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3.  Executive Summary 
 
This project addressed the challenge of providing weather and climate information to support the 
operation, management and planning for wind-energy systems. The need for forecast information is 
extending to longer projection windows with increasing penetration of wind power into the grid and also 
with diminishing reserve margins to meet peak loads during significant weather events. Maintenance 
planning and natural gas trading is being influenced increasingly by anticipation of wind generation on 
timescales of weeks to months.  Future scenarios on decadal time scales are needed to support assessment 
of wind farm siting, government planning, long-term wind purchase agreements and the regulatory 
environment. The challenge of making wind forecasts on these longer time scales is associated with a 
wide range of uncertainties in general circulation and regional climate models that make them unsuitable 
for direct use in the design and planning of wind-energy systems. To address this challenge, CFAN has 
developed a hybrid statistical/dynamical forecasting scheme for delivering probabilistic forecasts on time 
scales from one day to seven months using what is arguably the best forecasting system in the world 
(European Centre for Medium Range Weather Forecasting, ECMWF). The project also provided a 
framework to assess future wind power through developing scenarios of interannual to decadal climate 
variability and change. The Phase II research has successfully developed an operational wind power 
forecasting system for the U.S., which is being extended to Europe and possibly Asia.  
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4.   Comparison of actual accomplishments with project goals and objectives  
 

The Phase II research project addressed the challenge of providing weather and climate forecast 
information to support the operation, management and planning for wind-energy systems. We organized 
the technical objectives into four thrusts, with each thrust having specific task areas. The actual project 
work proceeded in a manner to optimize leveraging by other related projects and in response to specific 
interests expressed among potential partners. The main commercial interest that we have identified for 
our products is regional or grid-scale forecasts on timescales of 7 to 32 days.   
 
Thrust I. Weather and climate dynamics of wind power variability  
 
We have completed all of the tasks under this thrust. However, a major challenge has been to identify 
suitable data sets for the project; the data sets proposed in the original proposal proved not to be useful 
beyond the lifespan of the project and commercial providers of hub wind data have all gone out of 
business. We obtained a limited amount of proprietary hub height wind data, but for the most part relied 
on conventional meteorological data sets. The interest of our potential clients focused our data analysis on 
the diurnal cycle and ramp and shut down events. Our primary accomplishment for the climate dynamics 
analysis was to develop a climatology back to 1950 consisting of the daily values of the weather regime 
teleconnection indices.   
 
Thrust II. Prediction of regional wind power  
     
Based upon interest from our potential clients, this thrust has been the major focus of our Phase II efforts.  
We have met all of the objectives and completed all tasks in this thrust. The greatest challenge in this 
thrust was to devise strategies for model calibration, given the paucity of in situ wind data available in 
real time. We have developed and implemented a model calibration strategy that uses the model 
reforecast runs, recent model verification statistics against the models own operational analysis, and 
regional power generation statistics. This calibration strategy was leveraged by our efforts to improve our 
operational energy demand (temperature) forecast products, which has much better calibration data. 
 
Thrust III. Interannual and decadal projections of the wind power environment  
 
This thrust has not met all of the original project objectives, owing to our assessment of the lack of 
regional predictability of the CMIP5 models. Further, we have not been able to identify any significant 
commercial interest in extended range projections. Our team published the first comprehensive 
assessment of the CMIP5 10 year decadal simulations, which show very limited utility at the regional 
scale. Our seminal research into multi-decadal climate variability has provided a new framework for 
generating observation-based scenarios of decadal variability (published in Climate Dynamics). Curry 
convened a UK-US Workshop on Climate Science Needed to Support Robust Adaptation Decisions that 
focused specifically on developing regional climate scenarios for decadal time scales. 
 
Thrust IV. Decision support tool 
 
The web-based decision support tool development met all the original project objectives and is fully 
operational for daily to seasonal forecasts, providing forecast information for each of the wind power 
generating regions in the U.S.  Feedback from our beta-users has provided the basis for improving the 
utility of the dashboard throughout the span of the project. 
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5.  Summary of project activities 
 
The Phase II work plan was designed around the development of two marketable solutions to address the 
challenge of providing extended range weather and climate forecast products to support decision making 
associated with wind power: 

i. A real-time, operational forecast service provided on a web-based platform on daily, subseasonal 
and seasonal time scales.  

ii. Scenario analysis of the regional future wind power environment on interannual to decadal scales.   

The Phase II research was organized into four interrelated thrusts.  Our accomplishments and assessments 
for each of these thrusts are described below.  
 
Thrust I. Weather and climate dynamics of wind power  
 
The overall objective of this thrust was to prepare a dynamical climatology of variables that characterize 
the regional wind power environment and its variability in the context of the annual cycle and pervasive 
weather regimes. A key element of the dynamical climatology analysis is a weather typing approach that 
is based on an analysis of wind power statistics associated with specific weather regimes and 
teleconnection patterns.   
 

1. Assemble and evaluate the relevant data sets  
 
Hub height wind data 
 
During Phase I, a cooperative arrangement was reached with AWS Truepower that included provision of 
wind data. However, much of the data they have access to is constrained by agreements with individual 
providers, although we did make considerable use of the sodar wind data from the ERCOT region that 
they provided us.  
 
A survey of commercial wind data providers was performed in preparation of Phase II efforts. We 
selected Onsemble, which had the largest independent network of real-time wind speed and direction 
measurements. Their network consists of over 300 hub-height sensors in the 8 major US electrical 
markets. The data acquired in key locations across the ERCOT region spans both the historic time frame 
from 2012 forward through the future facing dates for the remainder of 2014. Unfortunately, Onsemble 
has now gone out of business, as have the other wind data providers that we had previously identified. 
 
In addition to the ERCOT data, an agreement has been entered with Southern Company to receive hub 
height data from their wind farm locations in the Southern Great Plains.  We are receiving near real time 
data and building a historical data set that will provide a seasonal profile for their specific location to be 
used specifically in the statistical correction techniques covered further in Thrust II. 
 
During the period from 2008–2013, many government and privately funded projects were undertaken to 
build valid hub height data sets across the US. At the beginning of Phase II it seemed as if this was 
actually a growing market segment. However, most government-funded projects have ended and the 
private market has all but disappeared. The lack of publicly available or commercial hub height wind data 
has been a significant impediment to the project and its long-term prospects, particularly in terms of 
demonstrating value to potential customers of our short-range forecasts. 
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Specifically for ERCOT we have obtained the following power generation data: 
• Historical wind farm production data in the ERCOT region from 2004–2012 from NREL project 

at 1 minute intervals  (data obtained from Xcel) 
• ERCOT system reports from 2007–2013 on total production and percentage of production 

generated by wind with intervals varying from 15 minutes to 1 hour (available as a registered user 
of ERCOT’s Planning and Operations website) 

• Current ERCOT wind production for the entire region and two core sub-regions at 1 hour 
intervals (available to US users directly from ERCOT website) 

 
While consistent regional wind farm data is not readily available across all other key regions of the U.S., 
comparable generation and production data at regional levels can be found in many cases. We completed 
a survey with respect to quality of data from other Federal Energy Regulatory Commission (FERC) 
regions such as the Southwest Power Pool (SPP) and the Midwest (MISO) in addition to providers in key 
wind power regions that are not part of FERC such as the Bonneville Power Authority (BPA). Evaluation 
was made with respect to items such as: 

• Wind based power production at different spatial and temporal resolutions 
• Wind production expansion plans 
• Wind power excess production capacity exchange with other regions  
• Wind production as part of total power and renewable production mixes 
• Wind production curtailment orders 

While each FERC region has different degrees of readily available data, most have reasonably accessible 
data that could be utilized in different aspects of our solutions from ranging from forecast enhancement to 
verification. Additionally, market study efforts during year two led to discovery of contacts within some 
of these organizations that showed interest in our solutions. This has the potential to lead to strategic 
partnerships with these organizations as we move beyond Phase II. 
 
Wind farm data 
 
We completed a survey of wind turbines in the ERCOT region, using information obtained from the 
Public Utility Commission of Texas. A list of wind energy plants in Texas identifies a total generation 
capacity for Texas of 11,272 MW as of 23 January 2013. The information collected for each wind farm 
includes location, turbine types and hub height, and number of turbines; a summary of this information 
was provided in the Phase II Year 1 Report.  For each turbine type, we obtained the rated capacity and 
power curve. 

 
During the course of Phase II, the USGS released a major study that attempted to catalog all US onshore 
turbines.  This study - http://pubs.usgs.gov/ds/817/ and its corresponding web tool - have provided an 
exceptional resource in efforts to expand our data availability of this type outside ERCOT. We undertook 
a study to compare existing ERCOT data with the new USGS data for the same region. The resulting 
correlations were very high and provide confidence that we can keep up to date wind farm/turbine data 
via this tool while it remains consistently updated.   
 
Reanalyses   
 
For forecast verification and calibration and also climate dynamics studies, the project requires hub height 
wind data. Because of the limited availability of high quality hub height wind data, both in space and 
time, we have investigated the use of analysis and reanalysis data sets from Numerical Weather Prediction 
(NWP) models. The following analysis and reanalysis products have been assessed:  
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• North American Regional Reanalysis (NARR): provides meteorological data every 3 hours at 
every 25 hPa on a ~32 km resolution, since 1979.  

• MERRA-Land (NASA): provides meteorological data (including 50 m vector winds) every hour 
on a resolution of 2/3o longitude by 1/2o latitude, since 1979. 

• ECMWF operational analyses: provides 100 m vector winds on a 12.5 km resolution, since 2010. 

• ECMWF Interim Reanalysis:  100 km horizontal resolution since 1989. 

• CFSR reanalysis (NOAA):  0.5o resolution since 1979. 
 
For forecast calibration, 20 years of historical data are required. Higher horizontal resolution is desirable. 
During Phase I, we used the NARR. We evaluated the (calculated) hub height winds from the 
analyses/reanalyses against available sodar data in the ERCOT region. While the ECMWF operational 
analysis verifies very well, we also needed to select one of the reanalysis products that goes back to 1979. 
Based upon on our evaluation using sodar wind profile observations and wind farm power generation 
data, we selected MERRA as the basis for forecast calibration and climate dynamics studies. 
 
Figures I.1, I.2 and Table I.1 compare three different sodar sites with the nearest MERRA grid cell. It is 
seen that the MERRA provides a relatively good characterization of the sodar measurements, with 
differences attributed to local topography at the sodar sites and the comparison of a grid-scale value to a 
point measurement. 
 

 
Figure I.1.  Comparison of 50 m winds from three sodar sites with the nearest MERRA grid cell for the 
period 9-23 September 2012. 
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Figure I.2.  Comparison of 50 m winds from three sodar sites with the nearest MERRA grid cell for the 
period 7/21/2011 – 8/31/2012. 

 
Table I.1.  Correlation coefficients between 50 m winds for 3 sodar sites and the local MERRA grid cell for 
7/21/11 – 8/31/12. 

 

A more relevant assessment of the utility of the MERRA reanalysis is obtained from comparison with 
observed wind power generated by a wind farm. Figure I.3 shows 6-hourly farm-level verification of 
calculated wind power using MERRA for Jan 2012 for the Trent Mesa Wind Project (100.199° W, 
32.429° N), located between Abilene and Sweetwater, Texas, in the West Weather Zone of ERCOT. This 
wind farm uses 100 GE 1.5 MW turbines. Figure I.3 indicates that there is no overall bias in the 
calculated wind power. Some of the magnitude errors are likely associated with differences in spatial 
resolution; this verification site represents an area of ~96 km2 (16x6 km) compared to the MERRA 
resolution of ~3350 km2 (50x67 km). Figure I.4 shows the verification for all of 2012. 
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Figure I.3.  Comparison of ERCOT power data (normalized to 1.5 MW) from the Trent Mesa Wind Project 
to power data reconstructed from the MERRA reanalysis dataset in January 2012. Left: ERCOT 1 minute 
interval data temporally aggregated to 6 hour intervals versus MERRA reconstruction. Right: Differential. 

