be used.

(inst) is the ARM instrument abbreviation (e.g., mwr, met, ecor, mpl), or the name of an ARM value-
added product (VAP). The abbreviation is typically an acronym describing the instrument suite or VAP,
and may describe the method for retrieving the measured or derived quantity. The instrument abbreviation
must not end with a number, as this can be confused with the data temporal resolution descriptor or other
optional descriptors following the instrument abbreviation, unless the number is used as an enumeration
to distinguish multiple instruments or multiple versions.

(qualifier) is an optional qualifier that distinguishes these data from other data sets produced by the same
instrument or VAP (e.g., avg, 1long). The optional qualifier may have one or more additional qualifiers
describing a specific algorithm method or instrument specifics. This qualifier is used to describe monthly,
yearly, or annual files. The qualifier must not end with a number, as this can be confused with the data
temporal resolution descriptor, unless the number is used as an enumeration to distinguish different
qualifiers (i.e., aosflow1 versus aosflow2 where the number indicates different versions).

(temporal) is an optional description of data temporal resolution (e.g., 30m, 1h, 5s, 200ms, 14d). All
temporal resolution descriptors require a units identifier. Accepted abbreviations include: ns=nanosecond,
us=microsecond, ms=millisecond, s=second, m=minute, h=hour, d=day, mo=month, yr=year. It is

http://www.hdfeos.org/

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

6

recommended that the primary datastream for use by the end-user not have a data integration period in the
name. Time integration periods are converted to the lowest unit description. When possible, default to
minutes. Example: 60 seconds is labeled as “1m”; 60 minutes is labeled as “1h”.

(Fn) is the ARM Facility designation. A facility is designated with a capital letter followed by one or two
numbers not padded with zeros (e.g., S1, C1, E13, B4, M1, I4). (dl) data level is the two-character
descriptor consisting of one lower-case letter followed by one number, except for RAW data level which
will consist of two numbers (e.g., 00, a0, b1, c1, c2). See the Data Level section for further explanation.

(yyyymmdd) is the coordinated universal time (UTC) date in year, month, day-of-month format
consisting of exactly eight characters, indicating the start date of the first data point in the file. Single-
digit month and day values are padded with 0. Example: February 4, 2012 = “20120204”.

(hhmmss) is the UTC time in hour, minute, second format consisting of exactly six characters and
indicates the start time of the first data point in the file. Single-digit values are padded with a “0”. Sub-
second times are truncated to the integer of the seconds value. Example: 5:00:19.57 UTC = “050019”.
The time sample may not exceed 23:59:59. Hours greater than or equal to 24, or minutes or seconds
greater than 60, will cause problems with time conversion programs.

nc is the netCDF file extension. The CF convention file extension for netCDF files was changed from cdf
to nc in 1994 in order to avoid a clash with the National Aeronautics and Space Administration (NASA)
CDF file extension, or with "Channel Definition Format" files. A number of third-party utilities require
the nc extension or build the tools expecting a nc file extension (i.e., Panoply, IDV, ncBrowse). For
backwards compatibility, ARM will continue to allow the use of cdf file extension for historical data. As
data is reprocessed, the filename extension will be updated to nc if feasible.

7.1.1 Filename Length

The TOTAL length of a filename sent to the ARM Data Archive MUST be 60 characters or less to meet
the requirements of the current ARM Data Archive database system. The ARM Data Archive uses a 64-
character filename field in the database, and appends a version level to the end of the filename. (Archive
version descriptor examples: ”.v1”, “.v13”). Four characters are reserved for the period, “v” and 1 or 2-
character numbers describing the version of the file received at the ARM Data Archive.

In addition to full filename length, the datastream, (sss)(inst)(qualifier)(temporal)(Fn).(dl), MUST be 33
characters or less to comply with the Archive database.

The final filename length requirement includes limiting the instrument description part of a filename,
(inst)(qualifier)(temporal), to 24 characters or less to comply with the Archive database.

7.1.2 Facility Code Descriptions

Facility Codes were originally used to distinguish spatially separated fixed measurement locations within
a given site and to distinguish the locations based on the complement of instruments deployed. The
meaning has been extended to refer to specific measurement assets (e.g., aerial platforms in AAF) and to
distinguish data products that are not intended for wide distribution (D-facilities).

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

7

Some facility codes are now obsolete but have to be maintained because of the existence of data products
in the ARM archive that are intended for public distribution.

Here are the descriptions in alphabetical order:

7.1.2.1 A = Argonne Boundary Layer Experiment (ABLE) [Retired]

After the termination of ABLE, the ARM archive incorporated the ABLE data, because of the large
overlap of both the type of instrumentation deployed (Radar Wind Profilers [RWPs]) and some spatial
overlap of the deployed locations.

7.1.2.2 B = Boundary Facilities [Retired]

The boundary facilities existed only during the era of the large footprint that the Southern Great Plains
(SGP) site intended to capture the fluxes across the outer boundary of the SGP domain.

7.1.2.3 C = Central Facility

For the fixed locations having one or more facilities and is one of the main heavily instrumented site.

7.1.2.4 D = Diagnostic Data Products

This is not a facility at all; it is not a measurement platform, nor a complement of instruments, nor tied to
a specific location, but rather is attached to data products created for short-term diagnostic purposes to be
shared by expert data-users only and not intended for general distribution. Data with the D<#> facility
code is to be made available to a small set of people performing tasks such as calibration, grooming, and
alignment (CGA) requiring diagnostics files. This facility code should be used for real-time, onsite
diagnostics and calibration.

7.1.2.5 E = Extended Facilities

The original concept of an extended facility at the SGP was a standard minimal set of instrumentation to
be deployed at numerous locations within a global climate model grid-cell-size domain including the
Solar and Infrared Radiation Station (SIRS), the Multifilter Rotating Shadownband Radiometer
(MFRSR), the Soil Water and Temperature System (SWATS), and the Energy Balance Bowen Ratio
Station (EBBR)/Eddy Correlation Flux Measurement (ECOR) System. The SGP facilities were numbered
in increasing numerical order as they were created. Therefore there is no specific reasoning for the
numbering scheme as was used with the other fixed-site extended facilities.

Extended facilities around a central facility at the remote locales with multiple central facilities (Tropical
Warm Pool [TWP], North Slope of Alaska [NSA]) indicate the association of the extended facility to the
central facility by matching the first of the two required digits to the central facility number. Example:
central facility TWP-C2 is related to extended facilities E20, E21, E22, while TWP-C1 is related to E10,
E11, E12.

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

8

7.1.2.6 F = ARM Aerial Facility (AAF)

Each of the airborne platforms that are part of or on loan to the AAF has a F-facility code designator and
remains tied to the specific platform for each deployment (e.g., F1 = Gulfstream G-1, F2 = Cessna)

7.1.2.7 I = Intermediate Facility

These facilities are typically instrumented with RWP and other radars and located at intermediate
distances from the central facility to optimize radar coverage.

7.1.2.8 L = Local? or Logistics? Facility [Retired]

Used only once for L3 = Blackwell/Tonkawa Airport, Oklahoma for the duration of a campaign; likely a
reference instrument on the ground for comparisons with the aircraft instruments.

7.1.2.9 M = Mobile Facility

For each of the ARM Mobile Facility sites, the central location where all the data are collected and the
majority of the instruments are deployed is designated M1; it is thus equivalent to C1 for the fixed sites.

7.1.2.10 N = Network of Measurement Locations

Used for derived data products that combine data from multiple sensor locations, e.g., all MFRSR data
from all Extended Facilities at SGP.

7.1.2.11 Q = Quality Assurance (Pre-deployment Integration) [Retired]

Only used for SHB for integration sites. Can be thought of as being superseded by the D-facility code that
now serves a similar purpose.

7.1.2.12 S = Supplemental or Ancillary Facility

Most commonly used for Mobile facility deployments for either additional instruments deployed away
from M1 or for redundant instruments at the same location that require a different facility code to
distinguish the data products running the same ingest.

Instances of a co-located deployment of the Mobile Aerosol Observing System (MAOS) with the
National Oceanic and Atmospheric Administration (NOAA) AOS will result in the MAOS using S1 for
the facility indicator unless S1 is used to describe a different location than that of the MAOS.

Supplemental facility designations (S<#>) is only used for mobile facility deployments, co-located
facility indicator or Intensive Operating Period (IOP) data sets.

At the fixed sites, S0<#> has been used in the past to indicate a supplemental facility co-located with the
main facility. The continuation of this convention is not recommended.

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

9

7.1.2.13 X = eXternal Facilities

External data products that cover a large locale use the facility designation of X1, while data products that
are specific to an ARM Facility follow the extended facility two-numeral-character naming. X10 is
always reserved for external data specific to C1 or M1 (i.e., X20 for C2 or M2). All other locations near
or associated with the C1 or M1 central facility are numbered X11, X12, etc. For example, external data
associated specifically with the SGP-C1 facility would be named SGP-X10, while nearby locations are
SGP-X11, SGP-X12, etc.

Some data products that are technically externally sourced have been adopted and run through the regular
ARM ingest and given the appropriate ARM facility code, e.g., the Bureau of Meteorology (BoM) sondes
at TWP-C3.

7.1.3 Data Level

Data levels are based on the "level of processing" with the lowest level of data being designated as RAW
or "00" data. Each subsequent data level has minimum requirements and a data level is not increased until
ALL the requirements of that level as well as the requirements of all data levels below that level have
been met. A data level will consist of one lowercase letter followed by one number (except for RAW
data).

00: raw data – primary raw data stream collected directly from instrument

01 to 99: raw data – redundant data stream, sneakernet data (transfer of data files by physically moving
removable media), or external data that may consist of higher-order products, but require further
processing to conform to ARM standards.

a0: raw data converted to netCDF. This data level is typically used as input to higher-level data products.
Not intended for distribution to data users.

a1: calibration factors applied and converted to geophysical units

a2 to a9: further processing on a1-level data that does not merit b-level classification. This level also
applies to external satellite files that are converted from TDF to HDF format. Example: instrument mentor
reviewing the data and replacing bad data with missing value, or additional calibration factors added to
data after data has been processed as an a1 datastream. A description of the further process must be
included in the netCDF header, Instrument Handbook, or technical paper available to data users.

b0: intermediate quality-controlled datastream. This data level is always used as input to higher-level data
products. Not intended for distribution to data users.

b1: quality-control checks applied to at least one measurement and stored in an accompanying quality-
control field meeting quality-control standards listed in this document. The addition of qc_time does not
force the datastream to b level. External data may contain additional quality-control flags specified by the
external data source.

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

10

b2 to b9: further processing on b1-level data that does not merit c-level classification. Example:
additional quality-control test or different parameters used in processing. A description of the further
process must be described in the netCDF header, Instrument Handbook, or technical paper available to
data users.

c0: intermediate value-added product (VAP). This data level is always used as input to a higher-level
VAP. Not intended for distribution to data users.

c1: derived or calculated VAP using one or more measured or modeled data as input. For external data,
.c1-level data may contain gridded model data, satellite data, or other data that have had algorithms
applied by an external source. A description of the process must be included in the netCDF header or
technical paper available to data users.

c2 to c9: further processing applied to a c1-level data stream using the same temporal resolution. Possible
reasons for increasing levels include better calibration, better coefficients for algorithms, or reprocessing
using different averaging resolution in algorithm.

s1: summary file consisting of a subset of the parent b- or c-level file with simplified quality control and
“Bad” values set to missing value indicator. The s-level number must match the b- or c-level file used as
input.

s2 to s9: summary file for higher c-level datastreams.

Notes:

• Not every data level needs to be produced for each instrument data set. Example: if conversion from
RAW to netCDF, calibration, and engineering units are applied in a single processing step during
conversion from RAW to netCDF format, then an a0 data product would not be produced.

• Quality-control checks applied to a data field by the instrument (not by ingest) do not require the data
level to be increased from an a1 level to b1, unless the netCDF data file provides accompanying QC
fields satisfying b-level requirements.

• Data level c0 to c9 is restricted to data derived or calculated through value-added processing. Lower-
level datastreams will be kept in the ARM Data Archive if useful for evaluating an instrument or cross-
checking another datastream. If the lower-level data does not need to be kept, it will be removed from
the ARM Data Archive.

7.1.4 Best Estimate

The use of “be” in a filename indicates the datastream is a best estimate. This designation indicates an
official decree from the ARM Facility that the values used are ARM’s best attempt at representing the
scientific quantity. Use of the best estimate designation requires approval from ARM Facility leaders
through an Engineering Change Request (ECR).

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

11

7.1.5 File Duration

To control the number of small files and to facilitate the use of ARM data, the file period for datastreams
and typical value-added processes span 24 hours over a Coordinated Universal Time (UTC) day.
Datastreams with solar data or statistical products may choose to use a different time period when
appropriate.

