DoOE AWARD:

RECIPIENT:

TITLE:

Pl:

TEAMING MEMBER:

DE-SC0007554

CLIMATE FORECAST APPLICATIONS NETWORK (CFAN)

APPLICATION OF GLOBAL WEATHER AND CLIMATE
MODEL OUTPUT TO THE DESIGN AND OPERATION OF WIND-
ENERGY SYSTEMS

JUDITH CURRY

GEORGIA INSTITUTE OF TECHNOLOGY

Distribution limitations: None

Pages 12 and 47 of this document may contain trade secrets or commercial or financial information that is
privileged or confidential and is exempt from public disclosure. Such information shall be used or
disclosed only for evaluation purposes or in accordance with a financial assistance or loan agreement
between the submitter and the Government. The Government may use or disclose any information that is
not appropriately marked or otherwise restricted, regardless of source.



3. Executive Summary

This project addressed the challenge of providing weather and climate information to support the
operation, management and planning for wind-energy systems. The need for forecast information is
extending to longer projection windows with increasing penetration of wind power into the grid and also
with diminishing reserve margins to meet peak loads during significant weather events. Maintenance
planning and natural gas trading is being influenced increasingly by anticipation of wind generation on
timescales of weeks to months. Future scenarios on decadal time scales are needed to support assessment
of wind farm siting, government planning, long-term wind purchase agreements and the regulatory
environment. The challenge of making wind forecasts on these longer time scales is associated with a
wide range of uncertainties in general circulation and regional climate models that make them unsuitable
for direct use in the design and planning of wind-energy systems. To address this challenge, CFAN has
developed a hybrid statistical/dynamical forecasting scheme for delivering probabilistic forecasts on time
scales from one day to seven months using what is arguably the best forecasting system in the world
(European Centre for Medium Range Weather Forecasting, ECMWF). The project also provided a
framework to assess future wind power through developing scenarios of interannual to decadal climate
variability and change. The Phase Il research has successfully developed an operational wind power
forecasting system for the U.S., which is being extended to Europe and possibly Asia.



4. Comparison of actual accomplishments with project goals and objectives

The Phase Il research project addressed the challenge of providing weather and climate forecast
information to support the operation, management and planning for wind-energy systems. We organized
the technical objectives into four thrusts, with each thrust having specific task areas. The actual project
work proceeded in a manner to optimize leveraging by other related projects and in response to specific
interests expressed among potential partners. The main commercial interest that we have identified for
our products is regional or grid-scale forecasts on timescales of 7 to 32 days.

Thrust I. Weather and climate dynamics of wind power variability

We have completed all of the tasks under this thrust. However, a major challenge has been to identify
suitable data sets for the project; the data sets proposed in the original proposal proved not to be useful
beyond the lifespan of the project and commercial providers of hub wind data have all gone out of
business. We obtained a limited amount of proprietary hub height wind data, but for the most part relied
on conventional meteorological data sets. The interest of our potential clients focused our data analysis on
the diurnal cycle and ramp and shut down events. Our primary accomplishment for the climate dynamics
analysis was to develop a climatology back to 1950 consisting of the daily values of the weather regime
teleconnection indices.

Thrust I1. Prediction of regional wind power

Based upon interest from our potential clients, this thrust has been the major focus of our Phase Il efforts.
We have met all of the objectives and completed all tasks in this thrust. The greatest challenge in this
thrust was to devise strategies for model calibration, given the paucity of in situ wind data available in
real time. We have developed and implemented a model calibration strategy that uses the model
reforecast runs, recent model verification statistics against the models own operational analysis, and
regional power generation statistics. This calibration strategy was leveraged by our efforts to improve our
operational energy demand (temperature) forecast products, which has much better calibration data.

Thrust I11. Interannual and decadal projections of the wind power environment

This thrust has not met all of the original project objectives, owing to our assessment of the lack of
regional predictability of the CMIP5 models. Further, we have not been able to identify any significant
commercial interest in extended range projections. Our team published the first comprehensive
assessment of the CMIP5 10 year decadal simulations, which show very limited utility at the regional
scale. Our seminal research into multi-decadal climate variability has provided a new framework for
generating observation-based scenarios of decadal variability (published in Climate Dynamics). Curry
convened a UK-US Workshop on Climate Science Needed to Support Robust Adaptation Decisions that
focused specifically on developing regional climate scenarios for decadal time scales.

Thrust IV. Decision support tool

The web-based decision support tool development met all the original project objectives and is fully
operational for daily to seasonal forecasts, providing forecast information for each of the wind power
generating regions in the U.S. Feedback from our beta-users has provided the basis for improving the
utility of the dashboard throughout the span of the project.