 
 

 
 
Figure I.4. Comparison of ERCOT power data from the Trent Mesa Wind Project to power data 
reconstructed from the MERRA reanalysis dataset in 2012. Left: ERCOT 1 minute interval data temporally 
aggregated to 24 hour intervals versus MERRA reconstruction. Right: Differential. 
 

 
2. Relate decision relevant variables to the meteorological variables 

 
Since most of these are straightforward, the discussion here focuses on power ramps and upscaling for 
regional power generation. 
 
Regional upscaling. During Phase II, we developed a power curve for each model grid cell that is 
weighted by the number of turbines of each type.   The wind power in each model grid cell is then 
determined from the predicted wind speed, the number of turbines in each cell, and the grid power curve. 
Power is then output as the ratio of the forecasted power to the rated power capacity, for each wind farm, 
grid cell or region. This upscaling strategy is now operational in our wind power forecasts. 
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Power ramps.  Because of the large diurnal ramp different regions, the statistical post processing filters 
out the diurnal cycle in wind power production. The diurnal cycle is filtered out using the time series of 
wind power for the previous 14 days and three predictors [mean, sin(2πt), cos(2πt)]. In context of the 
temporal resolution of the ECMWF forecasts, we define a ramp to be a change in the regionally averaged 
power output that is at least 30% of the rated power output and occurs within a time span of 6 hours or 
less, which insures that power changes are sufficiently rapid and that sufficient ramps are identified for 
analysis.  The relevant characteristics of a power ramp are its magnitude, direction (up or down), timing 
and duration.  
 

3. Wind dynamic climatology  

We developed a dynamic climatology of weather regimes as a function of month (annual cycle) and 
teleconnection patterns to determine any changes in the statistical distribution of the 50 m wind speed 
associated with these regimes. This analysis provides a key source of information regarding the 
predictability of wind power in terms of region, season, and weather regime, and also provides a 
statistical basis for use in the decadal scenarios. The term weather regime typically connects the large-
scale atmospheric recurring patterns such as the northern hemisphere teleconnections to planetary and 
synoptic-scale atmospheric dynamics. In general, weather regimes persist for several days to a week, and 
rapid transitions may occur between them. 
 
The underlying methodology for determining weather regimes for this study uses a k-means cluster 
analysis of 500 hPa geopotential height anomalies from the ECMWF over the North American for each of 
the 4 seasons. Several of the cluster patterns resemble combinations between the Arctic Oscillation (AO), 
Pacific North American pattern (PNA) and North Atlantic Oscillation (NAO) regimes. The next step was 
to composite the near surface wind speed (50-m) from the MERRA reanalysis for each cluster to assess 
the impact of a particular large-scale regime onto the hub-height wind speed over South Central US.  
 
The cluster analysis was performed using daily geopotential data for the period 1979–2012 for each of the 
4 seasons. The domain for the cluster analysis was selected as 20N–87.5N; 157.5E–360E, to cover North 
America and the surrounding ocean basins. The 500 hPa geopotential height anomalies were calculated 
with respect to the daily 1979–2012 long-term climatology. The daily data was smoothed with a seven-
day running mean filter to ensure the clustering filters out some of the high frequency signal, and focuses 
on more robust lower frequency features. A k-means cluster analysis using Euclidean distance was used 
to identify commonly occurring patterns of 500 hPa geopotential height. The clustering was conducted 
using the EOF sub-space. The first 10 EOFs were retained as they explain between 81% and 65% of the 
variance, depending on the season. Note that selecting more modes does not alter the results significantly. 
The number of clusters was selected using the average silhouette of the data, and based on comparison to 
previous published studies.  Seven clusters were specified for each of all 4 seasons. Results show the 
geopotential cluster composites computed from the low-pass filtered geopotential height anomalies by 
averaging all the instances associated with each cluster. Similar composites were conducted for the daily 
low-pass filtered 50 m wind speed and the AO, PNA and NAO teleconnections.   

Figure I.5 a-d provide analyses for each of the 4 seasons of the most significant clusters.  For each season, 
the 2 or 3 dominant clusters are shown, with the geopotential pattern for North America and wind 
anomalies for the ERCOT region. The scatterplots are interpreted as follows, using DJF as an example. 
The figure NAO vs. AO provides the average NAO and AO magnitudes of all days corresponding to each 
cluster. For example, Cluster 7 (C7 - in red) is associated with strong negative AO (-2.7) and strong 
negative NAO (-0.75). In contrast cluster 6 (C6) - orange is associated with weak positive AO (0.2) and 
strong positive NAO (0.2). It appears that the greatest influence on ERCOT wind speeds is represented by 
medium to strong PNA patterns in association with weak AO. In contrast, the NAO or strong AO do not 
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seem to influence the ERCOT winds in a consistent manner. In general, we see negative PNA and a weak 
positive AO is associated with strong winds over ERCOT region, and positive PNA is associated with 
weaker than normal ERCOT winds. 
 

 
Figure I.5 a): Selected k-means composite clusters (6 and 1) patterns of 500-hPa geopotential height 
anomalies (m) over the N. Am. As well as 50-m wind speed (m/s) over the south central US encompassing 
the ERCOT region and composite mean AO, NAO and PNA indices of the all days included in each of the 
seven clusters (bottom panels 1 through 3 as labeled). The clusters were computed for the Northern 
Hemisphere winter season. 
 

 

Figure I.5 b): Same as a) but for the MAM period, with the top panels depicting clusters 7 and 4. 
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Figure I.5 c): Same as b) but for the June through August period.  Clusters 2, 3 and 6 were included. 

 

 
 
Figure I.5 d): Same as c) but for the September through November period.  Clusters 1, 3 and 7 were 
included. 
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Consistent with previous analyses based on near-surface observations or radiosonde data, there are strong 
teleconnections between the leading modes of large-scale climate variability and both near-surface and 
midtropospheric wind speeds over the contiguous US. Two recently published papers are also significant 
in this regard. Pryor and Ledolter (2010) and Schoof and Pryor (2014) examined the relationship between 
the annual 90th percentile wind speeds at multiple levels in the lower troposphere and NAO, PNA, and 
ENSO and found that regionally averaged wind speeds exhibited significant differences with the phase of 
at least one mode in all regions of the contiguous US. Identification of strong statistical relationships 
between near-surface and lower troposphere wind speeds and large-scale modes of climate variability 
suggests that low frequency variability associated with these climate modes could be used to estimate low 
frequency wind variability using large-scale circulation features simulated by climate models.  
 
Thrust II. Prediction of regional wind power  
 
For predictions on timescales from days to seasons, CFAN’s operational wind power forecasts are based 
on the European Centre for Medium Range Weather Forecasting (ECWMF) ensemble weather forecast 
system, including the following products: 

• Deterministic atmospheric model: 1-10 days at 0.125o x 0.125o horizontal resolution, available 
twice daily at 3-hour intervals to 144 hours, and at 6-hour intervals at beyond 144 hours.  

• Atmospheric Ensemble Prediction System: 51 ensemble members, 1-15 days at 0.25o x 0.25o 
resolution to 10 days and 0.5o x 0.5o resolution beyond 10 days. Available twice daily at 6-hour 
intervals.  

• Monthly forecasting system: 51 ensemble members, 1-32 days at 0.5o x 0.5o resolution. Output 
variables include wind velocities at 10 m, 1000 hPa and 925hPa, available twice weekly at 6-hour 
intervals.   

• Seasonal forecasting system: 41 ensemble members, 1-7 months at 1.5o x 1.5o resolution.  Output 
variables include 10 m wind velocities, available once per month at 6-hour intervals.  

 
1. Produce probabilistic forecasts  

CFAN is producing probabilistic forecasts for ERCOT (Texas), Southern Plains, Northern Plains, 
Midwest and West Coast (Northwest and California) regions. We are also producing operational forecasts 
of wind power and temperature anomalies for the continental U.S. and offshore regions. A large-scale 
ramp forecast product is operational for ERCOT.  Monthly wind anomalies out to 7 months are produced 
for the continental U.S. and Europe. Weather regime forecasts are operational, for 1-15 days, 15-32 days, 
and out to 7 months. The login information for DOE users is as follows: 
 
<< Confidential information  
 Site:  http://cfan.eas.gatech.edu/BETA/wd.php  
 User:  DOE 
 Pass:  Phase!!2015 
ends here >> 
 
Operational environment 
 
During 2013, CFAN made a major shift in its computing environment that was designed to make it more 
robust and geared for true operations. Despite the bandwidth benefit of being located historically in 
Georgia Tech facilities, the technical staff was geared only for traditional work-week support.  By 
entering into a long-term strategic agreement with The Weather Companies, we were able to make a 
major leap forward in our operational environment. Our production environment server gained a 16-fold 
increase in processing capability and a doubling in our development environment, which can also serve as 
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a production backup. This redundancy has also been added to web distribution environment as well. This 
computing environment is supported by a 24x7 operational staff that serves a large global user 
community.  
 
Regional, daily wind power forecasts 
 
Probabilistic wind and power forecasts out to 15 days are now available for the following regions: 

• ERCOT 
• Northern Great Plains  
• Southern Great Plains 
• Midwest  
• Northwest 
• California 

 
Each of these locales is divided into zones based upon concentrations of wind farms and meteorological 
regimes (Figure II.1 shows the zones for each of these regions).  

 
 
Figure II.1.  Forecast region / zone maps for the currently forecasted areas - ERCOT (upper left), Northern 
Plains (upper right), California (middle left), Southern Plains (middle right), Northwest (lower left), 
Midwest (lower right).   
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Figure II.2 is an example of 15-day wind power forecasts (initialized 1/26/2014) for individual zones in 3 
separate regions along with forecasts (initialized 4/30/2015) for zones from the latest regions added to the 
operational product in year 2 of the project. The forecasts display outputs derived from both the ECMWF 
high resolution deterministic as well as ensemble based forecasting systems. 

 

 
                                       

Figure II.2.  15 day forecasts initialized 1/26/14 for:  West Minnesota (upper left); west Oklahoma (upper 
right); and north Texas (middle left).  15 day forecasts initialized 4/30/15 for:  Western New York (middle 
right); Southwest Idaho (lower left); and Central California (lower right).  

 
 
 
 



15 
 

U.S. wind power anomaly and population weighted energy demand products - daily 
 
Figure II.3 shows an example of a wind power forecasts anomaly at 96 hours after the initiated forecast 
date of 2/15/15.  The forecast covers a 6 hour period and in this case reflects the contrast of synoptic scale 
features with a large frontal boundary moving across the eastern US.  
    

 
 
Figure II.3.  Example of the operational wind power anomalies generated at 6-hr resolution through 240 
hrs.  Forecast is initialized 2/15/15 and the time horizon is at 96 hours. The region outlined in black denotes 
ERCOT, green indicates the Southern Plains, and purple denotes the Northern Plains.  
 

The anomaly forecasts use the ECMWF ensemble predictions of the 100 m total wind field and calculate 
the wind power using the GE 1.5 S power curve for each grid point location. The calculation is completed 
at each grid point and for each ensemble separately before calculating the mean ensemble power.  The 
grid point wind power projections are calibrated using the ECMWF hindcasts for the 100 m total wind. 
The climatology is determined by averaging the last 20 years and 5 ensemble members (total sample size: 
100 members).  Finally, the wind power anomalies are determined by removing the climatology from the 
ECMWF ensembles. The anomalies are then scaled by 1.5*10-4 to derive the probability (in %) for each 
grid point. 
 
Analogously, Figure II.4 shows an operational forecast of population weighted energy demand based on 
temperature anomalies. 
 