Very large data sets may be routinely split into two or more netCDF files per day to increase usability or
stay within single-file size limits. The ARM Data Archive suggests file sizes under 20 GB, but can
manage file sizes up to 8 TB. Be reasonable when choosing file size.

Daily data files are allowed to split when metadata information changes (example: instrument serial
number or calibration change). ARM standard processing expects a file to split when a metadata change is
detected.

7.2 Guidelines for Original RAW Filename

The RAW filename created by the instrument is often decided by the instrument vendor. Requesting the
vendor to change the filename format is typically not possible and is not a requirement. After the data
system retrieves the RAW instrument file the data system will rename the file to the appropriate ARM
standards (i.e. the 00-level data filename).

When possible, the original filename produced on the instrument or instrument data system should
contain adequate information to determine the origin of the file including:

• unique site and facility indicator

• yyyymmdd (year, month, day-of-month) or yyyyjjj (year, day-of-year)

• hhmmss (hour, minute, second), hhmm (hour, minute), or sequence number if more than one raw file
per day

• indication of instrument type or vendor.

Often, it is not possible to include all this information. In those instances, it is important to include
adequate header information inside the file to permit the user to determine the source/original data and
provide a reference date (including year) and time.

7.3 File Naming Conventions for RAW ARM Data

RAW ARM data files to be ingested are named according to the following naming convention:

(sss)(inst)(Fn).00.(yyyymmdd).(hhmmss).raw.(xxxx.zzz)

Where:

00 is the data level. RAW data is the first data file and shall be labeled with the lowest possible level

raw is the indicator that the file contains RAW data

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

12

(xxxx.zzz) is the original raw data filename produced on the instrument.

Example raw data filename:
nsamwrC1.00.20021109.140000.raw.20_20021109_140000.dat

This file is from the North Slope of Alaska Barrow site. It contains raw microwave radiometer data for
November 9, 2002, for the hour beginning 14:00:00 UTC.

RAW instrument data are recommended to be collected hourly resulting in 24 RAW data files per day.
These files are bundled into daily Tape ARchive (TAR) files before archival.

Underscores and dashes are not allowed in the filename left of and including the six-digit time (hhmmss).
Underscores can be treated as wildcard characters in some databases. Due to the method of
implementation, underscores are allowed to the right of the 6-digit time in the filename. If possible, do not
use underscores in the filename.

Occasionally, data files may become corrupt or contain bad data that causes the ingest to fail. To allow
the ingest to continue processing, bad data files are moved to a subdirectory named “bad” with the
offending raw file renamed with “bad” replacing the “raw” portion of the name. The TAR file containing
the “bad” data file is not renamed.

7.4 File Naming Conventions for TAR Bundles

TAR bundles are named according to the following naming convention:

(sss)(inst)(Fn).(dl).(yyyymmdd).(hhmmss).(xxx).(zzz).tar

Where:

(dl) is the file level indicator. Must be two characters including lower-case letters or numbers

(yyyymmdd) is the start date from the first data filename within the TAR bundle

(hhmmss) is the start time from the first data filename within the TAR bundle

(zzz) is the optional extension from the original raw data filename, usually the format of the file or an
instrument serial number

(xxx) Lower-case characters or numbers used to help describe the contents of the TAR file. An example is
“raw” to indicate the contents of the TAR file contain RAW data. Required to be three or fewer characters
to accommodate current Archive database.

tar is the TAR bundle file extension

We recommend creating one TAR file for each date.

The example raw file from above is archived in a TAR bundle named:
nsamwrC1.00.20021109.000000.raw.dat.tar

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

13

Some RAW data files are not ingested, but are collected and placed in a TAR file. The TAR filename
must follow the standards, but the non-ingested datafile within the TAR file may have filenames not
matching the standards. We recommend that the data files within the TAR file contain enough
information to describe the data including location and time.

7.5 File Naming Conventions for Field Campaign TAR Bundles

Field Campaign TAR bundles are named according to the following naming convention:

(sss)(yyyy)(FC)X1.i0.(yyyymmdd).000000.tar.(pi-inst).(ident)(<#>of<#>)

Where:

(sss) is the three-letter code for the location of the field campaign

(yyyy) is the year that the field campaign took place or began

(FC) is the abbreviated name of the field campaign

X1.i0 indicates external field campaign principal investigator (PI) data set

(yyyymmdd) is the date the TAR file was sent to the ARM Data Archive by the field campaign
administrator

000000 is the hhmmss field (the hhmmss resolution is not currently is use)

tar is the TAR bundle file extension

(pi-inst) is the name of the PI and the abbreviation for the instrument producing the data

(ident) is an optional additional identifier if more distinction in the pi-inst pair is needed

(<#>of<#>) is an optional identifier for the total number of packets in the PI data set, e.g., “1of3”, “2of3”,
“3of3”.

One TAR file is created for each PI data set, unless over 2 GB. If the TAR file is over 2 GB, the TAR file
must be split into less than 2 GB units and an extension <#>of<#> is included.

The example raw file from above will be archived in a TAR bundle named:
nsa2004mpaceX1.i0.20060125.000000.tar.tooman-dfcvis.c2.1of4

The length of the TAR filename must be 60 characters or less.

7.6 Other Data Formats

ARM data may be stored in a format other than netCDF for special data sets. The basic naming
convention for processed files does not differ, but the final extension changes accordingly:

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

14

asc: ASCII data format

hdf: Hierarchical Data Format (HDF) data format (limited to satellite data)

png: Portable Network Graphics (PNG) data format. Recommended for drawings, sketches, and data
plots.

jpg: Joint Photographic Expert Group (JPEG) data format. Recommended for photographs.

mpg: Moving Picture Expert Group (MPEG) format. Recommended for movie format.

pdf: For formatted documents and graphics-rich documents Portable Document Format (PDF) file type is
recommended.

Other data formats (e.g., gifs) may also exist, but are not recommended for future development.

7.7 Guidelines to Name Quick-Look Plot Filenames

The standard convention for VAP quicklook plot filenames created at the Data Management Facility is as
follows:

datastream.level.date.time.description.extension

Note: The delimiter is a “.” (period) except within the description when it is an “_” (underscore). An
underscore is currently acceptable to the right of the datastream, (sss)(inst)(qualifier)(temporal)(Fn).(dl),
part of the name. Using underscores in the datastream section may cause problems with databases that use
underscores as wildcard characters.

Example:

sgp30ebbrE9.b1.20100101.000000.latent_heat_flux.png

7.8 Case-Sensitive File Naming

Data filenames are case sensitive. example.DAT and example.dat may be interpreted as two different
names by ingest and bundling routines. Instruments should be consistent in the way the original filenames
are assigned, including case.

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

15

8.0 Guideline for netCDF File Structure

8.1 Dimensions

8.1.1 Time Dimension

The time dimension is defined as “unlimited” and is the first dimension of a variable using the time
dimension. netCDF3 requires the unlimited dimension to be the first dimension in multi-dimensional
arrays. This allows proper concatenation of data along the unlimited dimension.

The recommended order of the dimension definitions start with time followed by coordinate dimensions.

We recommend that the number of dimensions used in a single file be as few as possible. Fields
consisting of a single data value are defined as scalars unless the Data Object Design (DOD) is used with
other instances where multiple values may exist.

8.2 Time

Time in processed data files must be increasing and may not repeat. The time variable in any file except
RAW cannot have a missing value or NaN. Files failing these requirements will be sent to the instrument
mentor or VAP translator for review.

ARM uses the Gregorian calendar in processed data files. Other calendars are allowed with the addition
of an attribute describing the CF calendar name, although it is not recommended to deviate from the
Gregorian calendar. The calendar field attribute is optional if the calendar used is Gregorian. Note: the use
of a Julian calendar versus a Gregorian calendar may have slight differences since the Gregorian calendar
defines one year as 365.242198781 days vs. 365.25 days in a Julian calendar.

Time is defined through the use of both a time field, and base_time and time_offset fields. Historically
ARM has used the base_time and time_offset method. For consistency with historical data and to
accommodate the emerging CF standard, both time formats must be declared in the processed netCDF
file. Both time formats work by indicating the number of time steps from an initial time.

It is recommended to start the time at UTC midnight and indicate this format in the long_name. Starting
time at midnight allows for easy interpolation of the values (i.e., dividing the time field by 3600 to
convert from seconds to hours).

8.2.1 base_time and time_offset Fields

Time in ARM netCDF files is indicated in Coordinated Universal Time (UTC), and is represented as
"seconds since January 1, 1970 00:00:00", also known as epoch time. For example, an epoch time of 1
means "Thursday January 1, 1970 00:00:01 UTC"; an epoch time of 992794875 is "Sunday June 17, 2001
16:21:15 UTC". The default time zone is UTC, but a different time zone may be defined using a time
zone offset from UTC.

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

16

Time is indicated with the combination of two fields (base_time, time_offset) where the result is number
of seconds since epoch time. base_time contains a single scalar value stored as a long integer, and
time_offset contains a time-series of values stored as double precision floating point numbers, one for
each time-step in the file. The epoch time for sample index i is given by the value base_time +
time_offset[i]. base_time + time_offset[0] is the time corresponding to the time stamp in the filename.
This method will allow representing time steps down to 1 microsecond within a one-year time interval.

The linking of base_time and time_offset is indicated with the ancillary_variables field attribute for
time_offset set to “base_time” and base_time set to “time_offset”.

The string attribute of base_time is set to the string description of the base_time value (i.e., "17-Sep-
2012,23:07:00 GMT").

8.2.2 time Field

The time field follows CF convention and is recommended to be defined as "seconds since” a Unidata
UDUNITS defined time. The default time zone is UTC, but a different time zone may be defined using a
time zone offset from UTC. time is a "coordinate variable" or a field with the same name as the time
dimension. This enables generic netCDF tools to work with ARM data. (See, for example, the COARDS
netCDF conventions at http://ferret.wrc.noaa.gov/noaa_coop/coop_cdf_profile.html) Other conventions
besides “seconds since” are allowed but not recommended. The use of “months since” and “years since”
are not recommended unless explicitly defined.

Example:

dimensions:

time = UNLIMITED ; // (1440 currently)
variables:

int base_time ;
base_time:string = "18-Sep-2012,00:00:00 GMT" ;
base_time:long_name = "Base time in Epoch" ;
base_time:units = "seconds since 1970-1-1 0:00:00 0:00" ;
base_time:ancillary_variables = “time_offset” ;

double time_offset (time) ;
time_offset:long_name = "Time offset from base_time" ;
time_offset:units = "seconds since 2012-09-18 00:00:00 0:00" ;
time_offset:ancillary_variables = “base_time” ;
time_offset:calendar = “gregorian” ; // Optional attribute when set to gregorian

double time (time) ;
time:long_name = "Time offset from midnight" ;
time:units = "seconds since 2012-09-18 00:00:00 0:00" ;
time:calendar = “gregorian” ; // Optional attribute when set to gregorian

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

17

8.2.3 Time Bin Boundary

Most data values are reported as an average of values over a predefined number of samples. Indicating the
bin boundaries and the location of the reported time value within the bin is critical to properly understand
the reported data. For all non-instantaneous data the values of each averaging time bin is required. A
bounds field attribute indicates the corresponding two-dimensional field dimensioned by time and a
bounds dimension containing the bin boundary values. CF convention does not require a long_name
attribute for the bound field, but it is recommended to add the attribute. The units attribute is not
recommended.

A new dimension set to 2 is added to store the start and end time values. This dimension does not require
a coordinate field.

The existence of a time bounds field along with an “ARM-<#>” Conventions global attribute indicate

s all fields dimensioned by time are assumed averaged over the time bounds period unless a cell_methods
field attribute exists. The method described in the cell_methods field attribute supersedes the time
averaged assumption. See Cell Method Attribute for further description.

Example:

dimensions:

time = UNLIMITED ; // (1440 currently)
bound = 2 ;

variables:
double time (time) ;

time:long_name = "Time offset from midnight" ;
time:units = "seconds since 2013-01-25 00:00:00 0:00" ;
time:bounds = “time_bounds”;

double time_bounds (time, bound) ;
time_bounds:long_name = “Time cell bounds” ; // Optional
bound_offsets = -30., 30. ; // Optional. Only provide if all periods are the same offsets

float atmos_temperature (time) ;
atmos_temperature:long_name = “One minute average temperature” ;
atmos_temperature:units = “degC” ;
relative_humidity:cell_methods = “time: mean” ;

float relative_humidity (time) ;
relative_humidity:long_name = “Instantaneous relative humidity” ;
relative_humidity:units = “%” ;
relative_humidity:cell_methods = “time: point” ;

The time_bounds field contains the starting and ending time values for each time bin. If the units attribute
is omitted the values are offset from to the time:units time. The individual time value indicates where
within the bin time is reported. The long_name and units attributes are not required for time_bounds, and
the field may not have missing values.