5. Summary of project activities

The Phase 1l work plan was designed around the development of two marketable solutions to address the
challenge of providing extended range weather and climate forecast products to support decision making
associated with wind power:

i. A real-time, operational forecast service provided on a web-based platform on daily, subseasonal
and seasonal time scales.

ii.  Scenario analysis of the regional future wind power environment on interannual to decadal scales.

The Phase Il research was organized into four interrelated thrusts. Our accomplishments and assessments
for each of these thrusts are described below.

Thrust I. Weather and climate dynamics of wind power

The overall objective of this thrust was to prepare a dynamical climatology of variables that characterize
the regional wind power environment and its variability in the context of the annual cycle and pervasive
weather regimes. A key element of the dynamical climatology analysis is a weather typing approach that
is based on an analysis of wind power statistics associated with specific weather regimes and
teleconnection patterns.

1. Assemble and evaluate the relevant data sets

Hub height wind data

During Phase 1, a cooperative arrangement was reached with AWS Truepower that included provision of
wind data. However, much of the data they have access to is constrained by agreements with individual
providers, although we did make considerable use of the sodar wind data from the ERCOT region that
they provided us.

A survey of commercial wind data providers was performed in preparation of Phase Il efforts. We
selected Onsemble, which had the largest independent network of real-time wind speed and direction
measurements. Their network consists of over 300 hub-height sensors in the 8 major US electrical
markets. The data acquired in key locations across the ERCOT region spans both the historic time frame
from 2012 forward through the future facing dates for the remainder of 2014. Unfortunately, Onsemble
has now gone out of business, as have the other wind data providers that we had previously identified.

In addition to the ERCOT data, an agreement has been entered with Southern Company to receive hub
height data from their wind farm locations in the Southern Great Plains. We are receiving near real time
data and building a historical data set that will provide a seasonal profile for their specific location to be
used specifically in the statistical correction techniques covered further in Thrust I1.

During the period from 2008-2013, many government and privately funded projects were undertaken to
build valid hub height data sets across the US. At the beginning of Phase Il it seemed as if this was
actually a growing market segment. However, most government-funded projects have ended and the
private market has all but disappeared. The lack of publicly available or commercial hub height wind data
has been a significant impediment to the project and its long-term prospects, particularly in terms of
demonstrating value to potential customers of our short-range forecasts.



Specifically for ERCOT we have obtained the following power generation data:

o Historical wind farm production data in the ERCOT region from 2004-2012 from NREL project
at 1 minute intervals (data obtained from Xcel)

e ERCOT system reports from 2007-2013 on total production and percentage of production
generated by wind with intervals varying from 15 minutes to 1 hour (available as a registered user
of ERCOT’s Planning and Operations website)

e Current ERCOT wind production for the entire region and two core sub-regions at 1 hour
intervals (available to US users directly from ERCOT website)

While consistent regional wind farm data is not readily available across all other key regions of the U.S.,
comparable generation and production data at regional levels can be found in many cases. We completed
a survey with respect to quality of data from other Federal Energy Regulatory Commission (FERC)
regions such as the Southwest Power Pool (SPP) and the Midwest (MISO) in addition to providers in key
wind power regions that are not part of FERC such as the Bonneville Power Authority (BPA). Evaluation
was made with respect to items such as:

e Wind based power production at different spatial and temporal resolutions
¢ Wind production expansion plans

e Wind power excess production capacity exchange with other regions

e Wind production as part of total power and renewable production mixes

e Wind production curtailment orders

While each FERC region has different degrees of readily available data, most have reasonably accessible
data that could be utilized in different aspects of our solutions from ranging from forecast enhancement to
verification. Additionally, market study efforts during year two led to discovery of contacts within some
of these organizations that showed interest in our solutions. This has the potential to lead to strategic
partnerships with these organizations as we move beyond Phase 1.

Wind farm data

We completed a survey of wind turbines in the ERCOT region, using information obtained from the
Public Utility Commission of Texas. A list of wind energy plants in Texas identifies a total generation
capacity for Texas of 11,272 MW as of 23 January 2013. The information collected for each wind farm
includes location, turbine types and hub height, and number of turbines; a summary of this information
was provided in the Phase Il Year 1 Report. For each turbine type, we obtained the rated capacity and
power curve.

During the course of Phase Il, the USGS released a major study that attempted to catalog all US onshore
turbines. This study - http://pubs.usgs.gov/ds/817/ and its corresponding web tool - have provided an
exceptional resource in efforts to expand our data availability of this type outside ERCOT. We undertook
a study to compare existing ERCOT data with the new USGS data for the same region. The resulting
correlations were very high and provide confidence that we can keep up to date wind farm/turbine data
via this tool while it remains consistently updated.