 
Figure II.4.  Example of the population-weighted temperature anomalies generated at 6-hr resolution 
through 240 hrs.  The forecast is initialized 2/15/15 and reflects the forecast at 96 hours.  
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The population data set used is from the 2010 Census Data. Gridded population estimates valid for 2010 
were obtained from Colombia University’s Gridded Population of the World: Future Estimates. This 
population dataset contains a low-resolution version of the UN-adjusted population count grids in ASCII 
format. The raster data are at 0.25 degrees (15 arc-minutes) resolution for the continental U.S. 
 
Using the ECMWF ensembles and the 2m surface temperature along with the ECMWF hindcasts, the 
surface temperature anomaly per ensemble is determined. Next, the temperature anomaly for each 
ensemble member is then scaled by population. The scaling occurs by grid point in which for each grid 
point the locus of points that fall within 75 km of a grid point are identified. Then each grid point is 
weighted by the population of the grid point normalized by the total population of all grid points that fall 
within this radii, and the results are aggregated to determine the final anomaly. The procedure acts as a 
smoother to the spatial anomaly fields but also tends to amplify the raw temperature anomalies especially 
in regions where the anomalies occur in regions of high population density. 
 
The temperature-based demand forecasts are often used as a primary indicator of the demand side need 
for power generation. When used in the conjunction with the wind anomaly forecast, a user can gain a 
better understanding of where wind power will or could fit into the overall power generation mix at 
forecast intervals over the next 10 days. 
 
ERCOT Wind Ramp Outlooks - daily 
 
Figure II.5 is an example of a wind ramp risk outlook for ERCOT Zone 7. These high resolution point 
forecasts are an example of extreme event forecasts. The forecasts highlight exposure to pronounced 
anomalies expected at windfarm level resolution. 

 

 
 
Figure II.5.  Ramp risk forecasts initiated on 2/15/15 for the next 10 days at 30Nx101.75W.  

 
A ramp is forecast to occur when the variation is high and steep enough compared to the normal variation 
for a location.  We define the variation as 30% of the nominal wind power for a grid point. We classify 
ramps based on their support, timing, and intensity.  These forecast help both wind energy suppliers and 
users in anticipating anomalies outside what would be typically consider a normal diurnal variation 
window. 
 
Weather regime forecasts - weekly 
 
We have implemented operational probabilistic weather regime forecasts for 1-32 days using the 
ECMWF monthly forecast product. The Arctic Oscillation (AO) index is developed by projecting the 
1000 hPa daily geopotential anomalies poleward of 20°N onto the loading pattern of the AO. This pattern 
represents the leading Empirical Orthogonal Function (EOF) of the monthly mean 1000-hPa height 
anomalies poleward of 20°N. The other weather regimes loading patterns are determined by applying a 
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Rotated Principal Component Analysis (RCPA) analysis to the monthly standardized geopotential height 
anomalies at 500 hPa. This analysis yields 10 weather regimes, of which we use the following: North 
Atlantic Oscillation, East Atlantic, East Atlantic/Western Russia, Scandinavia, Polar Eurasia, West 
Pacific, East Pacific-North Pacific, Pacific North American. This method of calculating the weather 
regime indices follows closely the method used by NOAA CPC. These patterns have varying degrees of 
influence on weather behavior across the different regions of the U.S.  Typically the values help in 
diagnosing prolonged (3+ days) variances from normal that can be expected to impact a given region and 
its meteorological environment. 
 
Recent forecasts for the Arctic Oscillation (AO) and Pacific/North American pattern (PNA) are shown 
below in Figure II.6. 
 

 
 
Figure II.6.  32 Day Probabilistic forecasts of: Arctic Oscillation (AO; left) and 32 day forecast of the 
Pacific/North American pattern (PNA; right).  

 
Subseasonal and seasonal forecasts 
 
Subseasonal forecasts (out to 32 days) of wind power (% of rated limit) are provided for the ERCOT 
region (9 zones plus entire region).   
 

 
 
Figure II.7.  32 Day probabilistic outlook for Zone 7 in ERCOT. 
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Seasonal gridded forecasts of continental wind anomalies (continental U.S. and Europe) are provided out 
to 7 months for monthly averaged wind anomalies, although there is limited skill beyond one month.    
 
The example shown in Figure II.8 demonstrates high overall power availability during the forecast period.  
Yet high amounts of uncertainty exist when compared with the projections seen in figure II.6 for the 
influential teleconnection regimes. 
 

 
 

Figure II.8.  Monthly average for March showing negative wind anomalies for ERCOT and the West Coast 
while the Northern Plains and Midwest can expect enhanced wind production.  

 
A major study is being undertaken on seasonal predictability of ENSO and the SOI (Southern Oscillation 
Index), which is the principal basis for any predictability of winds beyond 45 days. Figure II.9a shows the 
long-term variability of March SOI autocorrelation for different lag months using a 15-year sliding 
window. Figure II.9b shows the same but starting in June. Together the figures show generally short-term 
persistence in the boreal spring and generally longer persistence from summer onwards. But there is also 
coherent interdecadal variability added to this seasonal behavior. For example, Figure II.9a indicates that 
there was an increase in spring persistence between 1946–1956, with the initial March persistence signal 
projectioning more like the summer. June persistence shows interannual/interdecadal variability as well 
(Fig. II.9b).  
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Figure II.9. Interannual variability of (a) March and (b) June SOI persistence for the period 1876–2014. 
Persistence is calculated as lagged autocorrelation for lag months 1 to 24. A sliding window of width 15 
years was used to compute the correlations. The x-axis marks the center of the 15-year window, while the 
y-axis represents the lagged months.   

 
Products under development 
 
While the STTR project has formally completed, based on feedback from our BETA users we continue to 
undertake enhancements to our operational suite of forecast products. 
 
We have developed the capability for providing ‘point’ forecasts of wind speed and wind power on the 
scale of an individual wind farm. Effective forecasts require a real-time stream of hub height wind 
observations (as well as detailed information about the wind turbines).  We are developing a beta version 
in conjunction with Southern Company. 
 
We are evaluating new zones for the Wind Ramp forecasts.  This high-resolution type forecast has been 
well received by a wide variety of user types; however the production cost is high.  Evaluations will be 
made on the most prominent regions in the overall US wind energy production profile.  This type of 
product could also be developed for individual wind farms as part of a suite of ‘point’ products. 
 
In addition, CFAN is in the process of developing a gridded 0.5o resolution, 100 m wind forecast product 
for the continental U.S., Europe and eastern Asia, focusing on the subseasonal time scale (3-4 weeks).  
This product is being developed to the specifications of Weather Systems International (WSI; a subsidiary 
of The Weather Companies), under CFAN’s license and product development agreement with WSI.  This 
product is targeted at energy traders and the financial sector.  It is likely this project will lead into the 
expansion of other portions of the existing suite into the European domain. 
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2. Statistical post processing and ensemble interpretation 

The most challenging and time-consuming aspect of this project has been statistical post processing, and 
we continue to evaluate and improve our techniques for statistical post processing.  
 
Regional average power production 
 
An example of the difference between the original area-averaging with the upscaling scheme is illustrated 
in Figure II.10.  Depending on the distribution of wind speeds across the domain, the new scheme may 
predict more or less power than the original scheme. 
 

 
Figure II.10:  Wind power prediction for ERCOT zone 8 initialized in 1/1/14.  Left – original area 
averaging scheme; right – new upscaling scheme. 

 

Bias and distributional correction 
 
We have implemented a new bias correction based on weighted average mean bias, which has proven to 
be superior (particularly at longer lead-times) to the existing 14-day mean bias correction.  The scheme is 
based on an adaptive (Kalman-type) algorithm to accumulate the decaying averaging bias. Basically, the 
bias bij(t) is estimated for each forecast lead time and at each grid point (i, j): 

bij(t) = fi,j(t) - oaij(t) 

where f represents quantile corrected ensemble mean the, and oa represents the operational analysis for 
that time interval. Next, the decaying average Bi,j(t) will be updated based on the  previous Bi,j(t -1) and 
current bias bi,j(t) and using a decaying average with the weight coefficient w, as follows: 

Bi,j(t) = (1 - w)*Bi,j(t -1) +w*bi,j(t) 

The corrected forecast is then represented by: 

F correctedi,j(t) = F q-to-q i,j(t) - Bi,j(t) 

The challenge is the selection of an appropriate weight (w) since w may vary regionally. 
 

Currently, the ECMWF reforecasts are much more limited as they encompass the last 20 years and only 
feature a 5-member ensemble that is available once weekly.  In May 2015, ECMWF will be making their 
reforecasts available twice weekly using an expanded ensemble size.  However, there is a growing 
concern that the ECMWF historical reforecasts are diminishing in utility owing to the growing differences 
between the model version used for initializing the reforecasts and the current operational model.   
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Hence, we are continuing to rethink our calibration scheme, to reduce dependency on the reforecasts.  In 
addition to these techniques we are also planning to evaluate approaches utilized in a recently completed 
precipitation forecast evaluation process. Here, we briefly summarize a few of the methods under 
consideration.   
 
Logistic regression and recently extended logistic regression (Wilks 2009)1 are a type of generalized 
linear model that uses a logistic function (Equation 1) to map a set of input variables, e.g., ensemble mean 
precipitation, ensemble standard deviation precipitation, total precipitable water, etc. to probability space 
(bounded between 0 and 1).   
 

𝑓(𝑥) =  
1

1 + 𝑒−𝑡
, where 𝑡 = 𝛽0 + 𝛽1𝑥𝛼 + 𝛽2𝑥𝛼 (1) 

 
Hamill et al. (2008)2 uses a one-quarter power transformation factor (α = ¼), while other analyses where 
the ensemble standard deviation is not included often set the power-transformation factor slightly larger 
(α = 1/3 or α = ½). Generally, it is thought that for more-highly skewed distributions, a smaller exponent 
power transformation is needed.  Unlike with temperature calibration where a small 30-day training set 
produces improved forecast skill, the Hamill et al. analysis clearly demonstrates the need for a large 
sample of reforecasts to improve precipitation forecast skill especially at higher precipitation thresholds 
and at longer lead times. Following this methodology we will investigate the optimal power 
transformation factors for wind speed and evaluate the use of logistic regression in adjusting the wind 
speed. 
 
Another approach for probability calibration is known as the rank analog approach (Hamill et al. 2015)3. 
This approach is currently being used experimentally by NOAA ESRL for the GEFS Reforecast v2 here: 
http://www.esrl.noaa.gov/psd/forecasts/reforecast2/ccpa/index.html. The technique utilizes the reforecasts 
to identify historical analog events relative to the current forecast to compute probabilities of exceedances 
at varying forecast lead-times.  The probabilities are then smoothed using a 2D Savitzky-Golay smoother.   
Verification of this approach clearly demonstrates improved forecast skill relative to the raw model but 
produces similar forecast gain to that seen with logistic regression and extended logistic regression.      
 

Ensemble dispersion  
 
A post-processing calibration of an under-dispersive ensemble forecast can have a negative impact on the 
forecast. It is more desirable to alleviate the under-dispersion by adding “good spread”, which is defined 
as an increase in ensemble variance that simultaneously improves statistical consistency (i.e., ensemble 
variance matches the MAE of ensemble mean), reliability, and resolution. For instance, adding noise does 
not create good spread since a decrease in resolution would result. 
 
