skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Introduction: Observations and modeling of the Green Ocean Amazon (GoAmazon2014/5)

Abstract

We carried out the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) Experiment in the environs of Manaus, Brazil, in the central region of the Amazon basin for 2 years from 1 January 2014 through 31 December 2015. The experiment focused on the complex interactions among vegetation, atmospheric chemistry, and aerosol production on the one hand and their connections to aerosols, clouds, and precipitation on the other. Our objective was to understand and quantify these linked processes, first under natural conditions to obtain a baseline and second when altered by the effects of human activities. To this end, the pollution plume from the Manaus metropolis, superimposed on the background conditions of the central Amazon basin, served as a natural laboratory. This paper, as the introduction to the special issue of GoAmazon2014/5, presents the context and motivation of the GoAmazon2014/5 Experiment. The nine research sites, including the characteristics and instrumentation of each site, are presented. The sites range from time point zero (T0) upwind of the pollution, to T1 in the midst of the pollution, to T2 just downwind of the pollution, to T3 furthest downwind of the pollution (70 km). In addition to the ground sites, a low-altitude G-159 Gulfstream I (G-1) observed the atmosphericmore » boundary layer and low clouds, and a high-altitude Gulfstream G550 (HALO) operated in the free troposphere. During the 2-year experiment, two Intensive Operating Periods (IOP1 and IOP2) also took place that included additional specialized research instrumentation at the ground sites as well as flights of the two aircraft. GoAmazon2014/5 IOP1 was carried out from 1 February to 31 March 2014 in the wet season. GoAmazon2014/5 IOP2 was conducted from 15 August to 15 October 2014 in the dry season. The G-1 aircraft flew during both IOP1 and IOP2, and the HALO aircraft flew during IOP2. In the context of the Amazon basin, the two IOPs also correspond to the clean and biomass burning seasons, respectively. The Manaus plume is present year-round, and it is transported by prevailing northeasterly and easterly winds in the wet and dry seasons, respectively. This introduction also organizes information relevant to many papers in the special issue. Information is provided on the vehicle fleet, power plants, and industrial activities of Manaus. The mesoscale and synoptic meteorologies relevant to the two IOPs are presented. Regional and long-range transport of emissions during the two IOPs is discussed based on satellite observations across South America and Africa. Fire locations throughout the airshed are detailed. In conjunction with the context and motivation of GoAmazon2014/5 as presented in this introduction, research articles including thematic overview articles are anticipated in this special issue to describe the detailed results and findings of the GoAmazon2014/5 Experiment.« less