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

18

The optional time_bounds:bound_offsets attribute declares the width of each averaging period. Setting the
attribute requires that every averaging period is expected to be consistent. If the averaging period is not
consistent, the attribute is omitted.

For example, if time is defined as the number of seconds since January 25, 2013 00:00:00 UTC:

time = [0., 60., 120., 180., 240., …]
time_bounds = [[-30., 30., 90., 150., 210., …]

[30., 90., 150., 210., 270., …]]

In this example the first time sample is reported at 0 second added to January 25 2013 00:00:00 UTC. The
first time sample is bounded by the start time greater than or equal to January 24, 2013 23:59:30 UTC
(subtract 30 seconds), and end time less than January 25, 2013 00:00:30 UTC (add 30 seconds). In this
example the time value relative to the start and end time indicates that the time values are reported at the
center of the bin. The averaging period is consistent so the optional attribute bound_offsets equals [-30,
30].

8.3 Coordinate Dimensions

If a coordinate dimension is used, then a variable with the same name as the dimension is recommended
to be added with the required long_name and units attributes. Examples of coordinate dimensions are bin,
height, range, or depth. The name of the dimension should clearly articulate the values. It is recommended
to use singular names and not use abbreviations. The long_name attribute should be as concise as possible
in describing what the values represent. A dimension defined in the netCDF file for the purpose of writing
string characters or as an index does not require a corresponding field.

Example:

dimensions:
time = UNLIMITED ; // (1440 currently)
range = 1999 ;

variables:

float range(range) ;
range:long_name = "Distance from transceiver to center of corresponding bin" ;
;
range:units = "km" ;

A coordinate variable may not have a missing_value, _FillValue or NaN value, and must be
monotonically increasing or decreasing.

8.3.1 Reference for Coordinate Units

Some coordinate fields use units that require a frame of reference declaration. Examples include the
difference between height above ground level (AGL) versus height above mean sea level (MSL). Both of
these coordinate fields have units of meters, but are measured from different reference points. The

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

19

reference point is required to be documented with the CF standard_name method. Refer to the CF
standard name table for definitions. Declaring the frame of reference in the long_name is optional and not
recognized as the official method. If the frame of reference is declared in both standard_name and
long_name, the standard_name is used.

8.3.2 Referencing AGL and MSL

When referencing AGL use standard_name = “height”. height is measured above a surface. Over land it
refers to ground level, while over the ocean refers to the ocean surface. This is different than above MSL.

When referencing above MSL use standard_name = “altitude”. Technically, altitude refers to the mean
geoid, not mean sea level. The difference between mean sea level and mean geoid is small, with the two
terms typically used interchangeably (similar to UTC versus Greenwich Mean Time [GMT]). Currently,
CF has no standard name for mean sea level.

8.3.3 Coordinate Bin Dimension

Binned data is common in atmospheric data and needs sufficient metadata to describe the bin ranges.
Typically, binned data is evenly spaced and reported at the center of the bin value. To report the range of
binned values ARM follows the CF conventions. The CF convention uses the bounds attribute to indicate
the corresponding variable indicating the start and end location of each bin with a two-dimensional array.
A long_name and units attribute are recommended but not required.

If the bin size is consistent, the optional bound_offsets attribute describes the size of the bin. If the bin
size is not consistent, bound_offsets is omitted. The reserved ARM bound_offsets attribute is used with
ADI to auto-generate the bounds field.

Example:

dimensions:

time = UNLIMITED ; // (1440 currently)
bin = 21 ;
bound = 2 ; // Use of “bound” as dimension name recommended

variables:
float bin(bin) ;

bin:long_name = "Center of droplet size bin" ;
bin:units = "um" ;
bin:bounds = "bin_bounds" ;

float bin_bounds(bin, bound) ;
bin_bounds:long_name = “Droplet size bin bounds” ; // Optional
bin_bounds:units = “um” ; // Optional
bound_offsets = -5, 5 ; // Optional. Only provide if all steps are the same offsets

float ccn_number_concentration(time, bin) ;
ccn_number_concentration:long_name = "AOS Cloud Condensation Nuclei number

concentration" ;

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

20

ccn_number_concentration:units = "count" ;
ccn_number_concentration:missing_value = -9999.f ;
ccn_number_concentration:cell_methods = "bin: sum" ; // Optional

In this example, the bin variable contains values corresponding to each binned sample. The bin range is
contained in the bin_bounds variable with bin_bounds[i,0] containing the initial bound (values are greater
than or equal to) and bin_bounds[i,1] containing the final bound value (values are less than). The bin[i]
range is bounded by the two bin_bounds values and its value indicates where within the bin the value is
being reported (i.e., beginning, middle, end). Typically, the reported value is in the center of the bin.

This example also uses the optional cell_methods attribute to describe the method used. See Cell Method
Attribute or CF documentation for explanation of this attribute.

An example of how to indicate changing bin values for each time step is found in Appendix B.

8.3.4 Additional Dimension

Additional dimension may be needed for string arrays, bounds, or other dimensions that are not intended
to be used as coordinate variables. The number of additional dimensions should be minimized and named
in a clear and concise way to describe their use. Some examples include: string array or coefficients for
equations.

Example:

dimensions:

time = UNLIMITED ; // (1440 currently)
string_length = 13 ;

char status_string (time, string_length) ;

status_string:long_name = "Warning, alarm, and internal status information" ;
status_string:units = "unitless" ;
status_string:comment = "The values reported by the instrument have the form FEDCBA987654

and contains Alarm (A), Warning (W), and internal status (S) information. Each character is a
hexadecimal representation of four bits, i.e., values between 0 and 9 are presented with
respective numbers and values 10, 11, 12, 13, 14, and 15 are presented with letters A, B, C, D,
E, and F, respectively. "

8.3.5 Cell Method Attribute

The optional cell_methods field attribute describes how the data was derived by indicating the method
used. This method is well defined by the CF convention and is extensionable to describing
multidimensional data sets. Additional description can be found at http://cfconventions.org/.

The addition of cell_methods to a data field describes how the data was derived to both human and
automated software enabling the data to be regridded or analyzed with generic tools.

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

21

The format includes the dimension name followed by the method in a “dimension_name: method”
format. This format allows different methods to be indicated for different dimensions.

Example:

Precipitation Measurements

• Average, maximum, statistics ,or point value

– temperature:cell_methods = “time: mean” ;

– temperature_max:cell_methods = “time: maximum” ;

– temperature_std:cell_methods = “time: standard_deviation” ;

– pressure:cell_methods = “time: point” ;
To indicate more complicated methods, additional information can be included in parentheses after the
method.

• Precipitation amount

– precipitation_rate:cell_methods = “time: sum (interval: 1 min)” ;

– precipitation_total:cell_methods = “time: sum (interval: 24 hr comment: summed over one UTC
calendar day)” ;

For multidimensional data the order indicates the order of operation. In the following example the data is
averaged over the time dimension first, and then the median values are calculated for the height
dimension. The left-most operation is performed first.

• Averaged over time cells and then median over height cells

– temperature:cell_methods = “time: mean height: median” ;

8.4 Location Fields

The instrument location is described using latitude, longitude, and altitude fields. The required unit of
latitude is degrees north, a field name of lat, and standard_name = “latitude”. The required unit of
longitude is degrees east, a field name of lon, and standard_name = “longitude”. The recommended unit
of altitude is meters above mean sea level. The required field name is alt, and standard_name =
“altitude”. The altitude measurement references the altitude of ground level relative to MSL. The
instrument height AGL is defined with the sensor_height attribute. See Sensor Height section for a full
explanation. The use of the specific lat, lon, and alt field names are required to be consistent with
historical data. lat, lon, and alt fields can be vectors for mobile platforms when needed.

Example:

float lat ;

lat:long_name = "North latitude" ;
lat:units = "degree_N" ;
lat:standard_name = "latitude" ;
lat:valid_min = -90.f ;

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

22

lat:valid_max = 90.f ;
float lon ;

lon:long_name = "East longitude" ;
lon:units = "degree_E" ;
lon:standard_name = "longitude" ;
lon:valid_min = -180.f ;
lon:valid_max = 180.f ;

float alt ;
alt:long_name = "Altitude above mean sea level" ;
alt:units = "m" ;
alt:standard_name = “altitude” ;

8.5 Guidelines for Construction of Field Names

A field name should convey a basic understanding of the associated data. File space is not an issue, and
cryptic field names are typically only understood by the person who originally created the name. ARM
field name guidelines are as follows:

• The first character is required to be a letter character. Only letters, numbers, or underscores are allowed
per netCDF requirements. Use upper-case letters sparingly.

• The field name is constructed by joining the names to the qualifiers using underscores (_)

• Field names are recommended to be concise. One has to be reasonable when picking field names.

• Abbreviations are recommended for use only when needed for limiting excessively long field names,
for following previous conventions, or for clarity.

• Field name lengths are required not to exceed 64 characters to comply with ARM Data Archive
database storage requirements.

• Single-character names are not recommended.

• Common field names are recommended to use common ARM field names that follow the standards
and are used in other datastreams to promote clarity across datastreams. Review pick list for common
field names.

• Field names and dimensions are recommended to be singular (i.e., temperature not temperatures)

• Greek letters are not allowed in netCDF3. It is recommend not to spell out Greek letters, formula
symbols, or units.

Field names should be as concise as possible. For example, "temperature" is recommended to be fully
spelled out unless the full field name becomes unreasonably long, where "temp" would be the
abbreviation. atmospheric_temperature is more descriptive of the measurement than temperature alone. A
field labeled temperature could describe air temperature, instrument temperature, derived temperature,
etc.

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

23

8.5.1 Field Names Hierarchy

Name hierarchy is used for field differentiation within the same file. If a conflict arises, the following
hierarchy is used.

1. [super prefix] For example, qc, aqc, be, source
2. [prefix] For example, interpolated, calibrated, instantaneous
3. [measurement] For example, vapor_pressure, pressure, temperature
4. [subcategory] For example, head, air, upwelling, shortwave, hemisphere
5. [medium] For example, earth, satellite, sea, atmosphere
6. [height/depth] For example, 10m, 2cm, 5km
7. [enumeration] For example, e, w, n, s, a, b, 1, 2
8. [source name] For example, smos, met,
9. [algorithm] For example, fibonacci, wrf
10. [quantity] For example, mean, standard deviation, maximum, summation

Example of field names using hierarchy:

• qc_atmospheric_temperature_10m
• soil_temperature_swats
• wind_speed_5m
• relative_humidity
• qc_vapor_pressure_aeri_std
• rain_rate_attenuation_csapr
• source_absorption_coefficient_405nm
• qc_log_backscatter_xpol_std

The creation of a field name is related to the DOD for which it exists. A field name should convey the
required information to distinguish the different fields, but does not need to completely describe the
corresponding data. For example, if a DOD contains data from a single instrument, there is no need to
indicate the instrument in the field name. Or, if every field in the file is an average there is no need to
indicate average in the field name.

We recommend that related field names repeat the same basic pattern for similar fields. This may result in
using an abbreviations for the basic field. If the field was not accompanied by other fields, the
abbreviation would not be used. For example, a datastream containing a measurement of aerosol optical
thickness with no accompanying fields would use aerosol_optical_thickness. If the measurement has
accompanying fields extending the field name length, the field names then use the same base name, i.e.,
aot, aot_1020nm, aot_1020nm_francis_mean_10min, aot_1020nm_francis_mode_10min,
aot_1020nm_francis_mean_10min_std. This method informs the data user that the measurements are
correlated.

We recommend not using abbreviations in order to assist international data users with fully understanding
the data. Very long field names, however, may become unreasonable and abbreviations may be used. The
abbreviations are recommended only when the field name becomes excessively long (i.e., 25 characters or
more). When abbreviations are used, we recommend using values listed below.

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

24

8.5.2 Field Name Abbreviations and Descriptors

To help international data users fully understand the data, the use of abbreviations is not recommended
unless a field name becomes excessively long (i.e., 25 characters or more). When abbreviations are used,
we recommend using values listed in this section.