We judged our ensembles to be under-dispersive, especially for the first few days of the forecast.  We 
improved the dispersion of our forecast ensembles by first computing an inverse normal cumulative 
distribution function (CDF) using the mean absolute error as the new sigma.  This was then used as the 

                                                
1  Wilks, D. S., 2009: Extending logistic regression to provide full probability-distribution MOS forecasts. Meteor. Appl., 16, 

361–368. 
2  Hamill, T. M., R. Hagedorn, and J. S. Whitaker, 2008: Probabilistic forecast calibration using ECMWF and GFS ensemble 

reforecasts.  Part II: precipitation.  Mon. Wea. Rev.,136, 2620-2632. 
3  Hamill, T. M., M. Scheuerer, and G. T. Bates, 2015, Analog probabilistic precipitation forecasts using GEFS Reforecasts and 

Climatology-Calibrated Precipitation, Mon. Wea. Rev., accepted. 
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basis for redistributing ensemble members at each forecast time step. 
 
To calibrate a zonal wind power forecasting scheme, historical estimates of the total wind power 
generation in each zone (Fig. II.1, top left) were first created by combining ERCOT-wide wind power 
generation data and zone-specific fuel-wide (coal, hydro, etc.) power generation data at 15 minute 
intervals. This produced zone-specific wind power data, an example of which is shown in Figure II.11 
(black time series). These observational data were interpolated to 6-hour intervals and converted to a 
percentage of rated power in order to be compared to ensemble wind power forecasts.  Due to sub-optimal 
initial perturbation-generation techniques and unattributed model errors, a common problem in 
operational probabilistic forecasting is under-dispersion of ensemble members (Wang and Bishop 2005), 
as is illustrated in Figure II.11 (left). 
 
 

 
Figure II.11.  In the left plot, the dispersion of ensembles (red time series) is insufficient to fully 
characterize the forecast uncertainty at shorter lead times. In the right plot, the forecast uncertainty is 
conditionally expanded via a lead-time dependent bias correction. The corrected forecast has greater spread 
at shorter lead times and encompasses the observation (black time series) in this example. 

Ensemble clustering 
 
When the ensembles show a wide spread, interpretation of the ensembles can be aided by clustering, 
which can increase the sharpness of the distributions and in the assessment of uncertainty. There are a 
variety of clustering methods that can be used, including self-clustering and regime clustering. CFAN has 
successfully implemented regime clustering in its seasonal forecasts, whereby ensemble members are 
clustered around values of the ENSO or the AO index.  
 
CFAN has developed a new ‘Bayesian’ clustering approach that focuses on selecting a high-predictability 
cluster based upon initial verification of each ensemble member by subsequent observations or 
subsequently initialized forecasts. CFAN has successfully implemented the high-predictability clustering 
approach into our seasonal forecast products and also our daily hurricane forecasts by including the top 
five verifying cluster members into a high predictability cluster. The high-predictability clustering 
provides a basis for eliminating those ensemble members that are deviating towards an unlikely 
trajectory, thus providing for increased sharpness in the forecast. An example of ensemble clustering for 
the seasonal forecast is illustrated below, comparing the ensemble mean maps with maps determined from 
the high-predictability cluster. 
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Figure II.12. Clustered forecast and ensemble mean forecast for 925 hPa wind anomalies. Forecast 
initialized 11/1/12; clustering based on monthly forecast initialized on 11/15/12.    
 

Predicting power ramps  
 
We have implemented operational prediction of large-scale ramp events for ERCOT, which is illustrated 
in Figure II.13. 

ERCOT Ramp Events 

 
Figure II.13:  Example of the power ramp forecast product for ERCOT Zone 7.  Top right shows the ramp 
up probability as a function of forecast time while the bottom right graphic shows the ramp down 
probability.  The gray line is the time series of the ECMWF ensemble mean wind power (%) with respect 
to total nominal power for a particular grid point. 
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The ramp event calculation follows the methodology outlined by Bossavy et al (2012)4. After calculating 
wind power for each grid point using the 100 m wind speed and the GE 1.5 power curve, a moving 
average linear filter is applied before computing the first-order finite differences for each grid point. 
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where pt is the wind power time series and n is the order of the moving average filter and the time step of 
finite differences.  For this analysis, we selected n = 5 hours based on the findings from Bossavy at 
identifying ramp events based on the ECMWF ensembles.  The one major difference from Bossavy 
(2012) is we are calculating ramps with respective to differential, smoothed wind power anomalies. These 
anomalies are calculated after removing the ECMWF hindcast climatology power for each grid point. 
This approach removes systematic features (such as the diurnal cycle) and other biases (such as model 
drift), obviating the need for other statistical adjustments to the power time series. 
 
A ramp is forecast to occur when the variation is high and steep enough and if the absolute value of 𝑝𝑡

𝑓is 
higher than the variation threshold 𝜏, which we define as 30% of the nominal wind power for a grid point. 
We classify ramps based on their support, timing, and intensity. The ramp support is defined as the 
duration in hours of the forecast ramp event [ts, te].  The ramp timing is defined as the time when the 
absolute value of the filtered differential power signal 𝑝𝑡

𝑓reaches its maximum amplitude, which also 
defines the ramp intensity. 
 
We calculate ramp events for each ensemble member after applying an uncertainty prediction interval, 
𝛿 = {2, 5, 8} hours about the ramp timing value.  Using a maximum prediction interval of 8 hours, this 
value should account for most of the forecast wind error in phasing for the ensembles, while balancing the 
need of sharpness by end-users in the ramp forecasts. The resulting time series graphics display the 
probability of a ramp corresponding to each prediction interval and we calculate and display the ramp-up 
probabilities separate from the ramp-down probabilities. The probabilities are derived from the ECMWF 
ensembles. In the example in Figure II.13, the different width ranges of the probability bins illustrates 
how the methodology modifies the sharpness of the ECMWF forecasts at extended forecast lead-times.  
By displaying the probability for each ramp in its own color, a variety of end users with varying risk 
tolerances to false alarms may be able to use the same product.  Furthermore, by providing the time series 
at each grid point for a given zone, an end-user may select the nearest grid point for their wind farm to 
find the most representative forecast for their location. 
 
The 100 m wind speeds from the ECMWF operational analyses for each grid point in the ERCOT region 
are very well approximated by a Weibull distribution. We examined the ECMWF hindcasts for the period 
12/5/2013 to 1/9/2014 for ERCOT, calculated the grid-point pdfs for ERCOT and conducted a one-
sample Kolmogorov-Smirnov (K-S) test to evaluate the null hypothesis that the hindcast data comes from 
a standard normal distribution.  For each lead-time that was evaluated -- 0, 24, 72, 120, 168, 240 hrs -- the 
K-S test rejected the null hypothesis, indicating the data are non-normal.  Hence, the hindcasts maintain 
the appropriate pdf structure through 240 hrs lead-time (Figure II.14). 

 

                                                
4  Bossavy, A., R. Girard, and G. Kariniotakis, 2012: Forecasting ramps of wind power production with numerical weather 

prediction ensembles. Wind Energy, 16, 51-63. 
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Figure II.14.  (left) Probability distribution function of the ECMWF operational analyses 100 m wind speed 
for all grid points residing in ERCOT region (in blue) along with a theoretical fit to the observed PDF using 
a Weibull distribution (in red) for the period 11/27/2013 to 1/8/2014.  Right similar to left, except shows 
the wind power for all grid points within ERCOT after applying the GE 1.5MW S power curve on the 100 
m wind speeds from the ECMWF operational analyses (blue).  Wind power for the 100 m wind speed 
Weibull distribution (in red) using same power curve is shown for comparison purposes. 
 

3.  Forecast evaluation and confidence assessment  

Forecast evaluation is an integral part of the forecast product development. Our initial efforts were based 
on techniques utilized for our other product suites available in the market today. The closest approach was 
for those related to our temperature forecast products and more specifically the 15 day forecasts. We have 
also been investigating insightful evaluation measures for ramp likelihood forecasts. 
 
15-day forecast evaluation  
 
An evaluation of a variety of verification techniques traditionally used with meteorological variables was 
undertaken. This included items like Brier Score, Relative Operating Characteristics (ROC), and Root 
Mean Square Error (RMSE). The creation of useful verification outputs was complicated by three 
elements. 
 
The first of these elements was the bounded nature of power forecasts. Traditionally RMSE is a very 
useful criteria used with temperature based product evaluations. Despite it being well received by end 
users, it requires the ability of free-floating values both above and below a forecast for effective use.  As 
can be seen in Figure II.15, the RMSE values are impacted by the natural diurnal cycle seen in most wind 
farm locations.  This creates an artificial fluctuation in the RMSE results that favor low wind situations. 
 
However we were interested to evaluate the model’s capability of capturing longer time scales beyond the 
diurnal cycle. This led to shifting the evaluation to what we call bucket analysis. In this approach a 
forecast can be graded in a hit/miss capacity as well as degree of accuracy. 
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Figure II.15.  Example of RMSE analysis for ERCOT Zone 8 over a six month period in 2012. 

 
The bucket technique evaluates each forecast value at individual time steps for its proximity to the actual 
observation value at that time step.  Each bucket consists of forecasts that fall into a range.  For instance, 
all wind power forecasts between 10–20%, 20–30%, etc.  Then the evaluation criteria are set for ‘hits’ and 
‘miss’.  Typically some percentage around the forecast is given such as +/-5% around the bucket itself.  
As can be seen in Figure II.16, an evaluation is made for the same 6 month period as in RMSE analysis.  
In this case very stringent conditions were set for what was considered a hit with the requirement set to 
better understand the sensitivities for each of the buckets utilized. 
 

 
Figure II.16.  Example of Bucket analysis for ERCOT region 8 over a six month period in 2012. 

 
The second complication was brought on by user requirements. Feedback has suggested interval analysis 
is much more useful in support of decisions they make about products. With respect to meteorologically 
based systems, seasonally oriented analysis has proven most useful particularly given shifts in forecast 
performance based on changing seasonal regimes. Additionally, users tend to have different sensitivities 
with respect to forecast time scales. For instance forecasts in the 3-5 day range might be evaluated 
differently than those in 11-15 day window. 
 
With this user feedback we adjusted the bucket analysis to incorporate both those criteria.  Figure II.17 
shows an example of the revised bucket analysis.  In this example it can be seen that the proximity to zero 
was altered by using a range of 0-5%. Additionally the naming criteria were altered for easier user 
interpretation.  A good forecast started with highly stringent grading requirements that eased in time as 
the forecast lead time extended out into the 15 day window.  Additionally, the OK criteria level was 
provided for forecasts that were on the fringes of the ‘Good’ level and allows for more realistic evaluation 
of probability-based forecasts which would be hard to appraise otherwise with this approach. 
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Figure II.17 example demonstrates a quarterly time period and offline approach.  The BETA user base 
indicated that verification analysis is something that is more often done offline as well as being better 
suited to a data format versus graphical where the inputs can be used in their own internal analysis. 
 

 
Figure II.17. Example of revised Bucket analysis. 

 
The final complication relates to a need to have independent verification information on a much closer to 
real-time basis. While this becomes less critical for verification reports and data provided to the users for 
consideration when utilizing regular interval evaluations mentioned above, given the critical importance it 
plays in statistical correction this data remains critical in the support of statistical based forecast 
improvement. In trying to achieve this goal with forecasts there are essentially five approaches to be 
considered. 
 

1. Utilize initial conditions from the forecasting model utilized to make the prediction 
2. Utilize the reforecasts or reanalysis from a different model or proxy based data set 
3. Utilize in situ measurements from an independent provider 
4. Utilize in situ measurements from a wind farm(s) operator 
5. Utilize proxy measurements developed with respect to wind power generation 

 
The first approach mentioned would imply the use of ECMWF initial conditions as a basis for how the 
ECMWF forecasts performed. This is always a good first order tool and can provide useful insight and 
product development direction.  This and model reforecasts can also be useful in helping forecast 
improvement. However, making a comparison between a model and itself does create a boxing limitation 
as it is impossible for a model to see beyond its own limitations.  Techniques where this approach is most 
appropriate were covered in the statistical post processing section above. 
 