Authors:
 [1]; ORCiD logo [2]; ORCiD logo [3];  [4];  [5];  [6];  [7]; ORCiD logo [8]; ORCiD logo [2];  [9];  [10];  [11];  [12];  [13]; ORCiD logo [8];  [2];  [12];  [14]
  1. Harvard Univ., Cambridge, MA (United States)
  2. Univ. of Sao Paulo, Sao Paulo (Brazil)
  3. National Institute for Space Research, Sao Jose dos Campos (Brazil)
  4. National Institute of Amazonian Research, Amazonas (Brazil)
  5. Amazonas State Univ., Amazonas (Brazil)
  6. Texas A & M Univ., College Station, TX (United States)
  7. Brookhaven National Lab. (BNL), Upton, NY (United States)
  8. Max Planck Institute for Chemistry, Mainz (Germany)
  9. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  10. Aeronautic and Space Institute, Sao Jose dos Campos (Brazil)
  11. Univ. of California, Berkeley, CA (United States)
  12. Univ. of California, Irvine, CA (United States)
  13. Univ. of Colorado, Boulder, CO (United States)
  14. Univ. of Leipzig, Leipzig (Germany)
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1253853
Alternate Identifier(s):
OSTI ID: 1336085
Report Number(s):
PNNL-SA-113962; BNL-112483-2016-JA
Journal ID: ISSN 1680-7324; KP1701000
Grant/Contract Number:  
AC05-76RL01830; SC00112704
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Volume: 16; Journal Issue: 8; Journal ID: ISSN 1680-7324
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Martin, S. T., Artaxo, P., Machado, L. A. T., Manzi, A. O., Souza, R. A. F., Schumacher, C., Wang, J., Andreae, M. O., Barbosa, H. M. J., Fan, J., Fisch, G., Goldstein, A. H., Guenther, A., Jimenez, J. L., Poschl, U., Silva Dias, M. A., Smith, J. N., and Wendisch, M. Introduction: Observations and modeling of the Green Ocean Amazon (GoAmazon2014/5). United States: N. p., 2016. Web. doi:10.5194/acp-16-4785-2016.
Martin, S. T., Artaxo, P., Machado, L. A. T., Manzi, A. O., Souza, R. A. F., Schumacher, C., Wang, J., Andreae, M. O., Barbosa, H. M. J., Fan, J., Fisch, G., Goldstein, A. H., Guenther, A., Jimenez, J. L., Poschl, U., Silva Dias, M. A., Smith, J. N., & Wendisch, M. Introduction: Observations and modeling of the Green Ocean Amazon (GoAmazon2014/5). United States. https://doi.org/10.5194/acp-16-4785-2016
Martin, S. T., Artaxo, P., Machado, L. A. T., Manzi, A. O., Souza, R. A. F., Schumacher, C., Wang, J., Andreae, M. O., Barbosa, H. M. J., Fan, J., Fisch, G., Goldstein, A. H., Guenther, A., Jimenez, J. L., Poschl, U., Silva Dias, M. A., Smith, J. N., and Wendisch, M. 2016. "Introduction: Observations and modeling of the Green Ocean Amazon (GoAmazon2014/5)". United States. https://doi.org/10.5194/acp-16-4785-2016. https://www.osti.gov/servlets/purl/1253853.
@article{osti_1253853,
title = {Introduction: Observations and modeling of the Green Ocean Amazon (GoAmazon2014/5)},
author = {Martin, S. T. and Artaxo, P. and Machado, L. A. T. and Manzi, A. O. and Souza, R. A. F. and Schumacher, C. and Wang, J. and Andreae, M. O. and Barbosa, H. M. J. and Fan, J. and Fisch, G. and Goldstein, A. H. and Guenther, A. and Jimenez, J. L. and Poschl, U. and Silva Dias, M. A. and Smith, J. N. and Wendisch, M.},
abstractNote = {We carried out the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) Experiment in the environs of Manaus, Brazil, in the central region of the Amazon basin for 2 years from 1 January 2014 through 31 December 2015. The experiment focused on the complex interactions among vegetation, atmospheric chemistry, and aerosol production on the one hand and their connections to aerosols, clouds, and precipitation on the other. Our objective was to understand and quantify these linked processes, first under natural conditions to obtain a baseline and second when altered by the effects of human activities. To this end, the pollution plume from the Manaus metropolis, superimposed on the background conditions of the central Amazon basin, served as a natural laboratory. This paper, as the introduction to the special issue of GoAmazon2014/5, presents the context and motivation of the GoAmazon2014/5 Experiment. The nine research sites, including the characteristics and instrumentation of each site, are presented. The sites range from time point zero (T0) upwind of the pollution, to T1 in the midst of the pollution, to T2 just downwind of the pollution, to T3 furthest downwind of the pollution (70 km). In addition to the ground sites, a low-altitude G-159 Gulfstream I (G-1) observed the atmospheric boundary layer and low clouds, and a high-altitude Gulfstream G550 (HALO) operated in the free troposphere. During the 2-year experiment, two Intensive Operating Periods (IOP1 and IOP2) also took place that included additional specialized research instrumentation at the ground sites as well as flights of the two aircraft. GoAmazon2014/5 IOP1 was carried out from 1 February to 31 March 2014 in the wet season. GoAmazon2014/5 IOP2 was conducted from 15 August to 15 October 2014 in the dry season. The G-1 aircraft flew during both IOP1 and IOP2, and the HALO aircraft flew during IOP2. In the context of the Amazon basin, the two IOPs also correspond to the clean and biomass burning seasons, respectively. The Manaus plume is present year-round, and it is transported by prevailing northeasterly and easterly winds in the wet and dry seasons, respectively. This introduction also organizes information relevant to many papers in the special issue. Information is provided on the vehicle fleet, power plants, and industrial activities of Manaus. The mesoscale and synoptic meteorologies relevant to the two IOPs are presented. Regional and long-range transport of emissions during the two IOPs is discussed based on satellite observations across South America and Africa. Fire locations throughout the airshed are detailed. In conjunction with the context and motivation of GoAmazon2014/5 as presented in this introduction, research articles including thematic overview articles are anticipated in this special issue to describe the detailed results and findings of the GoAmazon2014/5 Experiment.},
doi = {10.5194/acp-16-4785-2016},
url = {https://www.osti.gov/biblio/1253853}, journal = {Atmospheric Chemistry and Physics (Online)},
issn = {1680-7324},
number = 8,
volume = 16,
place = {United States},
year = {Tue Apr 19 00:00:00 EDT 2016},
month = {Tue Apr 19 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 185 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Verification of the role of the low level jets in Amazon squall lines
journal, April 2011


