skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): Simulation design and preliminary results

Abstract

We present a suite of new climate model experiment designs for the Geoengineering Model Intercomparison Project (GeoMIP). This set of experiments, named GeoMIP6 (to be consistent with the Coupled Model Intercomparison Project Phase 6), builds on the previous GeoMIP project simulations, and has been expanded to address several further important topics, including key uncertainties in extreme events, the use of geoengineering as part of a portfolio of responses to climate change, and the relatively new idea of cirrus cloud thinning to allow more long wave radiation to escape to space. We discuss experiment designs, as well as the rationale for those designs, showing preliminary results from individual models when available. We also introduce a new feature, called the GeoMIP Testbed, which provides a platform for simulations that will be performed with a few models and subsequently assessed to determine whether the proposed experiment designs will be adopted as core (Tier 1) GeoMIP experiments. In conclusion, this is meant to encourage various stakeholders to propose new targeted experiments that address their key open science questions, with the goal of making GeoMIP more relevant to a broader set of communities.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3];  [4]; ORCiD logo [5];  [6];  [7];  [6];  [8]; ORCiD logo [9];  [10];  [11]; ORCiD logo [12];  [13];  [14];  [1];  [15]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  2. Rutgers Univ., New Brunswick, NJ (United States)
  3. National Center for Atmospheric Research, Boulder, CO (United States)
  4. Laboratoire de Meteorologie Dynamique, Paris (France)
  5. NOAA Earth System Research Lab. and Univ. of Colorado, Boulder, CO (United States)
  6. Inst. of Advanced Sustainability Studies, Potsdam (Germany)
  7. Met Office Hadley Centre, Exeter (United Kingdom)
  8. Climate Inst., Washington, DC (United States)
  9. Univ. of Oslo (Norway)
  10. Beijing Normal Univ., Beijing (China)
  11. Max Planck Inst. for Meterology, Hamburg (Germany)
  12. Univ. of New South Wales, Sydney, NSW (Australia)
  13. Center for International Climate and Environmental Research, Oslo (Norway)
  14. Yale Univ., New Haven, CT (United States)
  15. Japan Agency for Marine-Earth Science and Technology, Yokohama (Japan)
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1228343
Report Number(s):
PNNL-SA-109342
Journal ID: ISSN 1991-9603; 400403809
Grant/Contract Number:  
AC05-76RL01830
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Geoscientific Model Development (Online)
Additional Journal Information:
Journal Volume: 8; Journal Issue: 10; Journal ID: ISSN 1991-9603
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES

Citation Formats

Kravitz, Benjamin S., Robock, Alan, Tilmes, S., Boucher, Olivier, English, J. M., Irvine, Peter J., Jones, Andrew, Lawrence, M. G., MacCracken, Michael C., Muri, Helene O., Moore, John C., Niemeier, Ulrike, Phipps, Steven J., Sillmann, Jana, Storelvmo, Trude, Wang, Hailong, and Watanabe, Shingo. The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): Simulation design and preliminary results. United States: N. p., 2015. Web. doi:10.5194/gmd-8-3379-2015.
Kravitz, Benjamin S., Robock, Alan, Tilmes, S., Boucher, Olivier, English, J. M., Irvine, Peter J., Jones, Andrew, Lawrence, M. G., MacCracken, Michael C., Muri, Helene O., Moore, John C., Niemeier, Ulrike, Phipps, Steven J., Sillmann, Jana, Storelvmo, Trude, Wang, Hailong, & Watanabe, Shingo. The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): Simulation design and preliminary results. United States. https://doi.org/10.5194/gmd-8-3379-2015
Kravitz, Benjamin S., Robock, Alan, Tilmes, S., Boucher, Olivier, English, J. M., Irvine, Peter J., Jones, Andrew, Lawrence, M. G., MacCracken, Michael C., Muri, Helene O., Moore, John C., Niemeier, Ulrike, Phipps, Steven J., Sillmann, Jana, Storelvmo, Trude, Wang, Hailong, and Watanabe, Shingo. 2015. "The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): Simulation design and preliminary results". United States. https://doi.org/10.5194/gmd-8-3379-2015. https://www.osti.gov/servlets/purl/1228343.
@article{osti_1228343,
title = {The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): Simulation design and preliminary results},
author = {Kravitz, Benjamin S. and Robock, Alan and Tilmes, S. and Boucher, Olivier and English, J. M. and Irvine, Peter J. and Jones, Andrew and Lawrence, M. G. and MacCracken, Michael C. and Muri, Helene O. and Moore, John C. and Niemeier, Ulrike and Phipps, Steven J. and Sillmann, Jana and Storelvmo, Trude and Wang, Hailong and Watanabe, Shingo},
abstractNote = {We present a suite of new climate model experiment designs for the Geoengineering Model Intercomparison Project (GeoMIP). This set of experiments, named GeoMIP6 (to be consistent with the Coupled Model Intercomparison Project Phase 6), builds on the previous GeoMIP project simulations, and has been expanded to address several further important topics, including key uncertainties in extreme events, the use of geoengineering as part of a portfolio of responses to climate change, and the relatively new idea of cirrus cloud thinning to allow more long wave radiation to escape to space. We discuss experiment designs, as well as the rationale for those designs, showing preliminary results from individual models when available. We also introduce a new feature, called the GeoMIP Testbed, which provides a platform for simulations that will be performed with a few models and subsequently assessed to determine whether the proposed experiment designs will be adopted as core (Tier 1) GeoMIP experiments. In conclusion, this is meant to encourage various stakeholders to propose new targeted experiments that address their key open science questions, with the goal of making GeoMIP more relevant to a broader set of communities.},
doi = {10.5194/gmd-8-3379-2015},
url = {https://www.osti.gov/biblio/1228343}, journal = {Geoscientific Model Development (Online)},
issn = {1991-9603},
number = 10,
volume = 8,
place = {United States},
year = {Tue Oct 27 00:00:00 EDT 2015},
month = {Tue Oct 27 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 115 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Sea-salt injections into the low-latitude marine boundary layer: The transient response in three Earth system models: SEA-SALT CLIMATE ENGINEERING IN THREE ESMS
journal, November 2013