The second approach is often used to validate general forecast model performance when it is known that 
another model or proxy is a strong performer. It can be particularly helpful in cases of grid based 
forecasts where a reasonable proxy of a large spatial area is required. 
 
A key focus of our initial verification effort was the diurnal cycle.  Our assessment focused on the 
locations and periods for which the WFIP SODAR data are available.  We compared the closest grid point 
of the ECMWF operational analyses with the WFIP SODAR locations.   Figure II-18 provides an 
example comparison of the forecast initialized 1 August 2011 at Cleburne, Texas, comparing the high 
frequency SODAR observations with the ensemble mean and the control member.  There is a substantial 
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amount of high frequency variability in SODAR observations that would not be captured by the coarse 
temporal resolution of the ECMWF forecasts.   

 
Figure II-18.  Comparison of SODAR wind data at 100m for Cleburne with the ECMWF forecasts 
initialized 8/1/11. 

 
In addition to the use of this data for point forecast such as the case above, it can also be utilized in a 
gridded format.  Examples of data sets to leverage were covered in the Thrust I analysis.  The MERRA 
data set for example provided a good proxy in comparison to the SODAR data above which conceptually 
made it useful although the delay in its availability makes it more viable for verification analysis versus 
real-time forecast enhancement. 
 
Option three is potentially the most ideal for forecasts not geared to select end users, for example 
individual wind farms in this case.  CFAN acquired data from Onsemble for this specific purpose as part 
of the project.  This type of data delivers the benefit of in situ measurements that are hard to find for wind 
data at hub height.  As can be seen in Figure II.19, the data can be used to adjust a raw model forecast for 
better performance.  Additionally it has the obvious side benefit of being useful in providing an 
independent verification source.  Wind speed measurements at the 17 stations were compared to the 
ECMWF 100m wind speed operational analyses (a gridded product at 6-hour intervals) in the closest 
single grid cell. Because the measurement stations produced data at 10 minute time steps, a number of 
temporal interpolation methods were applied to achieve the best fitting (Fig. II.19). Method 1 is an 
instantaneous sample, Method 2 is a 1-hr moving window, and Method 3 is a 3-hr moving window. The 
differentials showed that all three methods produced similar mean errors in 2013 (dashed lines). 
 
These observational data and corresponding daily probabilistic wind speed forecasts from 2013 were used 
to train an ensemble dispersion correction. At each of the 17 locations, the lead-time dependent error 
characteristics of the ensemble mean versus Method 3 observational data were calculated. These historical 
error values were used to create a correction for gridded ECMWF wind speed forecasts. For each Texas 
ERCOT grid cell and each forecast time step, the raw 51-member ensemble distribution was transformed 
by computing the inverse of the normal cumulative distribution function (CDF). This was done using the 
mean of the raw data and the standard deviation of location-specific historical error values. 
 
The challenge with this type of source is the lack of availability. During the course of this project the 
selected provider, Onsemble, shuttered its operation and the few others in the industry for the US have 
either ceased operations or have delayed roll-outs. In working with the Onsemble data, our team had 
substantial reservations about the data quality, as well as concerns about how true the representative point 
locations were to larger scale areas.  
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Figure II.19.  Example of Onsemble in situ data utilized to enhance raw model forecasts. 

 
The fourth approach is very similar to the third.  The benefits though are generally limited to the wind 
farms supplying data.  While the benefit could expand as more agreements are reached with wind farm 
operators such as our aforementioned project with the Southern Company, without large scale adoption it 
will be difficult to create zonal, regional, or gridded forecast enhancements with this type of product. 
 
The final approach is one we undertook and achieved useful results. The regional grid operators such as 
ERCOT collect heavy amounts of data with respect to wind power generation.  While not a direct 
measurement of wind at point locations, it does provide wind power information at zone/region levels.  
This provides an opportunity to verify and enhance forecasts on these scales as well as reverse engineer to 
a direct wind speed forecasts. 
 
Figure II.20 shows a verification analysis for the 15 day forecast in Zone 2 of ERCOT utilizing ERCOT’s 
wind power production data for the given zone. Note the substantial error reduction especially for the first 
150 hours of forecast. Utilizing a reverse engineering technique, the wind power production data is turn 
into raw wind speed data. Based on this forecast error, the wind forecast is then adjusted before converted 
into power. This approach is essentially a reversed methodology compared to techniques where CFAN’s 
wind speed forecasts are translated into wind power forecasts.  For the example shown it can be seen how 
utilizing this technique allows for an overall wind speed forecast improvement particularly over the first 
10 days. The overall potential benefits with wind forecast in the U.S. are high with this style of data sets. 
There are fewer organizations to work with across the U.S. in securing access to this type of data.  While 
during the course of this project we used the data in a delayed fashion, ERCOT has worked with 
organizations like Xcel to provide data in a near real-time fashion.   
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Figure II.20.  Example of ERCOT power generation data used as both an enhancement to raw model 
forecasts as well as a source of forecast verification. 

 
Ramp likelihood evaluation  
 
Our ramp forecasts have initially been built around point locations.  This implies that the various data 
sources we utilize elsewhere for forecast enhancement and improvement would possibly work well in the 
ramp verification process. As an example, the SODAR data was used in the verification of ramp 
forecasts.  Figure II.21 shows the forecast verification of a ramp on 27 September 2012 for Zone 2, from a 
forecast initialized on 21 September. The diurnal amplitude is damped during frontal passages, and the 
predicted large-scale ramp compares very well with the SODAR data. 
 

 
 

Figure II.21.  Comparison of the forecast initialized on 9/21/12 for zone 2 with the SODAR observations at 
Cleburne. 
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For a given wind farm the optimal choice would of course be data from the given wind farm.  Of course, 
the independent in situ sources would have also been ideal before their exit from the marketplace.  When 
direct in situ measurements are not available, high resolution data sets such as the previously discussed 
MERRA are feasible. 
 
Unlike the wind/power forecast which are probabilistic forecasts built around a mean or deterministic 
core, ramp likelihood comes from a reverse position. The goal is evaluate a probability while at the same 
time accounting for considerations such as timing shifts as the forecast lead time increases.   
 
For the large area ramps, we assessed the raw model forecast capability for predicting the up ramps as a 
function of forecast lead-time (1-15 days).  The following statistics are presented: 

• Probability of Detection (POD): Ratio of correct forecasts to number of times it occurred (Perfect 
= 1) 

• Probability of False Detection (POFD): Ratio of false alarms to the total number of 
nonoccurrences of the event (Perfect = 0) 

• False Alarm Ratio (FAR): Fraction of yes forecasts that turn out to be wrong (Perfect = 0) 
• Bias: Ratio of yes forecasts to the number of yes observations (unbiased = 1, overforecast > 1, 

underforecast < 1) 
 
Eliminating the diurnal cycle, the probability of detection exceeds 60% at all lead times out to 7 days, 
whereas the probably of false detection is less than 20% for the first 6 days.  The False Alarm Ratio is less 
than 0.3 for the first week.  Overall, the ramps are over forecast, although the False Alarm Ratio would be 
reduced if the threshold cutoff for ramp amplitude was broadened. 

 
Figure II-22.  Statistics of forecast versus observed large area up ramps as a function of lead time:  POD, 
POFD, FAR, Bias.  

 
 



32 
 

 
 
Confidence assessment 
 
There were two overall objectives of this task: 

1. Determination of the lead time and averaging period for which there is useful prediction skill 
(statistics) for a particular variable, as a function of region, season, and weather regime. 

2. Assessment of the confidence of individual subseasonal and season forecasts relative to the 
expected predictability, based on the ensemble spread, weather regime, historical predictability 
analysis, and recent forecast verification statistics. 

 
Whereas it is relatively easy to make a prediction, it is much more difficult and arguably more important 
to objectively assess the confidence level for a specific prediction.  Our research has shown that regional 
predictability is non-stationary and dependent on the background basic state. We have demonstrated that 
seasonal predictability is highest for high amplitude phases of ENSO.5 We have further demonstrated that 
predictability is lowest during certain phases of the Madden Julian Oscillation (MJO). 6 7 
 
CFAN has begun including an objective confidence assessment for its monthly and seasonal forecasts that 
are being provided to clients in the energy sector.  An example of monthly forecast with confidence 
assessment is provided below: 
 

 
Figure II-23.  Forecast table for weekly regional surface temperature, with confidence levels for each 
week/region. Forecast initialized 9/13/12. 

 

                                                
5 Kim, H. M., P. J. Webster and Judith A. Curry, 2012: Seasonal prediction skill of ECMWF System 4 and NCEP 
CFSv2 retrospective forecast for the Northern Hemisphere Winter, Clim. Dyn., DOI: 10.1007/s00382-012-1364-6 
http://www.cfanclimate.com/Kim_Webster_Curry_2012_CD.pdf 
6 Kim, H. M., C. D. Hoyos, P. J. Webster and I. S. Kang, 2008: Sensitivity of MJO simulation and predictability to 
sea surface temperature variability. J. Climate, 21, 5304-5317. doi: 10.1175/2008JCLI2078.1 
http://webster.eas.gatech.edu/Papers/Kim%20et%20al.%202012b_CD.pdf 
7 Agudelo, PA, CD Hoyos, PJ Webster, JA Curry, 2008: Application of a serial extended forecast experiment using 
the ECMWF model to interpret the predictive skill of tropical intraseasonal variability. Climate Dynamics. DOI 
10.1007/s00382-008-0447-x   http://webster.eas.gatech.edu/Papers/Webster2008d.pdf 
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Our proposed operational forecast confidence assessment included the following elements: 
• Historical predictability analyses; 
• Recent prediction verification statistics; 
• Phase and amplitude of the Madden Julian Oscillation (MJO) and phase of ENSO; 
• Spread of the forecast ensemble members and high prediction cluster; 
• Relationship between ensemble spread and forecast error conditioned on teleconnection regimes. 

 
During Phase I, we conducted predictability analyses for ENSO, NAO, AO and PNA (details are provided 
in the Phase I Final Technical Report). From an anomaly correlation plot derived between the model 
forecast and the reanalysis product (assumed to be the “truth”) for the same period, one can readily see 
the degree of predictability and the periods of the year at which the correlations and forecast skill are 
largest. Such an analysis has been conducted for seasonal forecasts of the teleconnection regimes (ENSO, 
NAO, PNA, AO) and also regionally for U.S. surface temperatures and rainfall.  
 
The utility of ensemble quantiles that are correct in a probabilistic sense depends on the ability to 
distinguish between situations with low and high uncertainty and on the sharpness of the distributions. 
We measure sharpness by the Interquantile Range (IQR), which represents the difference between the 
upper and lower quartiles. For the probabilistic forecast to be useful, it is essential that the IQR be smaller 
than the IQR obtained from historic data.   
 
One of the traditional estimates of predictability is directly based on ensemble spread without considering 
ensemble intercorrelations. We have developed a new method for incorporating ensemble 
intercorrelations into the predictability analysis (although we have not yet implemented this scheme into 
our operational forecasts). Ensemble intercorrelations together with ensemble spread can be rendered in a 
phase-space diagram in which four different quadrants can be differentiated. Extremes in Quadrant I 
correspond to high intercorrelation and high spread. This case is typical of situations when the model is 
already set in a temporal pattern, i.e., there is low uncertainty in the evolution of the climate modes, but 
the magnitude of the response is susceptible to initial conditions or forcing variability. One example could 
be a seasonal forecast in the middle of an El Niño event, where the temporal evolution is well known as it 
tends to be locked to the annual cycle, but the magnitude of the event is not as predictable as its evolution. 
Extremes in Quadrant II reflect high intercorrelation and low spread, which correspond to the most 
predictable cases. Extremes in Quadrant III correspond to low intercorrelation and low spread. In this 
cases the magnitude of the forecasts are similar among the ensembles but the temporal evolution (troughs 
and ridges in the time series) are out of sync. This is the least likely of the cases and typically appears 
when forecasting normal or average periods. Finally, Quadrant IV corresponds to the least predictable 
scenario with low intercorrelation and high spread. A typical example of this situation is the seasonal 
forecasting of tropical pacific SSTs before the spring predictability barrier when not only the magnitude 
but also the temporal evolution of the SSTs are very sensitive to tropical and extratropical initial 
conditions and teleconnections. 
 