Lightning response to smoke from Amazonian fires: LIGHTNING AND SMOKE FROM AMAZONIAN FIRES
journal, April 2010


ATMOSPHERE: Aerosols Before Pollution
journal, January 2007


Smoking Rain Clouds over the Amazon
journal, February 2004


The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols
journal, January 2015


Atmospheric aerosols in Amazonia and land use change: from natural biogenic to biomass burning conditions
journal, January 2013


A permanent Raman lidar station in the Amazon: description, characterization, and first results
journal, January 2014


Projected strengthening of Amazonian dry season by constrained climate model simulations
journal, June 2015


Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-08)
journal, January 2015


Environmental Conditions Associated with Amazonian Squall Lines: A Case Study
journal, November 1995


Precipitation Characteristics in Eighteen Coupled Climate Models
journal, September 2006


Sensitivity of a GCM to changes in the droplet effective radius parameterization
journal, February 1997


The Amazon basin in transition
journal, January 2012


Observational evidence of the urban heat island of Manaus City, Brazil
journal, August 2012


Influence of local circulations on wind, moisture, and precipitation close to Manaus City, Amazon Region, Brazil
journal, December 2014


The extreme 2014 flood in south-western Amazon basin: the role of tropical-subtropical South Atlantic SST gradient
journal, December 2014


Intensification of the Amazon hydrological cycle over the last two decades: AMAZON HYDROLOGIC CYCLE INTENSIFICATION
journal, May 2013


Influence of biomass aerosol on precipitation over the Central Amazon: an observational study
journal, January 2015


Rainfall and surface kinematic conditions over central Amazonia during ABLE 2B
journal, January 1990


Aerosol-induced intensification of rain from the tropics to the mid-latitudes
journal, January 2012


From aerosol-limited to invigoration of warm convective clouds
journal, June 2014


Impact of Manaus City on the Amazon Green Ocean atmosphere: ozone production, precursor sensitivity and aerosol load
journal, January 2010


Atmospheric oxidation capacity sustained by a tropical forest
journal, April 2008


Effects of biomass-burning-derived aerosols on precipitation and clouds in the Amazon Basin: a satellite-based empirical study
journal, January 2006


Indirect warming effect from dispersion forcing
journal, October 2002


Seasonal and diurnal variability of convection over the Amazonia: A comparison of different vegetation types and large scale forcing
journal, April 2004


Sources and properties of Amazonian aerosol particles
journal, January 2010


An overview of the Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08)
journal, January 2010


The Arm Climate Research Facility: A Review of Structure and Capabilities
journal, March 2013


The effect of physical and chemical aerosol properties on warm cloud droplet activation
journal, January 2006


Amazonian Deforestation and Regional Climate Change
journal, October 1991


Rainforest Aerosols as Biogenic Nuclei of Clouds and Precipitation in the Amazon
journal, September 2010


Flood or Drought: How Do Aerosols Affect Precipitation?
journal, September 2008


Global observations of aerosol-cloud-precipitation-climate interactions: Aerosol-cloud-climate interactions
journal, November 2014