8.5.2.1 Prefix Qualifier

• inst = instantaneous
• fgp = fraction of good points
• be = best estimate
• qc = quality control
• aqc = ancillary quality control or alternate quality control
• inter = interpolated

8.5.2.2 Measurement Qualifier

• temp = temperature
• snr = signal to noise ratio
• lat = latitude
• lon = longitude
• alt = altitude
• avg = number of points averaged
• aod = aerosol optical depth
• aot = aerosol optical thickness (aod is preferred to aot)
• precip = precipitation
• rh = relative humidity
• wspd = wind speed
• wdir = wind direction

8.5.2.3 Subcategory Qualifier

• low = lower
• high = higher
• up = upwelling or coming from below
• down = downwelling or coming from above
• long = longwave
• short = shortwave
• pol = polarization
• hemisp = hemispheric
• ref = reference
• ir = infrared
• vis = visible
• uv = ultraviolet

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

25

• coef = coefficient
• scat = scattering
• aux = auxiliary
• rot = rotational
• copol = co-polarization
• xpol = cross-polarization
• depol = depolarization
• diff = delta or difference
• anc = ancillary

8.5.2.4 Quantity Qualifier

• std = standard deviation
• mean = arithmetic mean
• avg = arithmetic average (mean is preferable to average when the two are used interchangeably)
• mode = arithmetic mode
• med = arithmetic median
• var = variance
• sum = summation
• min = minimum
• max = maximum
• stderr = standard error
• log = logarithm
• ln = natural logarithm

8.6 State Indicator Field

Some fields are intended to indicate a particular state of the instrument or a flag indicating some
correlating event (i.e., hatch status of open or closed, detection of cloud, instrument cycling through a
series of calibrations). This field is typically metadata rather than data. We recommend that the indication
of a state follow CF convention formatting with the following format.

Two slightly different formatting methods are available with the choice of method depending on two
criteria:

• Are the flags mutually exclusive?

• Is it possible for more than one state to exist simultaneously?

8.6.1 Exclusive States

Data type is byte, short integer, or long integer. Definition of all possible states and description of the
states are described using the CF defined flag_values and flag_meanings field attributes. The different
flag meanings are strings separated by a single-space character. Individual flag meanings may not contain
spaces and consists of words connected with underscores. A more detailed description of the state may be
made through an optional flag_<#>_description attribute.

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

26

Flag numbers are required to be greater than or equal to zero if the optional flag_<#>_description
attributes are used. Negative flag numbers listed in the flag_<#>_description may cause problems with
the method used for reading data. Some interpreted languages implementations may convert attribute
names to program variables. A “-” character is not allowed in most programming language variables
names.

int hatch_status (time) ;

hatch_status:long_name = "Hatch status" ;
hatch_status:units = “unitless” ;
hatch_status:missing_value = -9999 ;
hatch_status:flag_values = 0, 1, 2 ; // Array of values
hatch_status:flag_meanings = "hatch_open hatch_closed in_transition" ;
hatch_status:flag_0_description = “Hatch is open” ; // Optional
hatch_status:flag_1_description = “Hatch is closed” ; // Optional
hatch_status:flag_2_description = “Hatch is in transitional state” ; // Optional

8.6.2 Inclusive States

Data type is byte, short integer, or long integer. Definition of the possible states and description of the
states are described using the CF flag_masks and flag_meanings field attributes. The existence of the
flag_masks attribute indicates bit-packed values. The flag_masks attribute declares the bit mask values to
repeatedly use with a bit-wise AND operator to search for matching enumerated values. The values of
flag_masks will always be powers of two. A more detailed description of the state may be made through
optional bit_<#>_description attributes. We recommend listing all possible states to ensure automated
software always have a state to match to a value. To accommodate historical data, a value of 0 is allowed
to indicate none of the states as long as a comment attribute describes the state of no bits set.

int sensor_status(time) ;
sensor_status:long_name = "Sensor Status" ;
sensor_status:missing_value = -9999 ;
sensor_status:flag_masks = 1, 2, 4, 8, 16 ; // Array of values
sensor_status:flag_meanings = "low_battery hardware_fault offline_mode calibration_mode

maintenance_mode" ;
sensor_status:bit_1_description = “Low battery” ;
sensor_status:bit_2_description = “Hardware fault” ;
sensor_status:bit_3_description = “Offline mode” ;
sensor_status:bit_4_description = “Instrument performing calibration” ;
sensor_status:bit_5_description = “Instrument in maintenance mode” ;

To detect which bits have been set, repeatedly bit-wise AND the variable values with each flag_mask
element to search for matching values. When a result is equal to the corresponding flag_masks element,
that condition is true. For example, if the data value is 6, its binary representation is 00000110, so the
second and third bits are set. Recursively using bit-wise AND for each flag_masks value ([1, 2, 4, 8, 16])
has five results [0, 2, 4, 0, 0] indicating only the second and third flags have been set; hardware_fault and
offline_mode.

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

27

8.7 Field Attributes

In general, the field attribute names are lowercase. Words are separated by an underscore. A single
lengthy comment attribute is preferred to multiple comment attributes (i.e., use comment or
comment_on_noise and comment_on_resolution instead of comment_<#>).

8.7.1 Required Field Attributes

• long_name: Must be unique in regard to the other fields in the same netCDF file. Be as clear and
concise as possible (as a guideline, think about displaying this value on a plot presented at conference.)
Long names may not change without a DOD change. We recommend that the first letter of the
long_name attribute value be capitalized.

• units: See current list of recommended unit descriptors in Appendix C. Must be compliant with current
Unidata udunits unless units descriptor is currently not listed. The unit must be scientifically correct,
correctly understood by the user, and work with automated codes. Two units currently are exempt from
this requirement: “unitless” and “dB”. These are common units in ARM datastreams but will not be
added to udunits. A request to add “unitless” and “dB” to udunits was denied because “unitless” is
currently represented with a “1”, and “dB” is a measure of change, not an absolute unit of
measurement.

8.7.2 Required with Conditions

• missing_value: If the data field uses a single specific value to represent no data, a missing_value
attribute must be declared. There is no required value, but the recommended value is -9999. Do not
include with coordinate fields. The value must be the same type as the corresponding data values. The
value is recommended to be outside the valid data range. If more than one value is used to represent
missing value or non-valid data, use valid_range CF attribute. See CF convention for further
description.

• standard_name: Required if a primary field and the standard name exists in the CF table.

8.7.2.1 Missing value versus FillValue Discussion

Historically, ARM has used the missing_value attribute to indicate a missing data value. CF convention
has transitioned from the use of missing_value and now suggests use of the _FillValue attribute.

When a netCDF file is initially created, all data values are set to a standard fill value differing by data
type. During the write state, the values are changed to data values. Therefore, if a fill value exists in the
netCDF file, something has gone wrong during the writing process.

A missing_value is the value used to indicate no data and has been introduced into the data by the writing
software. If the writing software uses a value different than the default netCDF fill value, there will be
two different values indicating non-data values. Therefore, a user may need to mask the missing_value,
and default fill value or _FillValue from the analysis.

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

28

8.7.3 Standard_Name Attribute

When possible, we strongly recommend including a CF standard_name attribute to officially describe the
data. Official string values for the standard_name attribute must be taken from the CF standard name
table. Creating new string value when a standard name does not exist is not allowed.

Link to table: http://cfconventions.org/standard-names.html

Example:
float sea_level_pressure(time) ;

sea_level_pressure:long_name = "Mean sea level pressure" ;
sea_level_pressure:units = "hPa" ;
sea_level_pressure:missing_value = -9999.f
sea_level_pressure:standard_name = "air_pressure_at_sea_level" ;

8.7.4 ARM Standard Field Attribute Names

• valid_min
• valid_max
• valid_delta
• qc_min
• qc_max
• resolution
• comment
• comment_<#> (used for multiple distinct comments within a single field)
• precision
• accuracy
• uncertainty
• bit_<#>_description (for inclusive, bit-based flags)
• flag_<#>_description (for exclusive, state-based flags)
• bit_<#>_assessment (for inclusive, bit-based flags)
• flag_<#>_assessment (for exclusive, state-based flags)

8.7.4.1 Other Possible Attributes (Not All Inclusive)

• valid_range
• actual_wavelength
• corrections
• filter_wavelength
• FWHM (capital letters ok)
• sensor_height
• positive
• source

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

29

8.7.5 Sensor Height

If the declaration of the height of an instrument above a surface is desired, it is declared with an optional
sensor_height attribute. If all sensors are at the same height for a datastream, a global attribute may be
used. If different fields represent data at different heights, each field indicates the sensor height with the
sensor_height attribute. The presence of a sensor_height field attribute supersedes the global attribute. To
determine the height of the sensor above MSL, add sensor_height value to alt field value.

The sensor_height attribute format is: numerical value, CF udunit compliant unit, “AGL” all separated
with a single-space character. A negative value represents a measurement below ground level. The value
is the height of the sensor AGL or, in the case of the sensor being above water, above the water surface.

For indicating the reference of height measurements, for example, AGL versus above MSL, see the
Reference for Coordinate Units section.

Example:
float wind_speed (time) ;

wind_speed:long_name = "Mean wind speed" ;
wind_speed:units = "m/s" ;
wind_speed;missing_value = -9999.f ;
wind_speed:sensor_height = “10.5 m AGL” ;

8.7.6 Attribute Datatype

Field attributes set to a numeric value must match the same data type as defined for the corresponding
data field type.

Example:
double wind_direction (time) ;

wind_speed:long_name = "Mean wind direction" ;
wind_speed:units = "degree" ;
wind_speed;missing_value = -9999. ; // Value is set as double precision instead of float precision

8.8 Global Attributes

All global attributes must have a value. If a value is unknown at the time of file creation, the attribute
must clearly indicate that no known value exists. A standard value of “unknown” or -9999 set to the
proper data type is recommended (127 for type byte). Recommended attributes may be omitted if the
value is expected to be unknown. If required attributes must be written, but a value is not expected to
exist, we recommend the use of “N/A”.

8.8.1 Required and Recommended Global Attributes

The order of global attributes is not a requirement, but we recommend the order listed in this document.

(Required global attributes are bold-underline)

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

30

command_line

definition: Records command line used to run the ingest or VAP. If the command is run multiple
times to generate the individual file, list the command used to generate the initial file. If a single
command line is not used to generate the file, list necessary parameters to set for creating the file.

example: command_line = "langley -d 20130116 -p mfrsr -f sgp.E13" ; ;
formerly: Command_Line

command_line_comment
definition: Records the exceptional switches used in the command line.
example: command_line_comment = “-D updates the glue database file, -C will process only the

data below ~18km” ;

Conventions:
definition: The ARM convention version plus any conventions that the file conforms to. The ARM

convention indicator consists of “ARM” prepended to the standards document version number
joined with a hyphen (-). We recommend listing ARM Convention first in the list. This is a CF
attribute as well.

example: Conventions=”ARM-1.0 CF-1.6/Radial instrument_parameters radar_parameters
radar_calibration” ;

reference hyperlink: http://www.unidata.ucar.edu/software/netcdf/docs/netcdf.html#Attribute-
Conventions

process_version

definition: Records the version of the ingest or VAP running on production
example: process_version = "ingest-met-4.10-0.el5" ;
formerly: software_version, Version

dod_version
definition: Records version of the ARM DOD represented in this file.
example: dod_version = ”met-b1-2.0” ;

input_datastreams (VAP or ingest reading ARM datastream only; required with conditions)
definition: Records the itemized list of input datastreams available at runtime, process versions, and

filename date ranges. May be omitted if source attribute or source fields are used to describe
input datastreams. The datastream, version, and date range are separated by a space-colon-space
(“ : “). The individual datastream entries are separated by a space, semicolon, newline, space (“
;\n ”). If multiple files exist for a single date, but not all files are used, the individual ranges used
should be itemized as separate entries. The separator between dates in a given date-time ranges is
a hyphen (“yyyymmdd.hhmmss-yyyymmdd.hhmmss“). If the time period spans a single date, no
hyphen or end date should be included and the date range is a single date-time
(“yyyymmdd.hhmmss”).

example: input_datastreams = “sgpsondewnpnC1.a1 : 6.1 : 20010208.232700-20010210.053400 ;\n
sgpmwrlosC1.b1 : 1.17 : 20010209.000000 ;\n sgp1twrmrC1.c1: Release_1_4 :