Thrust III. Decadal projections of the wind power environment  
 
Our proposed overall strategy for developing regional scenarios of extreme weather events and climate 
variability on decadal time scales (out to 2040), included the following elements:   
 

• Assess the historical prediction skill of the 10 year CMIP5 simulations. Infer the distributions of 
extreme wind and demand events using two complementary approaches: i) a Model Output 
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Statistics (MOS) approached (described in Thrust II) based upon the historical climate dynamics 
analysis; and ii) a ‘weather typing’ approach for developing regional statistics of extreme events 
(wind ramps and gusts; heat and cold events). 

• Develop observationally-based scenarios based on phase-locked states and shifts in a 
synchronized network of climate indices. The historical climate dynamics analysis and ‘weather 
typing’ of extreme events is used in conjunction with scenarios of future shifts in these indices to 
develop the observationally-based scenarios. 

 
During Phase II, we conducted a survey of the skill of the CMIP5 simulations. With regards to 
observationally based scenarios, the paper by Wyatt and Curry that provides the framework for this task 
has been published at Climate Dynamics. Curry has convened a UK-US Workshop on Climate Science 
Needed to Support Robust Adaptation Decisions that focuses specifically on developing regional climate 
scenarios for decadal time scales. A specific application of this methodology is being conducted for 
Florida Power and Light, to address interannual and decadal variability of hurricane landfall locations and 
extreme winds; one application of this analysis is siting of offshore wind generation. This thrust was 
allocated a reduced level of effort relative to the original proposal, owing to concerns about the utility of 
the climate models, the substantial uncertainty associated with predicting current modes of interannual 
and interdecadal variability, and the lack of interest from potential clients.  
 

1. Develop scenarios from the CMIP5 decadal simulations 

A key reason for the lack of utility of 21st climate model simulations on regional and decadal time scales 
has been the failure to simulate correctly the multi-decadal ocean oscillations. In an attempt to rectify this 
deficiency, the latest climate model simulations for the IPCC (CMIP5) coordinated decadal hindcast and 
prediction experiments with initialization from observations of both the atmosphere and ocean. It was 
anticipated that the CMIP5 decadal simulations would provide a valuable new resource for predicting 
regional climate variability and change on decadal time scales. 
 
During year one, we downloaded and processed the results for the following models: CanCM4, CFSv2, 
CNRM-CM5, HadCM3, MIROC4h, MIROC5, and MRI-CGCM3.  Given the volume of data, a script 
was developed for simultaneous synchronized downloading. The following monthly averaged gridded 
variables were downloaded: wind variables (surface and on the standard pressure levels), sea level 
pressure, surface temperature (mean, max and min) and precipitation. Three-hourly output is available 
only for the surface meteorological variables.  We developed a NCL program to process model outputs 
and create results in output files in a unified format on the same spatial grid.  
 
We have processed the results for most of the CMIP5 climate models in comparison to recent peer 
reviewed evaluations. Kim, Webster and Curry (2012)8 assessed the CMIP5 decadal hindcast/forecast 
simulations of seven coupled ocean-atmosphere models: HadCM3 (UK), CanCM4 (Canada), CNRM-
CM5 (France), MIROC4h (Japan), MIROC5 (Japan), MRI-CGCM3 (Japan), CFSv2 (US). Each decadal 
prediction consists of simulations over a 10-year period, initialized every five years from climate states of 
1960/1961 to 2005/2006. Most of the models overestimate trends, whereby the models predict less 
warming or even cooling in the earlier decades compared to observations and too much warming in recent 
decades (Figure III.1).  

 

                                                
8 Kim, H.-M., P. J. Webster, and J. A. Curry (2012), Evaluation of short-term climate change prediction in multi-model CMIP5 
decadal hindcasts, Geophys. Res. Lett., 39, L10701, doi:10.1029/2012GL051644. 
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Figure III.1.  Time series of globally averaged annual-mean surface temperature [K] for reanalysis (black) 
and the ensemble mean of the CMIP5 decadal hindcasts and forecasts (red and blue) for (a) HadCM3, (b) 
CanCM4, (c) CNRM, (d) MIROC4h, (e) MIROC5, (f) MRI and (g) CFSv2. Gray shades represent the 
ranges of one standard deviation of the ensembles in each hindcasts. 

 
All models show high prediction skill for surface temperature over the Indian, North Atlantic and western 
Pacific Oceans, with low prediction skill found over the equatorial and North Pacific Ocean. As shown in 
Figure III.2, the AMO is predicted in most of the models with significant skill, while the PDO shows 
relatively low predictive skill. In fact, evaluation of the PDO forecasts showed that by far the best forecast 
was a simple persistence forecast. There is low prediction skill of North American surface weather 
including anticipated wind anomalies; what little prediction skill there is seems associated with the 
models’ capability of simulating the AMO.  
 
Of the models examined, MIROC4h and MIROC5 best meet the selection objectives of: horizontal 
resolution 100 m or less, at least 3 ensemble members, little drift following initialization, and relatively 
good performance over the U.S. and the North Atlantic. This analysis identified a key sensitivity of the 
simulations to the initialization strategy and to the initialization timing.  Several models, notably CanCM4 
and CNRM, which are initialized close to the observed state (full field initialization), drift towards the 
model climate over about a third of the integration period, with a drift magnitude that is substantially 
greater than the observed trend. Models that are initialized with anomaly assimilation (MIROC4h, 
MIROC5 and MRI) better represent the model’s actual decadal variability.  
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Figure III.2. Correlation coefficients for the (a) AMO and (b) PDO index predicted by MME, persistence 
(PERS) and ensemble mean of each CMIP5 decadal hindcasts as a function of lead time (years). Solid 
(dashed) horizontal line represents statistical significance of the correlation coefficients at 95% (90%) 
confidence level. 

 
Based upon our experience with subseasonal and seasonal predictability, predictability is greatest when 
the model is initialized in a well-established climatic regime. For example, for subseasonal forecasts this 
depends particularly on where in the cycle of the Madden-Julian oscillation the model is initialized; and 
for seasonal forecasts, this depends on the magnitude of the ENSO signal at the time of initialization. Our 
preliminary analysis suggests that this same general principle holds for the decadal simulations. Hence, 
the year 2005 (when the 30 year simulation was initialized) is a good year to initialize in terms of the 
AMO, since 2005 was a peak (if not the peak) in the current warm phase of the AMO. This means that 
regional climate features that are sensitive to the AMO should be well represented. However, 2005 was 
not a good year for initialization in context of the PDO, since the PDO was in a flickering state during the 
middle of the previous decade. 
 
Another result from Kim, Webster and Curry (2012) that provided useful guidance for this project is the 
evaluation of the multi-model ensemble (MME) relative to single models. Although the MME does not 
outperform all of the constituent models for every forecast skill metric, it has in general better forecast 
quality than the single models for global mean temperature, AMO, and PDO. This study partly supports 
the utility of the multi-model ensemble approach in overcoming the systematic model biases from 
individual models and in enhancing decadal predictability.    
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Several recent papers have analyzed the CMIP5 circulation regimes and surface meteorological variables. 
A recent paper by Schoof and Pryor (2014)9 assessed the fidelity of CMIP5 climate models in simulating 
modes of variability in the atmospheric circulation regimes (ENSO, PNA, AO) and their relation to near 
surface wind speeds.  Spatial patterns and temporal indices for ENSO, AO, and PNA derived from daily 
output of 10 CMIP5 models indicate that all models reproduced some aspects of these modes, both in the 
spatial and temporal domains. The models are capable of reproducing at least some fraction of the wind 
climate variability that arises due to variations in the AO and PNA, but are less skillful in reproducing the 
influence of the ENSO, and particularly La Niña, on flow over the contiguous US. Sheffield et al. 
(2013) 10 found that no model stands out as being particularly unskillful, bolstering the argument to 
consider all models irrespective of performance to encompass the uncertainties.  
 

2. Develop observationally-based scenarios  

The objective of this task was to develop and evaluate strategies for empirical data-based scenarios for the 
next two decades of statistics of the variability of the wind power and demand environment.  
 
The simplest observationally-based climate scenario is a ‘physics free’ forecast that assumes that the 
climate for the next two decades is the same as that for the previous 30 years, which is referred to as the 
‘climatology’ scenario. The climatology scenario provides a quantitative ‘zero skill’ target for evaluation 
of forecasts based on more complicated models. The key issue that discriminates a persistence forecast 
from a climatology forecast is that a shorter period is used as the basis for the persistence forecast, and 
that there is a physical rationale for selecting the particular period. Here we use the period since 2002, 
based upon the identification by Tsonis et al.11 and Swanson et al.12 of a global climate shift occurring 
2001/2002 that included a major shift in the circulation of the Pacific Ocean and encompasses a shift to 
the cool phase of the Pacific Decadal Oscillation (PDO). This new regime is characterized by more 
frequent La Nina events and a break in the global mean temperature trend. More frequent La Nina events 
are associated with higher surface wind speeds. 
 
More sophisticated empirically-based models for a non-stationary climate are being developed using a 
dynamic climatology approach using networks of climate teleconnection indices and analysis of the 
synchronization among the indices. Tsonis et al.11 showed that that when these indices of climate 
variability (ENSO, PDO, NAO, NPO) are synchronized, and the coupling between those modes increases, 
then the climate system becomes unstable and is thrown into a new state that is marked by a change in the 
character of ENSO variability and the global mean temperature trend.  
 
Subsequent analyses that includes larger numbers of indices found additional shifts of relevance to the 
interpretation of regional climate variability and change. Wyatt and Curry (2014)13 framed multidecadally 
varying climate-related phenomena within the context of a signal propagating throughout a network of 
synchronized chaotic quasi-oscillators, effectively compressing individual circulations into nodes of an 
interconnected network, with each node representing, or related to, a subset of processes. The sequence 

                                                
9 Schoof, JT and SC Pryor 2014:  Assessing the fidelity of AOGCM-simulated  relationships between large-scale 
modes of climate variability and wind speeds.  J. Geophys. Res., 119, 9719–9734, doi:10.1002/ 2014JD021601 
10  Sheffield JT et al. 2013:  North American Climate in CMIP5 Experiments.  Part II:  Evaluation of Historical Simulations of 

Intraseasonal to Decadal Variability. Journal of Climate, DOI: 10.1175/JCLI-D-12-00593.1 
11 Tsonis, AA, K. Swanson, S. Kratsov, 2007: A new dynamical mechanism for major climate shifts. Geophys. Res. Lett., 34, 

L12705.  https://pantherfile.uwm.edu/aatsonis/www/2007GL030288.pdf 
12   Swanson, K.L., AA Tsonis, 2009:  Has the climate recently shifted?  Geophys. Res. Lett, 26, DOI: 10.1029/  

https://pantherfile.uwm.edu/kswanson/www/publications/2008GL037022_all.pdf 
13  Wyatt MG and JA Curry 2014:  Role for Eurasian Arctic shelf sea ice in a secularly varying hemispheric  climate signal 

during the 20th century.  Climate Dynamics http://link.springer.com/article/10.1007%2Fs00382-013-1950-2#page-1 



38 
 

below indicates the order of the signal’s propagation through the network of eight climate indices. The 
years in parentheses indicate the mean phase shifts (lag times) between indices: 
 

-NHT → (4y) → -AMO → (7y) → +AT → (2y) → +NAO → (5y)→ +NINO → (3y) → 
+NPO/+PDO → (3y) → +ALPI → (8y) → +NHT → (4y) → +AMO → (7y) → -AT → (2y) → -
NAO → (5y)→ -NINO → (3y)→ -NPO/-PDO → (3y) → -ALPI → (8y) → -NHT . 