Parameterization of cirrus cloud formation in large-scale models: Homogeneous nucleation
journal, January 2008


Arctic cryosphere response in the Geoengineering Model Intercomparison Project G3 and G4 scenarios: ARCTIC RESPONSE TO G3 AND G4 IN GEOMIP
journal, February 2014


Reversibility in an Earth System model in response to CO 2 concentration changes
journal, May 2012


Clouds and Aerosols
book, June 2014


A multimodel examination of climate extremes in an idealized geoengineering experiment
journal, April 2014


Preferential cooling of hot extremes from cropland albedo management
journal, June 2014


Can crop albedo be increased through the modification of leaf trichomes, and could this cool regional climate?: A letter
journal, November 2010


Microphysical simulations of sulfur burdens from stratospheric sulfur geoengineering
journal, January 2012


Climate–Carbon Cycle Feedback Analysis: Results from the C 4 MIP Model Intercomparison
journal, July 2006


Stratospheric geoengineering impacts on El Niño/Southern Oscillation
journal, January 2015


Global Indirect Radiative Forcing Caused by Aerosols
book, January 2009


The impact of geoengineering aerosols on stratospheric temperature and ozone
journal, October 2009


Forcings and feedbacks in the GeoMIP ensemble for a reduction in solar irradiance and increase in CO 2 : GeoMIP: Radiative forcings and feedbacks
journal, May 2014


The Community Earth System Model: A Framework for Collaborative Research
journal, September 2013


Climatic effects of surface albedo geoengineering: SURFACE ALBEDO GEOENGINEERING
journal, December 2011


The Geoengineering Model Intercomparison Project (GeoMIP): a control perspective
journal, June 2012


Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario
journal, February 2014


Aerosol microphysics modules in the framework of the ECHAM5 climate model – intercomparison under stratospheric conditions
journal, January 2009


The Geoengineering Model Intercomparison Project (GeoMIP)
journal, January 2011


An energetic perspective on hydrological cycle changes in the Geoengineering Model Intercomparison Project: GeoMIP ENERGETIC PERSPECTIVE
journal, December 2013


Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP): GEOMIP MODEL RESPONSE
journal, August 2013


Future Directions in Simulating Solar Geoengineering
journal, August 2014


Explicit feedback and the management of uncertainty in meeting climate objectives with solar geoengineering
journal, April 2014


The radiative forcing potential of different climate geoengineering options
journal, January 2009


Sensitivity studies of dust ice nuclei effect on cirrus clouds with the Community Atmosphere Model CAM5
journal, January 2012


Biogeophysical impacts of cropland management changes on climate
journal, January 2006


Dynamics of the coupled human–climate system resulting from closed-loop control of solar geoengineering
journal, June 2013


On solar geoengineering and climate uncertainty
journal, September 2015


Climate Model Intercomparisons: Preparing for the Next Phase
journal, March 2014


Modification of cirrus clouds to reduce global warming
journal, October 2009


What is the limit of climate engineering by stratospheric injection of SO 2 ?
journal, January 2015


The dependency of geoengineered sulfate aerosol on the emission strategy
journal, October 2010


A new scenario framework for climate change research: the concept of shared socioeconomic pathways
journal, October 2013


A model of the quasi-biennial oscillation on an equatorial beta-plane
journal, April 1982


Tackling Regional Climate Change By Leaf Albedo Bio-geoengineering
journal, January 2009


Stratospheric Aerosol Geoengineering
book, May 2014


Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive: GISS MODEL-E2 CMIP5 SIMULATIONS
journal, March 2014


Regional climate change mitigation with crops: context and assessment
journal, September 2012

  • Singarayer, J. S.; Davies-Barnard, T.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 370, Issue 1974
  • https://doi.org/10.1098/rsta.2012.0010