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

31

20010209.000000 ;\n sgparscl1clothC1.c1 : Release_2_9 : 20010209.000000” ;

input_source (ingest only; required only if reading RAW data)
definition: Records the name of the first RAW file with full path used to create daily netCDF file. If

more than one initial RAW file is used, list the file most useful to describe the ingest process.
example: input_source = ”/data/collection/sgp/sgpswatsE10.00/1167508800.icm” ;

site_id
definition: Three-letter site designation
example: site = ”sgp” ;
reference hyperlink: http://www.arm.gov/sites

platform_id
definition: Instrument description including descriptive and temporal qualifiers
example: “mfrsraod1mich”
reference hyperlink: http://www.arm.gov/instruments

facility_id

definition: Facility identifier
example: facility_id = “E10” ;
reference hyperlink: http://www.arm.gov/sites

data_level

definition: Records data level
example: data_level = “a1” ;
formerly: proc_level
reference hyperlink: http://www.arm.gov/data/docs/plan

location_description
definition: Description of location. The location description consist of the geographical region for
fixed locations or campaign name for mobile facility experiments followed by the closest city or
town. The geographical region or campaign name should be spelled out followed by the appropriate
acronym in parentheses.
example 1: location_description=“Southern Great Plains (SGP), Lamont, Oklahoma” ;
example 2: location_description=“Storm Peak Lab Cloud Property Validation Experiment
(STORMVEX), Christie Peak, Steamboat Springs, Colorado” ;

datastream
definition: Datastream identifier. This will equal site_id + platform_id + facility_id+ “.” + data_level
example: datastream = ”sgpmfrsrE32.b1” ;

serial_number (ingest only, required with stipulation)
definition: Records serial number of instrument(s) used to collect data. Only required if the serial

number is expected to be known at runtime and is capable of changing. If multiple instruments

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

32

exist, then specify instrument; otherwise only provide serial number. Individual serial number
entries are separated by a space-semicolon-new line-space (“ ;\n ”). Instrument descriptors are
separated from the serial number with a colon-space (“: “). Type is recommended to be character.

example 1: serial_number = "54321DT” ;
example 2: serial_number = "PIR1-DIR: 31312F3 ;\n PIR2-DIR: 30167F3 ;\n Diffuse PSP: 33271F3

;\n NIP: 31876E6 ;\n PSP-DS: 33703F3 ;\n SKY-IR: 1845" ;

sampling_interval

definition: Records expected sampling interval. If the instrument sampling interval is different, it
should be noted in the instrument documentation. Format is interval time and compliant udunit
descriptor separated by a single-space character.

example: sampling_interval = “400 us” ;
formerly: sample_int

averaging_interval

definition: Records expected averaging interval. This is in addition to the time-bound method of
describing averaging interval.

example: averaging_interval = “5 minute” ;

sensor_height
definition: Records height of all sensors AGL. If multiple sensors at different heights exist, use field-

level attribute. See Sensor Height section for format details. If sensor_height is defined at field-
level for all relevant fields, a global attribute should not be defined.

example: sensor_height = “10 m AGL” ;
formerly: sensor_location

title

definition: A succinct English language description of what is in the data set. The value would be
similar to a publication title.

example: “Atmospheric Radiation Measurement (ARM) Facility Best Estimate cloud and radiation
measurements (ARMBECLDRAD)” ;

institution
definition: Specifies where the original data were produced. If provided, the value exactly matches

the value listed here. Exceptions will be allowed on a case-by-case basis.
value: “
United States Department of Energy - Atmospheric Radiation Measurement (ARM) Facility”

description
definition: Longer English language description of the data
example: "ARM best estimate hourly averaged QC controlled product, derived from ARM

observational Value-Added Product data: ARSCL, MWRRET, QCRAD, TSI, and satellite; see
source_* for the names of original files used in calculation of this product" ;

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

33

references
definition: Published or web-based references that describe the data or methods used to produce it.
example: “http://www.arm.gov/data/vaps/armbe/armbecldrad”

doi
definition: Digital Object Identifier (DOI) number used to reference the data. Request a new DOI at
https://www.archive.arm.gov/armdoi
example: "10.5439/1039926" ; // Note this is a character string

doi_url
definition: Full Uniform Resource Locator (URL) including Digital Object Identifier numbers.

Request a new DOI at https://www.archive.arm.gov/armdoi
example: "http://dx.doi.org/10.5439/1039926" ;

history
definition: Records the user name, machine name and the date in CF udunit or ISO 8601 format. If

the file is modified, the original value is retained and new information is appended to the attribute
value with statements separated by a space, semicolon, newline, space (“ ;\n “). We strongly
recommend that this be the last global attribute.

example: history = “created by user dsmgr on machine ruby at 1-Jan-2007,2:43:02” ;

8.9 Quality Control Parallel Fields

In addition to the data fields, optional quality control (QC) fields may be added to store relevant
information about the quality of a data sample. To encourage consistency among ARM data products,
ingested data and VAP data files will use the same QC standards. QC fields may use integer value method
for single-value test results, or bit-packing method for multiple-value test results. The decision of which
method to use is left to the developer/mentor/translator.

8.9.1 Bit-Packed Numbering Discussion

QC fields may use a bit-packed technique to allow multiple pieces of information to be stored in one
numerical value. A more in-depth discussion of the technique can be found at:

https://engineering.arm.gov/~shippert/ARM_bits.html

or in PDF format:

https://engineering.arm.gov/~shippert/ARM_bits.pdf

8.9.2 Standard Bit-Packed Quality Control Fields

The QC field has the same name as the data field with the addition of a “qc” prepended to the field name
joined with an underscore. Example: qc_temperature

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

34

The flag_method = “bit” field attribute indicates the values are bit-packed.

QC fields are type integer (recommend 32-bit integer), unless appreciated to a higher precision to
accommodate more tests than the integer resolution can accommodate.

The QC field is linked to the data field with the declaration of an ancillary_variables data field attribute
with the value equal to the QC field name. Multiple ancillary variables may be listed separated by a
single-space character.

Required attribute for data field:

• ancillary_variables = the corresponding QC field name(s)

Required attributes for QC field:

• long_name = “Quality check results on field: <field’s long_name attribute value>” ;

• units = “unitless” ;

• description = “This field contains bit-packed integer values, where each bit represents a QC test on the
data. Non-zero bits indicate the QC condition given in the description for those bits; a value of 0 (no
bits set) indicates the data have not failed any QC tests.” ;

• flag_method = “bit” ;

Attributes describing the QC tests may be defined at either the field or global level. A mixture of field- or
global-level definitions is allowed in the same file, but definitions may only occur in one location for a
single field (global level or field level). Field-level definitions have priority over global definitions. If the
definition of QC bits are explained in the global attributes, a description attribute must point the user to
the global attributes for QC bit descriptions.

8.9.2.1 Field-Level Bit Description

The following field attributes are required to describe a QC test at the field level:
• bit_<#>_description = “<General description of QC test>” ;
• bit_<#>_assessment = <state> ;

Options for bit_<#>_assessment <state> are “Bad” or “Indeterminate” only.

The following field attributes are optional:
• bit_descriptions
• comment
• bit_<#>_comment

Each <#> indicates the bit number. Examples include:

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

35

Table 2. Field attributes.

Bit Field Attribute Binary Hex Power Bit-packed
Integer

1 bit_1_assessment 00000001 0x01 2^0 1

2 bit_2_assessment 00000010 0x02 2^1 2

3 bit_3_assessment 00000100 0x04 2^2 4

4 bit_4_assessment 00001000 0x08 2^3 8

5 bit_5_assessment 00010000 0x10 2^4 16

8.9.2.2 Standard ARM QC

Standard ARM QC is defined as the missing, minimum, and maximum checks performed on a data field.

Standard ARM QC bits use this specific format when defined as field attributes. The bit numbers for each
test are not required, but are recommended. The assessment of the minimum or maximum test may be set
to a value of “Indeterminate” if more appropriate.

• bit_1_description = "Value is equal to missing_value" ;
• bit_1_assessment = "Bad" ;
• bit_2_description = "Value is less than the valid_min" ;
• bit_2_assessment = "Bad" ;
• bit_3_description = "Value is greater than the valid_max" ;
• bit_3_assessment = "Bad" ;

For a field-level attribute bit declaration, the existence of a bit declaration indicates the test could have
been performed. If a bit is not defined, that bit is free.

8.9.2.3 Unused ARM QC Bit

When an individual bit is unused, but must be declared, the field bit_<#>_description attribute is
assigned the value “Not used”, and the bit_<#>_assessment attribute assigned the value of “Bad”. An
optional explanation as to why the bit is reserved may be included in a separate bit_<#>_comment field.

Required attributes:
• bit_<#>_description = "Not used" ;
• bit_<#>_assessment = “Bad” ;

Optional attribute:
• bit_<#>_comment = statement describing why the bit is reserved

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

36

The declaration of a valid_min or valid_max does not require the addition of QC fields. However, if a QC
field exists and the valid_min or valid_max attributes are defined, we recommend that the test be
implemented.

8.9.2.4 Reporting Test Parameters in Description

Equation or limit parameters used in test analysis may be directly listed in the bit description or
referenced by a field attribute name. The bit description must not change between DOD versions. If a
parameter value might change, it is recommended to phrase the description in a generic manner, reference
an external source, or use a referenced field attribute.

When a test references another field in the same file, we recommend listing the field name in the
bit_<#>_description attribute to provide direct linkage.

Example:
float upwelling_broadband (time) ;

upwelling_broadband:long_name = “Upwelling broadband radiation” ;
upwelling_broadband:units = “W/m^2” ;
upwelling_broadband:missing_value = -9999.f;
upwelling_broadband:ancillary_variables = “qc_upwelling_broadband” ;

int qc_upwelling_broadband (time) ;
qc_upwelling_broadband:long_name = “Quality check results on field: Upwelling broadband

radiation” ;
qc_upwelling_broadband:units = “unitless” ;
qc_upwelling_broadband:flag_method = “bit” ;
qc_upwelling_broadband:test_parameter_value = 0.03f ;
qc_upwelling_broadband:bit_1_description = “mfr10m_cosine_solar_zenith_angle is less than 0.15”

;
qc_upwelling_broadband:bit_1_assessment = "Bad" ;
qc_upwelling_broadband:bit_2_description = “Percent difference is greater than

test_parameter_value” ;
qc_upwelling_broadband:bit_2_assessment = "Bad" ;
qc_upwelling_broadband:bit_3_description = “Value greater than 2 standard deviations of historical

mean” ;
qc_upwelling_broadband:bit_3_assessment = "Bad" ;

In this example, the test_parameter_value QC field attribute is allowed to change without a DOD change
to accommodate a varying test limit for the QC test represented by bit 2. There is no requirement for the
name of the attribute, but the name should clearly reflect that the value is a QC test parameter. The test
limit in bit 1 is not allowed to change without a DOD change because the description attribute would
change.

Test parameter values should be listed with the QC field unless the parameter value can be clearly
described with the attribute name and has significant value to the data field. The location of the attribute
(with data or QC field) is left to the developer. Historically the valid_min, valid_max and valid_delta are
listed with the data field. This convention should be continued because: 1) the CF convention uses

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

37

valid_min and valid_max, 2) the attribute name clearly describes how the values can be used as limits, 3)
to continue with historical datastreams, and 4) the value can be understood and used without the
accompanying QC field.

8.9.2.5 Bit-Packed Global Attribute Declaration for Quality Control

The description of each test may be listed in the global attribute section if multiple fields use the exact
same bit and description. The description field attribute must exist, indicating that the test descriptions are
listed in the global attributes. The attribute name follows the same format as the field-level style except
for a prepended “qc_”. The prepending “qc_” to the bit description and assessment is to continue with
historical format currently in the ARM Data Archive. For Standard ARM QC global attribute
declarations, the existence of valid_min, valid_max or valid_delta data field attributes serve as an
indicator if the test was attempted.

Required QC field attribute for global attribute bit declaration:

• description = "See global attributes for individual QC bit descriptions." ;

Example:

// global attributes:
qc_bit_1_description = "Value is equal to missing_value" ;
qc_bit_1_assessment = "Bad" ;
qc_bit_2_description = "Value is less than the valid_min";
qc_bit_2_assessment = "Bad" ;
qc_bit_3_description = "Value is greater than the valid_max" ;
qc_bit_3_assessment = "Bad" ;
qc_bit_4_description = "Difference between current and previous sample values exceeds valid_delta

limit" ;
qc_bit_4_assessment = "Indeterminate" ;
qc_bit_comment = "The QC field values are a bit-packed representation of true/false values for the

tests that may have been performed. A QC value of zero means that none of the tests performed on
the value failed."

8.9.2.6 valid_min/valid_max versus qc_min/qc_max Attribute Discussion

CF convention clearly states that valid_min, valid_max and valid_range are to be used in conjunction
with _FillValue to define the valid values. By definition, a non-valid value is masked from analysis.
Historically ARM used valid_min and valid_max as QC limits to suggest if a value should be used.
Therefore, CF and ARM may be in conflict. Use of third-party software may have unintended
consequences resulting in valid data being removed from the analysis. valid_min and valid_max values
must be chosen carefully. If the valid_min and valid_max attribute values are intended to be used as QC
limits where the absolute exclusion of the values outside of the range defined by the two attributes would
have consequences, the use of qc_min and qc_max field attributes are recommended. Complementing QC
attributes and fields are updated to refer to qc_min and qc_max instead of valid_min and valid_max.