Amazon Basin: A System in Equilibrium
journal, July 1984


The DOE ARM Aerial Facility
journal, May 2014


River breeze circulation in eastern Amazonia: observations and modelling results
journal, April 2004


Diurnal variation of precipitation in central Amazon Basin
journal, March 2014


ACRIDICON–CHUVA Campaign: Studying Tropical Deep Convective Clouds and Precipitation over Amazonia Using the New German Research Aircraft HALO
journal, October 2016


Contrasting convective regimes over the Amazon: Implications for cloud electrification
journal, January 2002


Amazonia and Global Change
journal, September 2010


The effect of physical and chemical aerosol properties on warm cloud droplet activation
text, January 2006


Works referencing / citing this record:

Mesoscale convective systems over the Amazon basin: The GoAmazon2014/5 program
journal, June 2019


The Characteristics of Tropical and Midlatitude Mesoscale Convective Systems as Revealed by Radar Wind Profilers
journal, April 2019


Thresholds for Atmospheric Convection in Amazonian Rainforests
journal, August 2019


Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall
journal, October 2016


Airborne observations reveal elevational gradient in tropical forest isoprene emissions
journal, May 2017


Urban pollution greatly enhances formation of natural aerosols over the Amazon rainforest
journal, March 2019


Substantial large-scale feedbacks between natural aerosols and climate
journal, December 2017


A global view on the effect of water uptake on aerosol particle light scattering
journal, August 2019


Organosulfates in aerosols downwind of an urban region in central Amazon
journal, January 2018


Isoprene photo-oxidation products quantify the effect of pollution on hydroxyl radicals over Amazonia
journal, April 2018


Substantial convection and precipitation enhancements by ultrafine aerosol particles
journal, January 2018


Variabilidade Temporal da Radiação Solar Durante o Experimento GOAmazon 2014/15
journal, June 2018


Erosion of the nocturnal boundary layer in the central Amazon during the dry season
journal, November 2019


Using Satellite Error Modeling to Improve GPM-Level 3 Rainfall Estimates over the Central Amazon Region
journal, February 2018


Deriving brown carbon from multiwavelength absorption measurements: method and application to AERONET and Aethalometer observations
journal, January 2016


Sensitivities of Amazonian clouds to aerosols and updraft speed
journal, January 2017


Anthropogenic influences on the physical state of submicron particulate matter over a tropical forest
journal, January 2017


Optical and geometrical properties of cirrus clouds in Amazonia derived from 1 year of ground-based lidar measurements
journal, January 2017


Contributions of mobile, stationary and biogenic sources to air pollution in the Amazon rainforest: a numerical study with the WRF-Chem model
journal, January 2017


Multi-year statistical and modeling analysis of submicrometer aerosol number size distributions at a rain forest site in Amazonia
journal, January 2018


African volcanic emissions influencing atmospheric aerosols over the Amazon rain forest
journal, January 2018


Observations of sesquiterpenes and their oxidation products in central Amazonia during the wet and dry seasons
journal, January 2018


Aircraft observations of the chemical composition and aging of aerosol in the Manaus urban plume during GoAmazon 2014/5
journal, January 2018


Constraining nucleation, condensation, and chemistry in oxidation flow reactors using size-distribution measurements and aerosol microphysical modeling
journal, January 2018


Aircraft-based observations of isoprene-epoxydiol-derived secondary organic aerosol (IEPOX-SOA) in the tropical upper troposphere over the Amazon region
journal, January 2018


Tropical continental downdraft characteristics: mesoscale systems versus unorganized convection
journal, January 2018


Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia
journal, January 2018


Overview: Precipitation characteristics and sensitivities to environmental conditions during GoAmazon2014/5 and ACRIDICON-CHUVA
journal, January 2018


Microphysical variability of Amazonian deep convective cores observed by CloudSat and simulated by a multi-scale modeling framework
journal, January 2018


Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin
journal, January 2018


Chemical composition of ultrafine aerosol particles in central Amazonia during the wet season
journal, January 2019