Assessing the benefits of crop albedo bio-geoengineering
journal, October 2009


The aerosol-climate model ECHAM5-HAM
journal, January 2005


Cirrus cloud seeding: a climate engineering mechanism with reduced side effects?
journal, December 2014

  • Storelvmo, T.; Boos, W. R.; Herger, N.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 372, Issue 2031
  • https://doi.org/10.1098/rsta.2014.0116

The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP): THE HYDROLOGIC IMPACT OF GEOENGINEERING
journal, October 2013


A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models
journal, January 2015


Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM)
journal, January 2013


A Combined Mitigation/Geoengineering Approach to Climate Stabilization
journal, October 2006


Solar radiation management impacts on agriculture in China: A case study in the Geoengineering Model Intercomparison Project (GeoMIP)
journal, July 2014


Impacts, effectiveness and regional inequalities of the GeoMIP G1 to G4 solar radiation management scenarios
journal, June 2015


Cirrus cloud susceptibility to the injection of ice nuclei in the upper troposphere
journal, March 2014


The climatic effects of modifying cirrus clouds in a climate engineering framework
journal, April 2014


The hydrological sensitivity to global warming and solar geoengineering derived from thermodynamic constraints
journal, January 2015


A comparison of temperature and precipitation responses to different Earth radiation management geoengineering schemes
journal, September 2015


Regional climate changes as simulated in time-slice experiments
journal, December 1995


Can crop albedo be increased through the modification of leaf trichomes, and could this cool regional climate?: A letter
journal, November 2010


Stratospheric Aerosol Geoengineering
book, May 2014


Modification of cirrus clouds to reduce global warming
journal, October 2009


Assessing the benefits of crop albedo bio-geoengineering
journal, October 2009


Reversibility in an Earth System model in response to CO 2 concentration changes
journal, May 2012


Cirrus cloud seeding: a climate engineering mechanism with reduced side effects?
journal, December 2014

  • Storelvmo, T.; Boos, W. R.; Herger, N.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 372, Issue 2031
  • https://doi.org/10.1098/rsta.2014.0116

Works referencing / citing this record:

Quantifying and Comparing Effects of Climate Engineering Methods on the Earth System
journal, February 2018


Evoking equity as a rationale for solar geoengineering research? Scrutinizing emerging expert visions of equity
journal, September 2017


How geoengineering scenarios frame assumptions and create expectations
journal, January 2018


Tools of the trade: practices and politics of researching the future in climate engineering
journal, May 2019


The Effects of Solar Radiation Management on the Carbon Cycle
journal, February 2018


Impacts of Sulfate Geoengineering on Rice Yield in China: Results From a Multimodel Ensemble
journal, April 2019


Land radiative management as contributor to regional-scale climate adaptation and mitigation
journal, January 2018


Coastal sea level rise with warming above 2 °C
journal, November 2016


A round Earth for climate models
journal, September 2019


Flood damage costs under the sea level rise with warming of 1.5 °C and 2 °C
journal, July 2018


The G4Foam Experiment: global climate impacts of regional ocean albedo modification
journal, January 2017


Extreme temperature and precipitation response to solar dimming and stratospheric aerosol geoengineering
journal, January 2018


Geoengineering as a design problem
journal, January 2015


The Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP): motivation and experimental design
journal, January 2018


Machine dependence and reproducibility for coupled climate simulations: the HadGEM3-GC3.1 CMIP Preindustrial simulation
journal, January 2020


The CMIP6 Data Request (DREQ, version 01.00.31)
journal, January 2020


The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP): experimental design and forcing input data for CMIP6
journal, January 2016


Stopping the flood: could we use targeted geoengineering to mitigate sea level rise?
journal, January 2018


Wetter Global Arid Regions Driven by Volcanic Eruptions
journal, December 2019


The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6
text, January 2016


Changes in clouds and thermodynamics under solar geoengineering and implications for required solar reduction
journal, January 2018


Geoengineering as a design problem
journal, January 2016


Stopping the Flood: Could We Use Targeted Geoengineering to Mitigate Sea Level Rise?
journal, May 2018


The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6
journal, January 2016


Extreme temperature and precipitation response to solar dimming and stratospheric aerosol geoengineering
posted_content, March 2018


A round Earth for climate models
journal, September 2019


A statistical examination of the effects of stratospheric sulfate geoengineering on tropical storm genesis
journal, January 2018


Comparing different generations of idealized solar geoengineering simulations in the Geoengineering Model Intercomparison Project (GeoMIP)
journal, January 2021


Reaching 1.5 and 2.0 °C global surface temperature targets using stratospheric aerosol geoengineering
journal, January 2020


The Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP): motivation and experimental design
journal, January 2018


Machine dependence and reproducibility for coupled climate simulations: the HadGEM3-GC3.1 CMIP Preindustrial simulation
journal, January 2020


The CMIP6 Data Request (DREQ, version 01.00.31)
journal, January 2020


The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP): experimental design and forcing input data for CMIP6
journal, January 2016


Stopping the flood: could we use targeted geoengineering to mitigate sea level rise?
journal, January 2018