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

38

Example:

int upwelling_broadband (time) ;

upwelling_broadband:long_name = “Upwelling broadband radiation” ;
upwelling_broadband:units = “W/m^2” ;
upwelling_broadband:missing_value = -9999.f ;
upwelling_broadband:valid_min = -100.f ;
upwelling_broadband:valid_max = 2000.f ;

int qc_upwelling_broadband (time) ;
qc_upwelling_broadband:long_name = “Quality check results on field: Upwelling broadband

radiation” ;
qc_upwelling_broadband:units = “unitless” ;
qc_upwelling_broadband:flag_method = “bit” ;
qc_upwelling_broadband:qc_min = -0.5 ;
qc_upwelling_broadband:qc_max = 1000.f ;
qc_upwelling_broadband:bit_1_description ="Value is equal to missing_value" ;
qc_upwelling_broadband:bit_1_assessment = "Bad" ;

qc_upwelling_broadband:bit_2_description = “Value is less than the qc_min” ;
qc_upwelling_broadband:bit_2_assessment = "Bad" ;
qc_upwelling_broadband:bit_3_description=“Value is greater than the qc_max” ;
qc_upwelling_broadband:bit_3_assessment = "Indeterminate" ;

In this example the valid_min and valid_max data field attributes define the instrument range of output
values physically possible. Any value outside this range should be treated as a missing value. Some
software libraries will convert any value outside this range to NaN. The missing_value is set to -9999,
which is less than the valid_min and would be treated as a missing value regardless. The qc_min and
qc_max values describe the quality control limits used with the corresponding quality control field. A data
value of -0.1 is not physically possible, but is a valid value due to offset and random noise in the
instrument electronics and should be used for long-term statistical analysis so as to not introduce a bias.

8.9.2.7 Multiple Field Summarized Quality Control

It is optional to summarize quality control for multiple data fields in a single QC field. Multiple data
fields may use the same QC field with a small change to the QC field. The previously declared QC
standards apply to multi-field QC fields.

Requirements for Multiple-Field QC field:

• QC field name is prepended with “qc_” and the base name does not match any existing data field name

• long_name = “Quality check results” ;

Example:

float signal_return_copol(time, height) ;

signal_return_copol:long_name = “Attenuated backscatter, co-polarization” ;

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

39

signal_return_copol:units = “counts/microsecond” ;
signal_return_copol:missing_value = -9999.f ;
signal_return_copol:ancillary_variables = “qc_signal_return” ;

float signal_return_xpol(time, height) ;
signal_return_xpol:long_name = “Attenuated backscatter, cross-polarization” ;
signal_return_xpol:units = “counts/microsecond” ;
signal_return_xpol:missing_value = -9999.f ;
signal_return_xpol:ancillary_variables = “qc_signal_return” ;

int qc_signal_return(time, height) ;
qc_signal_return:long_name = “Quality check results” ;
qc_signal_return:units = “unitless” ;
qc_signal_return:flag_method = “bit” ;
qc_signal_return:bit_1_description = "Value is equal to missing_value";
qc_signal_return:bit_1_assessment = "Bad" ;
qc_signal_return:bit_2_description = "The instrument detects an A/D start (timing corruption) error"

;
qc_signal_return:bit_2_assessment = "Bad" ;

8.9.2.8 Dimensionally Summarized Quality Control

Multi-dimensional QC data may be summarized for one or more of the dimensions into the remaining
dimensions. The decision to summarize QC and how is left to the translator/mentor/developer. A
technical description of the process may be too long to describe in an attribute. If the method used is not
described in a field attribute, a description of the method must be described in detail in a technical
document.

The previously declared QC standards apply to summarized QC.

Example:
float signal_return_copol(time, height) ;

signal_return_copol:long_name = “Attenuated backscatter, co-polarization” ;
signal_return_copol:units = “counts/microsecond” ;
signal_return_copol:missing_value = -9999.f ;
signal_return_copol:ancillary_variables = “qc_signal_return_copol” ;

int qc_signal_return_copol(time) ;
qc_signal_return_copol:long_name = “Quality check results on field: Attenuated backscatter, co-

polarization” ;
qc_signal_return_copol:units = “unitless” ;
qc_signal_return_copol:flag_method = “bit” ;
qc_signal_return_copol:comment = “A quality control failure anywhere along the profile will result

in the QC bit being set.” ;
qc_signal_return_copol:bit_1_description = "Value is equal to missing_value";
qc_signal_return_copol:bit_1_assessment = "Bad" ;
qc_signal_return_copol:bit_2_description = "The instrument detects an A/D start (timing corruption)

error" ;

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

40

qc_signal_return_copol:bit_2_assessment = "Bad" ;

8.9.3 Integer Quality Control Fields

The optional integer QC field has the same name as the data field with the addition of a “qc” prepended to
the field name joined with an underscore. The standard integer QC field follows the same descriptive text
format as bit-packed QC with the exception of changing “bit” to “flag” in all attribute names and using
integer values instead of bit-packed values. Integer QC only allows one state to be set at a time.

Flag numbers are required to be greater than or equal to zero. Negative flag numbers listed in the
flag_<#>_description may cause issues with the method used for reading data. Some implementations
may convert attribute names to program variables. A “-” character is not allowed in most programming
language variables names.

The flag_method = “integer” indicates the values are interpreted as integers.

Required attribute for data field:

• ancillary_variables = the corresponding QC field name(s)

Required attributes for QC field:

• long_name = “Quality check results on field: <field’s long_name attribute value>” ;

• units = “unitless” ;

• description = “This field contains integer values indicating the results of QC test on the data. Non-zero
integers indicate the QC condition given in the description for those integers; a value of 0 indicates the
data has not failed any QC tests.” ;

• flag_method = “integer” ;

Required attribute for global attribute bit declaration:

• description = "See global attributes for individual QC flag descriptions." ;

Example:
float upwelling_broadband (time) ;

upwelling_broadband:long_name = “Upwelling broadband radiation” ;
upwelling_broadband:units = “W/m^2” ;
upwelling_broadband:missing_value = -9999.f;
upwelling_broadband:ancillary_variables = “qc_upwelling_broadband” ;

int qc_upwelling_broadband (time) ;
qc_upwelling_broadband:long_name = “Quality check results on field: Upwelling broadband

radiation” ;
qc_upwelling_broadband:units = “unitless” ;
qc_upwelling_broadband:flag_method = “integer” ;
qc_upwelling_broadband:flag_1_description = “Value is equal to missing_value” ;

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

41

qc_upwelling_broadband:flag_1_assessment = "Bad" ;
qc_upwelling_broadband:flag_2_description = “Value is less than 2 standard deviations of historical

mean” ;
qc_upwelling_broadband:flag_2_assessment = "Indeterminate" ;
qc_upwelling_broadband:flag_3_description = “Value greater than 2 standard deviations of

historical mean” ;
qc_upwelling_broadband:flag_3_assessment = “Indeterminate” ;

8.9.3.1 Integer Global Attribute Declaration for Quality Control

The description of each test may be listed in the global attribute section if multiple fields use the exact
same flag number and description. The description field attribute must exist, indicating that the test
descriptions are listed in the global attributes. The attribute name follows the same format as the field-
level style except for a prepended “qc_”. The prepending “qc_” to the integer flag description and
assessment is to continue with the historical format currently in the ARM Data Archive. For Standard
ARM QC global attribute declarations, the existence of valid_min, valid_max or valid_delta data field
attributes serve as an indicator if the test was attempted.

Required QC field attribute for global attribute bit declaration:

• description = "See global attributes for individual QC flag descriptions." ;

Example:

// global attributes:

qc_flag_1_description = "Value is equal to missing_value" ;
qc_flag_1_assessment = "Bad" ;
qc_flag_2_description = "Value is less than the valid_min";
qc_flag_2_assessment = "Bad" ;
qc_flag_3_description = "Value is greater than the valid_max" ;
qc_flag_3_assessment = "Bad" ;
qc_flag_4_description = "Difference between current and previous sample values exceeds valid_delta

limit" ;
qc_flag_4_assessment = "Indeterminate" ;
qc_flag_comment = "The QC field values are integers indicating the results of QC tests on the data.

Non-zero integers indicate the QC condition given in the description for those integers; a value of
0 indicates the data have not failed any QC tests." ;

8.10 Guidelines to Describe Source

When multiple inputs or algorithms are used to compute data fields, it may be useful to indicate the
source of the input or algorithm at the field level. In such cases, an optional data field attribute or optional
field indicating the source of the data may be added.

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

42

8.10.1 Source Field Attribute –Time Independent

If the source does not change, the input is indicated with an optional source data field attribute. Enough
information to fully trace the values must be provided with a syntax of
“<datastream_name>:<field_name>” or if the site and facility match the site_id and facility_id in the
global attributes “<instrument_class>.<level>:<field_name>”. Automated tools will distinguish a
datastream by the existence of a “:”. A full datastream name is detected by the single capital letter in the
facility name versus no capital letters indicating the need for inserting site_id and facility_id. The use of
the algorithm or any other source identifier other than an ARM datastream must not contain a colon (‘:’).
Multiple sources may be listed separated by a single-space character. The source attribute may optionally
describe a method or algorithm instead of an input datastream:field. If no source was used, set attribute to
“no_source_available”.

Example:

• ARM datastream and field name:
– source = “sgpmetE13.b1:atmospheric_temperature” ;
– source = “sgpmwrC1.b1:vap sgpmwrpC1.b1:vapor” ;
– source = “mwr.b1:vap” ;
– source = “mwr.b1:vap mwrp.b1:vapor” ;

• Algorithm:
– source = “myers_briggs” ;
– source = “rutherfurd_1.2” ;
– source = “calvin_3.2 hobbs_1” ;

8.10.2 Source Field –Time Dependent

For describing a time-dependent source, an optional source field is used. If the source field is referenced
by one data field, we recommended using the data field name preceded by “source” and joined to the data
field name with an underscore (i.e., source_atmos_temperature for atmos_temperature). If a source field
is used for multiple data fields, we recommend using a name different than any of the data fields (i.e.,
source_atmos_state for atmos_temperature, atmos_pressure, relative_humidy, wind_speed and
wind_direction).

An ancillary_variables attribute with the data field is used to indicate the corresponding source field
name.

8.10.2.1 Source Field – Flag Method

Multiple sources may be listed separated by a single-space character. Data type is integer.

Required attribute for data field:

• ancillary_variables = <source field name> ;

Required attributes for source field:

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

43

• long_name = “Source of field: <data field’s long_name attribute value or generic description if used
for multiple fields>” ;

• units = “unitless” ;
• description = "This field contains integer values which should be interpreted as listed." ;
• flag_method = “integer” ;
• flag_<#>_description = Description of source

Optional attribute for source field:

• flag_<#>_comment = optional attribute to provide more details on how the data was computed.

The meanings of all possible integer source values are indicated in the source field attributes
flag_<#>_description. One of the integer source values must describe a no source or default value. If
indicating no source was used, set flag_<#>_description = “no_source_available”. If a source preference
ranking is appropriate, lower numeric values indicate higher preference.

Flag numbers are required to be greater than or equal to zero. Negative flag numbers listed in the
flag_<#>_description may cause issues with the method used for reading data. Some implementations
may convert attribute names to program variables. A “-” character is not allowed in most programming
language variables names.

If the source is constant in other dimensions, we recommend that the source field be a function of time
only.

Example:
float aod (time) ;

aod:long_name = “Aerosol optical depth” ;
aod:units = “unitless” ;
aod:missing_value = -9999.f ;
aod:ancillary_variables = “source_aod” ;

int source_aod(time) ;
source_aod:long_name = “Source for field: Aerosol optical depth” ;
source_aod:units = “unitless” ;
source_aod:flag_method = “integer”;
source_aod:description = "This field contains integer values that should be interpreted as listed." ;
source_aod:flag_0_description = ”no_source_available” ;
source_aod:flag_1_description = ”mfr.c1:aerosol_optical_depth” ; // Site and facility are not

needed because facility_id is C1 in global attributes.
source_aod:flag_2_description = ”mfrsr.b1:aerosol_optical_depth” ;
source_aod:flag_2_comment = "Fill gaps of 3 days or less via interpolation" ;
source_aod:flag_3_description =”nimfraod1mich.c1:aod” ;
source_aod:flag_4_description =”sgpnimfraod1michE13.c1:aod” ; // Note the site and facility are

needed because the facility does not match the facility_id in global attributes.
source_aod:flag_5_description =”sgpnimfraod1michE13.c1:aod sgpnimfraod1michC1.c1:aod” ; //

When listing more than one reference, be kind and make as clear as possible. In this case adding
the site and facility makes it clearer and easier to read for C1 facility.