 

where NHT is Northern Hemisphere Mean Temperature, AMO is the Atlantic Multidecadal Oscillation, 
AT is the Atmospheric Mass Transfer Anomaly,  NAO is the North Atlantic Oscillation, NINO is the 
NINO 3.4 Index,  NPO is the North Pacific Oscillation, PDO, is the Pacific Decadal Oscillation, and 
ALPI is the Aleutian Low Pressure Index. 
 
The sequence depicted above, referred to as the ‘stadium wave’, indicates the propagation of a climate 
signal through a collection of atmospheric and oceanic teleconnections. The secular-scale duration of this 
hemispheric propagation was estimated to be ~ 64 years during the 20th century. Wyatt’s Ph.D. thesis14 
shows that the observed 20th century signal-propagation has existed for the past 300 years. The key 
finding is that that there appears to be a statistically significant succession of indices carrying this climate 
signal, where expression of the signal in one index is expected to follow in all other indices in successive 
lagged order. A simplified version of the stadium wave is illustrated in the diagram below. 

   
Figure III.3.  Illustration of the progression of the stadium wave.  The stadium-wave ‘wheel’ is divided into 
segments (from center to perimeter): the light gray ring identifies the segment number; the dark gray ring 
indicates key hemispheric indices; sea ice indices are in the yellow ring; and the outer green ring provides 
peak dates for the segment. Segment I begins with a cold North Atlantic (-AMO), maximum sea ice extent 
in the European Arctic shelf seas (+WIE). Segments II through IV show evolution of the climate signal 
initiated in the cold Atlantic. As sea ice growth increases eastward into the Siberian Arctic (+ArcSib), 
strong winds develop that convert an initially cold ocean-ice signal into a warming atmospheric one 
(Segment II). Events proceed, carrying the signal across Eurasia and into the Pacific (+PDO; Segment III), 
ultimately culminating in maximum Arctic and NH surface temperatures in Segment IV. Segment –I 
follows with maximum warmth in the North Atlantic and minimal sea ice in the European Arctic shelf seas. 
This marks a shift whereby trends of AMO and WIE decrease and increase, respectively. An initial warm 
signal converts to a cooling one until reaching Segment –IV, where temperatures dip to their minima, 
followed soon after by shift to a warming regime (I). (adapted from Wyatt and Curry, 2014). 

                                                
14  Wyatt, MG 2012:  A multidecadal climate signal propagating across the Northern Hemisphere through indices of a 

synchronized network.  Ph.D. thesis, Department of Geology, University of Colorado-Boulder. 
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The stadium wave is used to develop scenarios of regional climate variability on decadal time scales that 
accounts for uncertainty in timing of the most recent transitions and the uncertainty in the length of the 
individual regimes. Regional expressions of the stadium wave analysis are accomplished through linking 
the climate regimes to the statistics of weather regimes and regional meteorological variables (mean 
values as well as extreme event statistics).  
 
The elements are now in place to apply this methodology to developing scenarios of future wind power.  
This allows CFAN to work with individual prospects to develop plausible scenarios for a given 
development project and the potential risk exposure for project success. A particular benefit of this 
method is ability to evaluate a ranking of plausible scenarios to better capture the true uncertainty 
associated with a given location and time scale in consideration. 
 

3. Applications  

In February 2014, Curry organized an international Workshop on Climate Science Needed to Support 
Robust Adaptation Decisions15 that focuses specifically on developing regional climate scenarios for 
decadal time scales and using them to support robust decision making. The title of Curry’s talk was 
Generating possibility distributions of scenarios for regional climate change. 16  The findings of the 
Workshop were reported in a series of 5 blog posts: 
 

• UK-US Workshop on Climate Science to Support Robust Adaptation Decisions17 
• Perspectives from the private sector in climate adaptation18 
• Strategies for robust decision making for climate adaptation19 
• Limits of climate models for adaptation decision making20 
• Broadening the portfolio of climate information21 

 
The Workshop brought together atmospheric scientists/climate researchers with social scientists and 
decision makers in both the public and private sectors who are engaged in adaptation to climate change. 
The Workshop provided an opportunity to integrate some of the research funded under this project into a 
broader range of climate adaptation applications; at the same time, the Workshop provided insights for 
this project in terms of the challenges of applying decadal-scale climate information to decision making. 
 
Of particular interest at the workshop was renewable energy and its role in meeting supply not just in 
national level grids but also at local levels especially in developing countries. As large companies and 
NGOs look to increase involvement in different areas of the globe, a particular deficiency identified is 
appropriate infrastructure including power supply. Workshop participants explored ways that both the 
CMIP simulations and Stadium Wave approaches can help provide insight on appropriate large-scale 
investments including self-funded power supply options such as wind and solar. 
 
Application for Florida Power and Light 

One of the proposed applications for decadal scenarios is for the siting of offshore wind farms, where a 
key issue of concern is vulnerability oddly enough to winds from hurricanes on the Atlantic and Gulf 
coasts as these large scale weather events are potentially the most destructive to infrastructure including 
                                                
15 http://www.eas.gatech.edu/event/climate-workshop-feb-6-7 
16 http://www.eas.gatech.edu/sites/default/files/UK-US%20JC%20talk.pptx 
17 http://judithcurry.com/2014/02/10/uk-us-workshop-on-climate-science-needed-to-support-robust-adaptation-decisions/ 
18 http://judithcurry.com/2014/02/12/uk-us-workshop-part-ii-perspectives-from-the-private-sector-on-climate-adaptation/ 
19 http://judithcurry.com/2014/02/14/uk-us-workshop-part-iii-strategies-for-robust-decision-making-for-climate-adaptation/ 
20 http://judithcurry.com/2014/02/18/uk-us-workshop-part-iv-limits-of-climate-models-for-adaptation-decision-making/ 
21 http://judithcurry.com/2014/03/19/uk-us-workshop-part-v-broadening-the-portfolio-of-climate-information/ 
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offshore assets.  CFAN has a client, Florida Power and Light (FPL), who has expressed interest in 
decadal projection of hurricanes (out to 20 years) in the area around Florida, to help support their decision 
making including mitigation techniques (both looking at how the infrastructure can be made more 
resilient and how long-term energy choices affect the ability to withstand tropical cyclones), and how 
climate change may affect the severity and frequency of tropical cyclones.  

A preliminary analysis was done to assess the impact of the AMO and PDO on Florida landfalling 
tropical cyclones as well as the broader Gulf of Mexico and Coastal Atlantic regions.  The analysis took 
into account the CMIP findings that the most credible low frequency features include the AMO and PDO.   
It is seen in Figure III.4 that there are more Florida landfalls during the warm phase of the AMO (yellow 
and green), with the phase of the PDO having less of a meaningful impact although the analysis shows it 
is a more likely indicator of whether tropical cyclones will track toward the Atlantic coast versus being 
pushed into the Gulf of Mexico.  

 
Figure III.4 Statistics of landfalling tropical cyclones striking the Florida coast.  Yellow corresponds to the 
warm phase of the AMO, green to the warm phase of the AMO and cool phase of the PDO, blue to the cold 
phases of both the PDO. This analysis was done utilizing data from the National Oceanic and Atmospheric 
Administration Hurricane Database (HURDAT), which has been post-processed by CFAN to ensure 
physical consistency between the best-track data and the location and intensity of landfall. 

This type of analysis can help FPL in making decisions about siting offshore wind farms, particularly 
when evaluating considerations about risk related to each coastal region.  In turn that can lead to more 
targeted return period risk exposure as well as climate regime analysis for which FPL is exposed to with 
its placement in the transition region between tropical and mid-latitude climates. 

IV. Decision support tool     

The delivery of successful web-based decision support tools is a key aspect of CFAN’s success.  Our 
ability to effectively match critical user criteria with influential meteorological and climatological 
variables in a framework that enhances and streamlines the decision making process is essential basis of 
these successful tools. Our objective for Thrust IV of the project was to apply these techniques around 
quality forecast elements related to wind energy decision making in hopes of delivering a solution of 
superior quality and novel elements to the diverse set of users.  The cycle employed for this objective 
encourages constant interaction with alpha and beta users, and in turn translating their inputs and 
suggestions into viable dashboard based tools.  Our beta users included energy market users and regional 
power providers. 
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1. Identification of user preference and needs 

Preference and need information focused on continued interaction with alpha and beta phase users. They 
have provided useful and thoughtful feedback on what they like and changes they think could enhance the 
offering. 
 
Obtaining user feedback 
 
Simple and quick emails have proven the most effective approach to provide feedback. To encourage this 
behavior we made it easy to email us directly from the Dashboard when the users have ideas they wish to 
convey in real-time.  While this information is very useful we still wanted to obtain some more 
quantitative type information, particularly as it relates to forecast quality. Accordingly, we also provided a 
feedback form that permitted users to submit responses to targeted questions as well as in a generalized 
structure.  The creator could also choose to submit the data anonymously.   
 
We also took to direct interaction with users to solicit feedback and obtain both product type and delivery 
advice.  This type of solicitation and dialog uncovered a need multiple users had with obtaining forecast 
outputs in a data structure for further use by the end user.  This allowed us to modify both production and 
delivery components to create a streamline method through which users could obtain data inputs to utilize 
with their internal modeling and risk management tools which often use core meteorological inputs. 
 
In addition to interaction with current product users, we continue to also acquire inputs from the broader 
wind power community. Our team is engaged with this community through industry meetings, 
associations and business development efforts. The feedback obtained through this approach is often in 
the context of competitive products and what those users like or dislike about tools they currently use. 
 
Over the course of the project we engaged Dawnbreaker to undertake a competitive landscape analysis as 
well as explore avenues for our offerings particularly with organizations with which we not had previous 
interaction or limited interaction. The year one feedback continued to shape our development efforts to 
help CFAN strike the best balance in providing both required product elements as well as bringing novel 
tools and approaches to the marketplace. Year two dug deeper into organizations related to the wind 
industry, particularly some of the grid operators.  The contacts identified by Dawnbreaker provide new 
avenues for potential feedback from the user type most directly engaged with both suppliers and 
consumers of wind energy.  Dawnbreaker also clearly identified areas where they still see current wind 
forecasts falling short of their needs as well as those of the market as a whole.   
 
Feedback and response 
 
The nature of our development process allowed us to consider feedback continually during the Phase II 
process and to incorporate useful feedback into our product interface. Generally, feedback could be 
categorized as related to either functionality or content. The following examples introduce not only some 
of the feedback received but the product evolution accordingly integrated by CFAN: 
 

• Provide varied scales of forecasts both in time and geography – Our initial dashboard design 
provided a focus on small regional forecasts covering days 1-32. Working with a wind farm 
operator it was clear they wanted more point and long range elements. Accordingly we developed 
point ramp forecasts and seasonal anomaly outlooks. 

• Providing delineated text and/or csv outputs – We have experience providing data based outputs 
with clients for other forecasting solutions, but it was unclear initially if users would have this 
need for the wind forecast products.  Working with an energy trading company we developed 
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outputs that could be ingested directly into their internal proprietary forecasting system that helps 
market traders project pricing impacts.  This is achieved via direct web link without the user 
having to locate and retrieve the data via a web browser.  

• Showing elements that impact power consumption besides wind – This need was brought to us by 
different user types but all had a necessity to understand additional drivers to wind generation 
impacts and overall power needs.  CFAN developed a US wide view that is subdivided into grid 
based regions showing population weighted temperature information that provides a first degree 
power consumption perspective that can then be combined with projected wind power anomalies 
over 6 hour increments.  This allows the various user types to ingest these two most primary and 
critical inputs into large scale response behaviors. 