Biomass-burning smoke heights over the Amazon observed from space
journal, January 2019


Organic peroxy radical chemistry in oxidation flow reactors and environmental chambers and their atmospheric relevance
journal, January 2019


Land cover and its transformation in the backward trajectory footprint region of the Amazon Tall Tower Observatory
journal, January 2019


X-band dual-polarization radar-based hydrometeor classification for Brazilian tropical precipitation systems
journal, January 2019


Aerosol optical depth retrievals in central Amazonia from a multi-filter rotating shadow-band radiometer calibrated on-site
journal, January 2019


Atmospheric boundary layer dynamics from balloon soundings worldwide: CLASS4GL v1.0
journal, January 2019


Land–atmosphere interactions in the tropics – a review
journal, January 2019


Sub-micrometre particulate matter is primarily in liquid form over Amazon rainforest
journal, December 2015


GoAmazon2014/5 campaign points to deep-inflow approach to deep convection across scales
journal, April 2018


Characteristics and Diurnal Cycle of GPM Rainfall Estimates over the Central Amazon Region
journal, June 2016


Use of MODIS Sensor Images Combined with Reanalysis Products to Retrieve Net Radiation in Amazonia
journal, June 2016


Volatility and lifetime against OH heterogeneous reaction of ambient isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA)
journal, January 2016


Meteorological context of the onset and end of the rainy season in Central Amazonia during the GoAmazon2014/5
journal, January 2017


Long-term study on coarse mode aerosols in the Amazon rain forest with the frequent intrusion of Saharan dust plumes
journal, January 2018


Ground-based observation of clusters and nucleation-mode particles in the Amazon
journal, January 2018


The Green Ocean: precipitation insights from the GoAmazon2014/5 experiment
journal, January 2018


Urban influence on the concentration and composition of submicron particulate matter in central Amazonia
journal, January 2018


Atmospheric boundary layer dynamics from balloon soundings worldwide: CLASS4GL v1.0
journal, March 2019


Severe Convection Features in the Amazon Basin: A TRMM-Based 15-Year Evaluation
journal, April 2016


Further evidence for CCN aerosol concentrations determining the height of warm rain and ice initiation in convective clouds over the Amazon basin
journal, January 2017


Influence of urban pollution on the production of organic particulate matter from isoprene epoxydiols in central Amazonia
journal, January 2017


African volcanic emissions influencing atmospheric aerosols over the Amazon rain forest
journal, January 2018


Constraining nucleation, condensation, and chemistry in oxidation flow reactors using size-distribution measurements and aerosol microphysical modeling
journal, January 2018


Ground-based observation of clusters and nucleation-mode particles in the Amazon
journal, January 2018


Aircraft-based observations of isoprene-epoxydiol-derived secondary organic aerosol (IEPOX-SOA) in the tropical upper troposphere over the Amazon region
journal, January 2018


Chemical composition of ultrafine aerosol particles in central Amazonia during the wet season
journal, January 2019


Biomass-burning smoke heights over the Amazon observed from space
journal, January 2019


Organic peroxy radical chemistry in oxidation flow reactors and environmental chambers and their atmospheric relevance
journal, January 2019


Mixing states of Amazon basin aerosol particles transported over long distances using transmission electron microscopy
journal, January 2020


An evaluation of global organic aerosol schemes using airborne observations
journal, January 2020


Understanding nighttime methane signals at the Amazon Tall Tower Observatory (ATTO)
journal, December 2019


Morning boundary layer conditions for shallow to deep convective cloud evolution during the dry season in the central Amazon
journal, September 2021


X-band dual-polarization radar-based hydrometeor classification for Brazilian tropical precipitation systems
journal, January 2019


Aerosol optical depth retrievals in central Amazonia from a multi-filter rotating shadow-band radiometer calibrated on-site
journal, January 2019


Atmospheric boundary layer dynamics from balloon soundings worldwide: CLASS4GL v1.0
journal, January 2019


The E3SM version 1 single-column model
journal, January 2020


Land–atmosphere interactions in the tropics – a review
journal, January 2019