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

44

8.10.2.2 Source Field – Bit-Packed Method

Some datastreams may use multiple sources for each time sample. As stated in the previous section,
multiple sources may be indicated with the flag_<#>_description method. If listing all possible
combinations of sources is prohibitively complicated, we recommend use of the bit-packed method. Only
one method of indicator is allowed at a time (no mixing of integer and bit-packed values in the same
field). The use of this type of method is indicated by the use of the flag_method field attribute.

Required field attribute:
• long_name = “Source of field: <data field’s long_name attribute value or generic description if used

for multiple fields>” ;
• units = “unitless” ;
• description = “This field contains bit-packed integer values, where each bit represents a source of the

data. Non-zero bits indicate the source used in the description for those bits.” ;
• flag_method = “bit” ;
• bit_<#>_description = “<description of the source>” ; // Describes the single source

Example:
int source_aod (time) ;

source_aod:long_name = “Source for field: Aerosol optical depth” ;
source_aod:units = “unitless”;
source_aod:description = “This field contains bit-packed integer values, where each bit represents

a source of the data. Non-zero bits indicate the source used in the description for those bits; a
value of 0 (no bits set) indicates no source.” ;

source_aod:flag_method = “bit”;
source_aod:bit_1_description = ”mfrsr.c1:aerosol_optical_depth” ; // Site and facility are not

needed because facility_id is C1 in global attributes
source_aod:bit_2_description = ”mfrsr.b1:aerosol_optical_depth” ;
source_aod:bit_2_comment = "Fill gaps of 3 days or less via interpolation" ;
source_aod:bit_3_description = ”nimfraod1mich.c1:aod” ;
source_aod:bit_4_description = ”sgpnimfraod1michE13.c1:aod” ;

8.11 ADI Transform Parameters Using cell_transforms

The ARM Data Integrator (ADI) is used to combine multiple ARM netCDF files and transform different
time steps and dimensions into a single netCDF file. To ensure the process used to generate the new file is
well documented, the parameters applied by the user that affect the transformation are required within the
netCDF file at the field level.

All transform parameters are described within the optional field attribute cell_transforms. Transform
parameters are grouped by dimension following the CF cell_methods style (see Cell Method Attribute
section in this document or CF standards document section 7.3). Detailed information about transform
parameters and values can be found at https://engineering.arm.gov/ADI_doc/framework.html#transform-
parameters.

https://engineering.arm.gov/ADI_doc/framework.html#transform-parameters
https://engineering.arm.gov/ADI_doc/framework.html#transform-parameters

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

45

Each dimension of the transformation is documented with the order of the dimension indicating order of
transformation. The dimension name is followed by a colon and space (“: “) and the transform type.
Additional transform parameters for that dimension are followed within parentheses using a key-value
pair style using colon and space delimiter between each key and value. This document is not intended to
describe all the parameters and their meanings, but rather to describe the method used to document the
values. For a description of the parameter values, see the ADI documentation.

8.11.1 Transform Type

Transform type is required to describe the type of transform used using one the predetermined keywords.
Future transform names will follow the same pattern.

• TRANS_BIN_AVERAGE
• TRANS_INTERPOLATE
• TRANS_SUBSAMPLE
• TRANS_PASSTHROUGH

8.11.2 Additional Parameters

Additional parameters are required if they are used in the ADI transformation. Do not list a parameter if it
is not used. A parameter that applies to all dimensions can be listed individually within parenthesis
following the dimension name or listed at the end. Listing the parameter at the end infers the parameter
applies to all dimensions—for example, a quality-control parameter that applies to all dimensions and is
applied uniformly.

Example:
varmint (time, distance) ;

long_name = “Number of varmints destroying ARM instruments normalized by size” ;
units = “count/kg” ;
cell_transforms = “time: TRANS_SUBSAMPLE (range: 300) distance: TRANS_SUBSAMPLE

(range: 5) qc_bad: 1,2,3” ;

In this example the time dimension is transformed with the TRANS_SUBSAMPLE method using a range
parameter of 300, and the distance dimension is transformed using the TRANS_SUBSAMPLE method
with a range parameter of 5. Both dimensions are transformed with a qc_bad parameters using [1,2,3]
values.

8.12 Process for Evaluating Exceptions

This section describes the ARM data standards exception request process.

8.12.1 Identifying Exceptions

Two primary methods are used to identify exceptions from the required standards. The first method
involves the use of the ARM Process Configuration Management (PCM) tool at

https://engineering.arm.gov/pcm/Main.html

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

46

https://engineering.arm.gov/pcm/Main.html. The PCM tool is used by ingest and VAP developers, and
allows them to design Data Object Design (DOD) for ARM data products. The DODs define metadata in
the netCDF header, and the PCM tool analyzes and validates the metadata against current ARM data
standards. Exceptions are flagged for further review.

The second method for identifying exceptions is simple visual inspection of data products by members of
the ARM Data Management Facility (DMF), ARM Data Quality Office, ARM Data Archive, and ARM
Instrument mentors and VAP translators. This method relies on the expertise of the various parties and
will only be used after the developer has attempted to resolve issues flagged in the PCM tool.

8.12.2 Exception Request

During the development of an instrument ingest or VAP
<http://www.arm.gov/publications/tech_reports/doe-sc-arm-tr-093.pdf?id=49>, if the product developer
becomes aware of compelling issues that will make it difficult or impossible to meet the required
datastream standards, the developer should document the issue in the form of a request for an exception to
the required standards. This request should be submitted to the ARM Standards Committee
<standardscomm@arm.gov>. This request should be made as early in the development process as
possible. It would not be appropriate, for example, to proceed with extensive development when the need
for an exception is known. A valid effort should be made to understand the standards during development,
or request help from a knowledgeable person early in the development process for help understanding
standards. In most cases, it is expected to be much easier to make adjustments and minimize deviation
from the standards early in the development process.

The primary purpose of the ARM Standards Committee is to review requests to exempt data products
from adherence to the ARM standards. They may also consider and make recommendations on changes to
the standards themselves and recommend new standard_name to the CF convention. Changes to the
standards document would be further reviewed and enacted through a Baseline Change Request.

The Standards Committee will consist of the following five individuals representing key datastream-
related stakeholders:

• VAP manager
• metadata QC reviewer
• representative from the Data Archive
• representative from the DQ Office
• translator or mentor to represent the scientific community.

With the exception of the VAP manager, these positions will be filled on a rotating basis with a term of
two-years. The incoming members should be identified at the beginning of the previous term. In this way,
incoming members may serve as back-ups should a committee member be unavailable. To stagger the
rotation of members, the metadata QC reviewer and ARM Data Archive members will only serve an
initial one-year term. After the initial year the members will serve a two-year term.

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

47

8.12.3 The Review Process

The Standards Committee should return a decision on an exceptions request as expeditiously as possible
to minimize delays of the development process. The committee should strive to return decisions within
two weeks of receipt of a request. If the committee is unable to meet due to the unavailability of one or
more members for an extended period, those members may be replaced in a review by incoming
members, or a suitable alternate should the incoming members also be unavailable. If any members of the
committee have a conflict of interest (e.g., as the translator or developer for the product) they should
recuse themselves from the review and should be replaced by the incoming member or suitable alternate.

Committee members should consult with other stakeholders in their deliberation as necessary.

To grant an exception request, a majority is required to help ensure that a clear case has been made. If the
committee has particular concerns about part of the request, they may provide a response to the petitioner
indicating their concern over those specific points and request a revised proposal.

8.12.4 Options for the Standards Committee

8.12.4.1 Approval:

If the request is approved, this means that the data product developer will be permitted to continue with
their development toward a product deviating from the ARM data standards on the points approved in
their request. This product will be tagged with a Transparent DQR indicating that the product deviates
from ARM standards. The DQR will summarize the ways in which the file deviates from the standards.
The product will be fully discoverable through the ARM Data Archive data discovery tools.

8.12.4.2 Denial:

If the request is denied, this indicates that the committee believes that the benefit to conforming to the
standards justifies the cost of doing so and that the reasons put forth by the petitioner to bypass certain
standards were not compelling. Denial by the committee is a programmatic denial to invest further in the
development of the product under the terms proposed by the petitioner, so development of the product
should cease unless a later compromise solution is obtained (see “Appeal” below).

8.12.4.3 Conditional Acceptance:

If the committee agrees with certain points of the petitioner’s request but disagrees with others, they may
indicate their conditional approval to the petitioner with a request to modify the points of concern.

8.12.4.4 Appeal:

If a petitioner’s request is denied or certain elements of their request are denied, they may modify their
request or gather additional background information to support their original request and resubmit their
request to the Standards Committee in the form of an appeal. The petitioner may submit two such appeals
for a given product.

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

48

9.0 CF standard_name Recommendations
Unidata CF maintains the database of names and descriptions to clarify the data values in the
standard_name attribute. Most of the current names came from the modeling community and do not
correctly describe many measurements collected by the ARM Climate Research Facility. To correctly use
the standard_name method ARM will recommend names to the list with corresponding definitions. The
current process for recommending a name is to send an e-mail to the cf-metadata@cgd.ucar.edu listserv
for discussion by the CF user community. CF has developed a set of guidelines for the naming convention
(<http://cfconventions.org/Data/cf-standard-names/docs/guidelines.html>). The discussion in the listserv
will suggest updates if needed and decide on new name adoption. The typical timeline for new name
adoptions is on the order of a few months.

New CF standard_name suggestions will come from the Standards Committee with a single committee
member tasked with tracking the progress of a proposed standard_name until adopted.

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

A.1

Appendix A: Bin Values Changing Each Time Step

dimensions:
time = UNLIMITED ; // (1440 currently)
droplet_size = 21 ;
bound = 2 ;

variables:

double time(time) ;
time:long_name = "Time offset from midnight" ;
time:units = "seconds since 2013-01-06 00:00:00 0:00" ;

float droplet_size(time, droplet_size) ;
droplet_size:long_name = "Droplet size" ;
droplet_size:units = "um" ;
droplet_size:bounds = "droplet_size_bounds" ;

float droplet_size_bounds(time,droplet_size,bound) ;
float ccn_number_concentration(time, droplet_size) ;

ccn_number_concentration:long_name = "AOS ccn number concentration by bin" ;
ccn_number_concentration:units = "count" ;
ccn_number_concentration:missing_value = -9999.f ;
ccn_number_concentration:cell_methods = "droplet_size: sum" ;

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

B.1

Appendix B: Descriptors, Units, and Prefixes

B.1 ARM UDUNITS Compliant Unit Descriptors

https://wiki.arm.gov/bin/view/Engineering/StandardizingDODs

For complete UDUNITS compliant units reference see UDUNITS-2 database that comprises of the
following XML files:

• SI unit prefixes : http://www.unidata.ucar.edu/software/udunits/udunits-2/udunits2-prefixes.xml

• SI base units : http://www.unidata.ucar.edu/software/udunits/udunits-2/udunits2-base.xml

• SI derived units : http://www.unidata.ucar.edu/software/udunits/udunits-2/udunits2-derived.xml

• Units accepted for use with the SI : http://www.unidata.ucar.edu/software/udunits/udunits-2/udunits2-
accepted.xml

• Non-SI units : http://www.unidata.ucar.edu/software/udunits/udunits-2/udunits2-common.xml

The udunits2 units database is also searchable for name or symbol at
https://www.cicsnc.org/pub/jbiard/Udunits2Tables.html

B.1.1 Recommended Units

Base Quantity Unit Name Symbol Comment or other
possible units

length, distance,
height

meter m cm, inch, mm

frequency, sample
rate

hertz Hz 1/s

force newton N

energy joule J

power watt W

electric potential,
voltage

volt V

http://www.google.com/url?q=https%3A%2F%2Fwiki.arm.gov%2Fbin%2Fview%2FEngineering%2FStandardizingDODs%23Units&sa=D&sntz=1&usg=AFQjCNFhcv58I2mFFNE8EZXiMXnJ8laeHg