• More mobile friendly components  – This topic is obviously very hot in today’s environment and 
CFAN has adjusted various outputs to be well displayed on mobile devices, however the ever 
changing mobile landscape and functionality requires a patiently evolving approach.  Our future 
updates are likely to include scalable vector graphics and location driven content to continue the 
enhancements that can benefit not only mobile but regular users alike.   

 
2. Dashboard design and implementation 

Evolution of the visual dashboard was focused within the first year of the project, while the second year 
included increased content and delivery such as mobile and data.  As of the end of Phase II, all planned 
elements have been delivered along with additional content, features and functions not originally planned 
in the initial project plan.  Forecasts are being delivered across all key wind generation regions across the 
US.  As of now the product is considered live and fully supported by our operational team. 
 
Working toward a full BETA version release 
 
The primary objective of the design work during year 1 was reaching the goal of having a full BETA 
release available by the end of the year.  From a design standpoint this was accomplished with most of the 
visible aspects solidified before entering year two of the project.  During alpha and Phase I development 
the project was generally segmented to elements that often were built independently and with their own 
layout and structure.  While it was convenient for the researchers, forecasters and designers, it minimized 
the amount of useful feedback that ultimate product users could provide as access was not always 
available for all content nor could they get a sense of what the finished solution may look like. 
 
Figure IV.1 shows visually the transition that has taken place between the initial BETA release early in 
the project and the finalized BETA dashboard release.  While the core elements from the first release 
remain visible, both layout and content changes are immediately visible.  Most of the visible alterations 
were driven based on user inputs during the design phase.  This finalized dashboard will serve as version 
1 of the released product.  As with all quality products, the dashboard will evolve over time, but the goal 
with this release is to have created a solution with an effective balance of elements and interaction for the 
array of user types likely to engage with the product. 
 
Enhancements and incorporation of user feedback 
 
As mentioned previously, we received a wide array of feedback regarding suggested changes to the initial 
and subsequent dashboard layouts.  Whether the addition of ‘quick maps’ that users now have access to 
by simply hovering their mouse over the word ‘map’ or adjusting layout positioning of elements into 
combinations not previously used, CFAN continued to enhance the planned final offering to maximize its 
potential usefulness to the widest possible user base.  We took very seriously the feedback provided by 
users and highlight in more detail here how we translated that feedback into viable solution elements. 
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Figure IV.1.  Comparison of initial beta wind dashboard (left) with the fully developed wind power forecast 
dashboard (right). 

 
An example of an update we made specifically based on user feedback is the inclusion of wind power 
activity within the context of broader elements that could impact power demand.  Through the discussion 
it was determined that the most influential element on demand was likely to be temperature anomalies.  
Additionally it was determined that understanding this in the context of the larger U.S. power market 
would be useful. Accordingly we developed an area of the dashboard that focuses on the both the large 
scale and regional power anomaly behavior.  As can be seen in Figure IV.2, this section of the dashboard 
displays this information in a U.S. map form broken down into 6 hour values.  There is also provided an 
opportunity to utilize forecast slider and animation elements that are more common in our other products 
but had not been a particular fit for the wind power dashboard. 
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Figure IV.2.  Close up of the ‘Power Anomaly’ section of the dashboard. Left is 6 hour interval wind power 
anomaly projection for the continental and offshore areas of the U.S.  Right is a corresponding population 
weighted temperature anomaly forecast for land areas of the U.S. 
 

Another challenge that has been unique to the wind power solution is providing data that is oriented to 
tight spatial variability. While CFAN has worked to develop point based solutions such as those 
associated with our city MOS temperature solutions, understanding the timing variance behavior in very 
close range has not been of particular need for our clients. Also, since our focus for this solution is not on 
forecasts in the very near term, high-resolution tools have not been required.  However, in developing 
tools around wind ramps it became clear that being able to visualize behavior at a wind farm level would 
be particularly useful. Figure IV.3 shows this final section added to the dashboard that allows users to 
mouse over different grid points which display latitude and longitude information until they find the one 
most useful for them. They can then select that point to see updated ramp behavior forecasts for both up 
and down events.  Utilizing the accompanying map, they can also select nearby locations that will provide 
additional understanding with respect to timing and location sensitivities. 
 

 
Figure IV.3.  Close up of the new ‘Ramp Event’ section of the dashboard. 
 

A final consideration CFAN made was the potential of having unique user or even client type dashboards.  
While at this stage we have found that the user mix generally seems happy with the available components, 
there remains expectations that this could change over time especially when mobile elements are 
considered.  That said, our coding and design have been structured in such a way were a ‘pick and choose 
elements’ methodology can be adapted if necessary with minimal time and cost. 
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Ultimately all the choices we have made in design and implementation have been focused on maximizing 
the user benefits and broadening the user base potential in an effort to reach as large of a prospective 
market as possible. 
 
Going live and into operational mode 
 
The final step in Phase II was to take the last release of the Dashboard and migrate it into CFAN’s 
operational environment.  This included not only the visible web components but also the data delivery 
elements mentioned earlier as well as all the forecast creation elements.  The current processing routine 
utilizes approximately 6 hours of server processing on a normal day and an additional 2 hours on days 
when monthly outlooks are generated. Should future demand warrant, the system could be shifted to a 
twice daily product, although that would essentially require a dedicated processing server and dedicated 
data array. 
 
The web based Dashboard is part of our multi-server redundancy cached environment.  This allows for 
minimal slowness and virtually eliminates outages no matter where across the globe a visitor may access 
the site.  The web site does not currently utilize encryption in delivery mode to ensure the fastest retrieval 
times possible, although an encrypted version is possible in the future should any client data be ingested 
by CFAN servers in the production of outputs. 
 
All these forecast creation routines, outputs and servers are as of the end of Phase II fully supported by 
our operational staff that provides 24x7x365 support for this product.  This transition required a stringent 
debugging check and development of full product documentation.  Accordingly, our support team can 
now handle any issues that may arise or inquiries from the user community.   
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6. Identify products developed under the award and technology transfer activities 
 

a. Publications: Relevant publications authored by team members, including those initiated under 
separate funding, that were influenced by the needs of this project (including Phase I): 

Kim, HM, PJ Webster, JA Curry, 2012:  Seasonal prediction skill of ECMWF System 4 and NCEP 
CFSv2 retrospective forecast for the Northern Hemisphere winter.  Climate Dynamics, DOI 
10.1007/s00382-012-1364-6 http://www.cfanclimate.com/Kim_Webster_Curry_2012_CD.pdf 

Kim, HM, PJ Webster, JA Curry, 2012:  Asian summer monsoon prediction in ECMWF System 4 
and NCEP CFSv2 retrospective forecasts.  Climate Dynamics, DOI 10.1007/s00382-012-1470-5.   
http://webster.eas.gatech.edu/Papers/Kim%20et%20al.%202012b_CD.pdf 

Kim, HM, PJ Webster, JA Curry 2012:  Multi-model decadal predictions in CMIP5 decadal hindcast 
experiment.  Geophys. Res. Lett., 39,  Article Number: L10701   
http://curryja.files.wordpress.com/2012/05/kim-et-al-2012_grl.pdf 

Wyatt, MG and JA Curry 2014:  Northern hemispheric climate variability: dynamics of climate signal 
hemispheric propagation. Climate Dynamics, Volume 42, Issue 9-10, pp 2763-2782 
https://curryja.files.wordpress.com/2013/10/stadium-wave1.pdf 

Kravtsov, S., M. G. Wyatt, J. A. Curry, and A. A. Tsonis, 2014: Two contrasting views of 
multidecadal climate variability in the twentieth century. Geophys. Res., DOI: 
10.1002/2014GL061416 http://www.wyattonearth.net/images/KWCT2014_main_FINAL.pdf 

Toma, V., PJ Webster and JA Curry: Re-evaluating the ENSO predictability barrier and its 
interannual variability.  To be submitted to Climate Dynamics 

Belanger, JI, JA Curry, K Shrestha and M Jelinek: Extended-range predictability of wind power for 
ERCOT.  To be submitted to Journal of Applied Meteorology and Climatology 

Relevant conference presentations: 

Curry JA: Generating possibility distributions of scenarios for regional climate change.  UK-US 
Workshop on Climate Science Needed to Suppport Robust Adaptation Decisions.  Atlanta, GA, Feb 
7, 2014. - http://www.eas.gatech.edu/sites/default/files/UK-US JC talk.pptx 

Kim, HM and PJ Webster: ENSO and ENSO teleconnections.  ECMWF Seminar, Reading, UK 3-7 
Sept. 2012. http://www.ecmwf.int/newsevents/meetings/annual_seminar/2012/presentations/Kim.pdf 

Curry, JA:  Climate models: fit for what purpose?  Presented at the Royal Society Workshop on 
Uncertainty in Weather and Climate Prediction, With Application to Health, Agronomy, 
Hydrology, Energy and Economics.  Chicheley Hall, UK, 4-5 October 2012.  
http://curryja.files.wordpress.com/2012/10/rs-uncertainty-12.pdf 

Toma, V:   Seasonal Weather Predictability and Prediction.   7th Annual Earth Networks Energy 
Weather Seminar Winter Outlook 2012-2013.  New York City, 18 October 2012.   

 Annual Meeting of the American Meteorological Society, January 2013, Austin TX: 

Shrestha, KY, JA Curry, JI Belanger, J. Mittelman, J Freedman, J. Zack, P. Beaucage:  Medium-
Range Wind Power Ensemble Forecasting for Texas. 

   https://curryja.files.wordpress.com/2015/05/wind-ams-15-final.ppt 

Mittelman, J, JA Curry, KY Shrestha, JI Belanger:  Subseasonal predictability of regional wind power 
generation.   https://curryja.files.wordpress.com/2015/05/monthly-ams.pptx 

 

http://www.cfanclimate.com/Kim_Webster_Curry_2012_CD.pdf
http://webster.eas.gatech.edu/Papers/Kim%20et%20al.%202012b_CD.pdf
http://curryja.files.wordpress.com/2012/05/kim-et-al-2012_grl.pdf
http://link.springer.com/journal/382/42/9/page/1
https://curryja.files.wordpress.com/2013/10/stadium-wave1.pdf
http://www.wyattonearth.net/images/KWCT2014_main_FINAL.pdf
http://www.ecmwf.int/newsevents/meetings/annual_seminar/2012/presentations/Kim.pdf
http://curryja.files.wordpress.com/2012/10/rs-uncertainty-12.pdf
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Curry, JA, JI Belanger, M Jelinek, V Toma, PJ Webster:  A seamless system for medium range, 
subseasonal and seasonal probabilistic forecasts of energy demand.  
https://curryja.files.wordpress.com/2015/05/omnicast-ams.ppt 

b. Web site or other Internet sites that reflect the results of this project 
<< Confidential information  
 Site:  http://cfan.eas.gatech.edu/BETA/wd.php  
 User:  DOE 
 Pass:  Phase!!2015 
ends here >> 
 
c. Networks or collaborations fostered 

We have developed new collaborations with: 
• AWS TruePower 
• WSI 
• Southern Company 

 
This project has also extended existing collaborations with: 

• Shell 
• Calpine 

 
d. Technologies/Techniques 

Forecast product technologies and techniques are described in the research Thrusts in section 5 above 
 
e. Inventions/Patent Applications, licensing agreements 

• MOU with AWS TruePower 
• MOU with Southern Company 
• License agreement with WSI 

 
f. Other products 

N/A 
 
 
 
7.  For projects involving computer modeling, provide the following information with the final 

report: 
 

N/A 


	1. Assemble and evaluate the relevant data sets
	2. Relate decision relevant variables to the meteorological variables
	6. Identify products developed under the award and technology transfer activities