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

B.2

Base Quantity Unit Name Symbol Comment or other
possible units

electrical resistance ohm ohm

volume liter L cc, cm^3, L, mL, m^3

atmospheric pressure,
barometric pressure,
station pressure

kilopascal kPa hPa, mbar, psi, inHg

density, water vapor
density, absolute
humidity,
concentration of trace
substance

gram per cubic meter g/m^3 kg/m^3, g/cc, g/cm^3

energy flux density,
irradiance, heat flux,
net radiation

watt per square meter W/m^2

plane angle, azimuth,
elevation, wind
direction, zenith

degree degree rad

latitude degree north degree_N degree_S

longitude degree east degree_E degree_W

precipitable water
vapor

centimeter cm mm, in

precipitation millimeter mm in, cm

precipitation rate millimeter per second mm/s

radiance watt per square meter
per steradian

W/(m^2 sr) W m^-2 sr^-1

relative humidity percent % unitless

solid angle steradian sr

temperature, dry bulb,
wet bulb, dewpoint,
potential, equivalent
potential, virtual

celsius degC degF, K

velocity, wind speed,
ascent rate

meters per second m/s

water vapor mixing grams per kilogram g/kg

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

B.3

Base Quantity Unit Name Symbol Comment or other
possible units

ratio (per mass of dry
air)

water vapor pressure kilopascal kPa hPa, mbar

wavelength nanometer nm um

wavenumber inverse centimeter cm^-1

bins unitless unitless 1

mass density gram per cubic
centimeter

g/cm^3

number density inverse cubic
centimeter

1/cm^3 count/cm^3

molar mixing ratio micro-mol per mol umol/mol

volumetric mixing
ratio

parts per million by
volume

ppm ppmv

counts count count 1, unitless

ratio, fraction fraction unitless 1

probability fraction unitless 1

relative power deci-bell dB

soil moisture content
by volume

cubic meter per cubic
meter

m^3/m^3 cm^3/cm^3

soil water potential kilopascal kPa

B.1.2 Prefixes

Prefix Power of 10 Symbol

pico -12 p

nano -9 n

micro -6 u

milli -3 m

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

B.4

Prefix Power of 10 Symbol

centi -2 c

deci -1 d

hecto 2 h

kilo 3 k

mega 6 M

giga 9 G

tera 12 T

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

C.1

Appendix C: ARM netCDF Data File Example

data filename = sgptempprofile10sC1.c1.20130101.010203.nc

dimensions:

time = UNLIMITED ; // (14400 currently)
bound = 2 ;
height = 100 ;

variables:
int base_time ;

base_time:string = "01-Jan-2013,00:00:00 GMT" ;
base_time:long_name = "Base time in Epoch" ;
base_time:units = "seconds since 1970-1-1 0:00:00 0:00" ;
base_time:ancillary_variables = “time_offset” ;

double time_offset (time) ;
time_offset:long_name = "Time offset from base_time" ;
time_offset:units = "seconds since 2013-01-01 00:00:00 0:00" ;
time_offset:ancillary_variables = “base_time” ;
time_offset:bounds = “time_bounds” ;

double time (time) ;
time:long_name = "Time offset from midnight" ;
time:units = "seconds since 2013-01-01 00:00:00 0:00" ;
time:standard_name = “time” ;
time:bounds = “time_bounds” ;

double time_bounds (time, bound) ;
time_bounds:long_name = “Time cell bounds” ;

float height(height) ;
height:long_name = "Center of height bin" ;
height:units = "m" ;
height:standard_name = “height” ;
height:bounds = "height_bounds" ;

 float height_bounds(height, bounds) ;
height_bounds:long_name = “Height bin bounds” ;
height_bounds:units = “m” ;

float atmospheric_temperature(time, height) ;
atmospheric_temperature:long_name = "Atmospheric temperature" ;

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

C.2

atmospheric_temperature:units = "degC" ;
atmospheric_temperature:missing_value = -9999.f ;
atmospheric_temperature:standard_name = “air_temperature“ ;
atmospheric_temperature:cell_methods = “time:mean height:mean“ ;
atmospheric_temperature:ancillary_variables = “qc_atmospheric_temperature

source_atmospheric_temperature instrument_status” ;
int qc_atmospheric_temperature(time, height) ;

qc_atmospheric_temperature:long_name = “Quality check results on field: Atmospheric
temperature” ;

qc_atmospheric_temperature:units = “unitless” ;
qc_atmospheric_temperature:flag_method = “bit” ;
qc_atmospheric_temperature:comment = “A quality control bit set anywhere along the profile will

result in the bit being set.” ;
qc_atmospheric_temperature:bit_1_description = "Value is equal to missing_value";
qc_atmospheric_temperature:bit_1_assessment = "Bad" ;
qc_atmospheric_temperature:bit_2_description = "The instrument detected a hardware failure" ;
qc_atmospheric_temperature:bit_2_assessment = "Bad" ;
qc_atmospheric_temperature:bit_3_description = "Values greater than two standard deviations of

historical distribution" ;
qc_atmospheric_temperature:bit_3_assessment = "Indeterminate" ;

int source_atmospheric_temperature (time) ;
source_atmospheric_temperature:long_name = “Source for field: Atmospheric temperature” ;
source_atmospheric_temperature:units = “unitless” ;
source_atmospheric_temperature:description = “This field contains bit packed integer values,

where each bit represents a source of the data. Non-zero bits indicate the source used in the
description for those bits; a value of 0 (no bits set) indicates no source.” ;

source_atmospheric_temperature:flag_method = “bit” ;
source_atmospheric_temperature:bit_1_description = ”sgpsondewnpnC1.b1:tdry” ;
source_atmospheric_temperature:bit_2_description = ”sgpaeriprofC1.c1:temperature” ;
source_atmospheric_temperature:bit_3_description = ”sgp1290rwpC1.c1:temp” ;
source_atmospheric_temperature:bit_4_description = ”conwarfX1.a1:atmos_temp” ;

int instrument_status(time) ;
instrument_status:long_name = "Instrument status" ;
instrument_status:units = “unitless” ;
instrument_status:missing_value = -9999 ;
instrument_status:flag_masks = 1, 2, 4, 8;
instrument_status:flag_meanings = "power_failure hardware_fault software_fault

maintenance_mode" ;
float lat ;

lat:long_name = "North latitude" ;
lat:units = "degree_N" ;
lat:standard_name = "latitude" ;
lat:missing_value = -9999. ;
lat:valid_min = -90.f ;

ARM Standards Committee, May 2016, DOE/SC-ARM-14-010

C.3

lat:valid_max = 90.f ;
float lon ;

lon:long_name = "East longitude" ;
lon:units = "degree_E" ;
lon:standard_name = "longitude" ;
lon:missing_value = -9999.f ;
lon:valid_min = -180.f ;
lon:valid_max = 180.f ;

float alt ;
alt:long_name = "Altitude above mean sea level" ;
alt:units = "m" ;
alt:standard_name = “altitude” ;
alt:missing_value = -9999.f ;

// global attributes:
:command_line = "tempprofile -d 20130101 -f sgp.C1" ; ;
:Conventions =”ARM_Convention-1.0 CF-1.6” ;
:process_version = "ingest-met-4.10-0.el5" ;
:dod_version = ”tempprofile-b1-2.0” ;
:input_datastreams = “sgpsondewnpnC1.b1 : 6.1 : 20130101 ;\n sgpaeriprofC1.c1 : 1.1 :

20130101.000000 ;\n sgp1290rwpC1.c1: Release_1_4 : 20130101.000000 ;\n conwarfX1.a1 :
Release_2_9 : 20130101.000000” ;

:site_id = ”sgp” ;
:platform_id = “tempprofile” ;
:facility_id = “C1” ;
:data_level = “c1” ;
:location_description = “Southern Great Plains (SGP), Lamont, OK (C1) ;
:datastream = ”sgptempprofileC1.c1” ;
:title = “Atmospheric Radiation Measurement (ARM) Facility best estimate of atmospheric temperature

profile” ;
:institution = “United States Department of Energy - Atmospheric Radiation Measurement (ARM)

Facility” ;
:description = "Best estimate of atmospheric temperature profile over Lamont, OK" ;
:references = "http://www.arm.gov/data/vaps/" ;

:history = “created by user dsmgr on machine ruby at 1-Jan-2007,2:43:02” ;

http://www.arm.gov/data/vaps/

	Acronyms, Abbreviations, and Terms
	Contents
	Tables
	1.0 Standards Committee
	2.0 Introduction
	2.1 Intended Audience
	2.2 Background
	2.3 Advantages of Following Standards
	2.4 Example of Tools Using Standards

	3.0 The Standards Hierarchy
	3.1 Required Standards
	3.2 Recommended Standards

	4.0 Optional Methods
	5.0 Significant Changes
	5.1 Changes from Version 1.1

	6.0 File Type/Format
	7.0 Construction of Data Filename
	7.1 File Naming Conventions for Processed Data
	7.1.1 Filename Length
	7.1.2 Facility Code Descriptions
	7.1.2.1 A = Argonne Boundary Layer Experiment (ABLE) [Retired]
	7.1.2.2 B = Boundary Facilities [Retired]
	7.1.2.3 C = Central Facility
	7.1.2.4 D = Diagnostic Data Products
	7.1.2.5 E = Extended Facilities
	7.1.2.6 F = ARM Aerial Facility (AAF)
	7.1.2.7 I = Intermediate Facility
	7.1.2.8 L = Local? or Logistics? Facility [Retired]
	7.1.2.9 M = Mobile Facility
	7.1.2.10 N = Network of Measurement Locations
	7.1.2.11 Q = Quality Assurance (Pre-deployment Integration) [Retired]
	7.1.2.12 S = Supplemental or Ancillary Facility
	7.1.2.13 X = eXternal Facilities

	7.1.3 Data Level
	7.1.4 Best Estimate
	7.1.5 File Duration

	7.2 Guidelines for Original RAW Filename
	7.3 File Naming Conventions for RAW ARM Data
	7.4 File Naming Conventions for TAR Bundles
	7.5 File Naming Conventions for Field Campaign TAR Bundles
	7.6 Other Data Formats
	7.7 Guidelines to Name Quick-Look Plot Filenames
	7.8 Case-Sensitive File Naming

	8.0 Guideline for netCDF File Structure
	8.1 Dimensions
	8.1.1 Time Dimension

	8.2 Time
	8.2.1 base_time and time_offset Fields
	8.2.2 time Field
	8.2.3 Time Bin Boundary

	8.3 Coordinate Dimensions
	8.3.1 Reference for Coordinate Units
	8.3.2 Referencing AGL and MSL
	8.3.3 Coordinate Bin Dimension
	8.3.4 Additional Dimension
	8.3.5 Cell Method Attribute

	8.4 Location Fields
	8.5 Guidelines for Construction of Field Names
	8.5.1 Field Names Hierarchy
	8.5.2 Field Name Abbreviations and Descriptors
	8.5.2.1 Prefix Qualifier
	8.5.2.2 Measurement Qualifier
	8.5.2.3 Subcategory Qualifier
	8.5.2.4 Quantity Qualifier

	8.6 State Indicator Field
	8.6.1 Exclusive States
	8.6.2 Inclusive States

	8.7 Field Attributes
	8.7.1 Required Field Attributes
	8.7.2 Required with Conditions
	8.7.2.1 Missing value versus FillValue Discussion

	8.7.3 Standard_Name Attribute
	8.7.4 ARM Standard Field Attribute Names
	8.7.4.1 Other Possible Attributes (Not All Inclusive)

	8.7.5 Sensor Height
	8.7.6 Attribute Datatype

	8.8 Global Attributes
	8.8.1 Required and Recommended Global Attributes

	8.9 Quality Control Parallel Fields
	8.9.1 Bit-Packed Numbering Discussion
	8.9.2 Standard Bit-Packed Quality Control Fields
	8.9.2.1 Field-Level Bit Description
	8.9.2.2 Standard ARM QC
	8.9.2.3 Unused ARM QC Bit
	8.9.2.4 Reporting Test Parameters in Description
	8.9.2.5 Bit-Packed Global Attribute Declaration for Quality Control
	8.9.2.6 valid_min/valid_max versus qc_min/qc_max Attribute Discussion
	8.9.2.7 Multiple Field Summarized Quality Control
	8.9.2.8 Dimensionally Summarized Quality Control

	8.9.3 Integer Quality Control Fields
	8.9.3.1 Integer Global Attribute Declaration for Quality Control

	8.10 Guidelines to Describe Source
	8.10.1 Source Field Attribute –Time Independent
	8.10.2 Source Field –Time Dependent
	8.10.2.1 Source Field – Flag Method
	8.10.2.2 Source Field – Bit-Packed Method

	8.11 ADI Transform Parameters Using cell_transforms
	8.11.1 Transform Type
	8.11.2 Additional Parameters

	8.12 Process for Evaluating Exceptions
	8.12.1 Identifying Exceptions
	8.12.2 Exception Request
	8.12.3 The Review Process
	8.12.4 Options for the Standards Committee
	8.12.4.1 Approval:
	8.12.4.2 Denial:
	8.12.4.3 Conditional Acceptance:
	8.12.4.4 Appeal:

	9.0 CF standard_name Recommendations
	Appendix A : Bin Values Changing Each Time Step
	Appendix B : Descriptors, Units, and Prefixes
	B.1 ARM UDUNITS Compliant Unit Descriptors
	B.1.1 Recommended Units
	B.1.2 Prefixes

	Appendix C : ARM netCDF Data File Example