Reanalyses

For forecast verification and calibration and also climate dynamics studies, the project requires hub height
wind data. Because of the limited availability of high quality hub height wind data, both in space and
time, we have investigated the use of analysis and reanalysis data sets from Numerical Weather Prediction
(NWP) models. The following analysis and reanalysis products have been assessed:
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o North American Regional Reanalysis (NARR): provides meteorological data every 3 hours at
every 25 hPa on a ~32 km resolution, since 1979.

o MERRA-Land (NASA): provides meteorological data (including 50 m vector winds) every hour
on a resolution of 2/3° longitude by 1/2° latitude, since 1979.

e ECMWEF operational analyses: provides 100 m vector winds on a 12.5 km resolution, since 2010.
e ECMWEF Interim Reanalysis: 100 km horizontal resolution since 1989.
e CFSR reanalysis (NOAA): 0.5° resolution since 1979.

For forecast calibration, 20 years of historical data are required. Higher horizontal resolution is desirable.
During Phase I, we used the NARR. We evaluated the (calculated) hub height winds from the
analyses/reanalyses against available sodar data in the ERCOT region. While the ECMWF operational
analysis verifies very well, we also needed to select one of the reanalysis products that goes back to 1979.
Based upon on our evaluation using sodar wind profile observations and wind farm power generation
data, we selected MERRA as the basis for forecast calibration and climate dynamics studies.

Figures 1.1, 1.2 and Table 1.1 compare three different sodar sites with the nearest MERRA grid cell. It is
seen that the MERRA provides a relatively good characterization of the sodar measurements, with
differences attributed to local topography at the sodar sites and the comparison of a grid-scale value to a
point measurement.

SODAR sites vs MERRA 50m wind select 14 day comparison (Sept 9 — Sept 23, 2012)
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Figure 1.1. Comparison of 50 m winds from three sodar sites with the nearest MERRA grid cell for the
period 9-23 September 2012.



SODAR sites vs MERRA 50m wind seasonal comparison
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Figure 1.2. Comparison of 50 m winds from three sodar sites with the nearest MERRA grid cell for the
period 7/21/2011 - 8/31/2012.

Table I.1. Correlation coefficients between 50 m winds for 3 sodar sites and the local MERRA grid cell for
7/21/11 - 8/31/12.

Sodar sites and MERRA 50m wind
correlation coefficients

Full Data Set Seasonal: JA Seasonal: DJF
{7/21/2011 - 8/31/2012)

SODAR:Cleburne 0.82 0.75
SODAR:Jayton 0.57 0.61 0.48
SODAR:Reagan 0.75 0.79 0.73

A more relevant assessment of the utility of the MERRA reanalysis is obtained from comparison with
observed wind power generated by a wind farm. Figure 1.3 shows 6-hourly farm-level verification of
calculated wind power using MERRA for Jan 2012 for the Trent Mesa Wind Project (100.199° W,
32.429° N), located between Abilene and Sweetwater, Texas, in the West Weather Zone of ERCOT. This
wind farm uses 100 GE 1.5 MW turbines. Figure 1.3 indicates that there is no overall bias in the
calculated wind power. Some of the magnitude errors are likely associated with differences in spatial
resolution; this verification site represents an area of ~96 km® (16x6 km) compared to the MERRA
resolution of ~3350 km? (50x67 km). Figure 1.4 shows the verification for all of 2012.
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Figure 1.3. Comparison of ERCOT power data (normalized to 1.5 MW) from the Trent Mesa Wind Project
to power data reconstructed from the MERRA reanalysis dataset in January 2012. Left: ERCOT 1 minute
interval data temporally aggregated to 6 hour intervals versus MERRA reconstruction. Right: Differential.
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Figure 1.4. Comparison of ERCOT power data from the Trent Mesa Wind Project to power data
reconstructed from the MERRA reanalysis dataset in 2012. Left: ERCOT 1 minute interval data temporally
aggregated to 24 hour intervals versus MERRA reconstruction. Right: Differential.

2. Relate decision relevant variables to the meteorological variables

Since most of these are straightforward, the discussion here focuses on power ramps and upscaling for
regional power generation.

Regional upscaling. During Phase Il, we developed a power curve for each model grid cell that is
weighted by the number of turbines of each type. The wind power in each model grid cell is then
determined from the predicted wind speed, the number of turbines in each cell, and the grid power curve.
Power is then output as the ratio of the forecasted power to the rated power capacity, for each wind farm,
grid cell or region. This upscaling strategy is now operational in our wind power forecasts.



Power ramps. Because of the large diurnal ramp different regions, the statistical post processing filters
out the diurnal cycle in wind power production. The diurnal cycle is filtered out using the time series of
wind power for the previous 14 days and three predictors [mean, sin(2xt), cos(2xt)]. In context of the
temporal resolution of the ECMWF forecasts, we define a ramp to be a change in the regionally averaged
power output that is at least 30% of the rated power output and occurs within a time span of 6 hours or
less, which insures that power changes are sufficiently rapid and that sufficient ramps are identified for
analysis. The relevant characteristics of a power ramp are its magnitude, direction (up or down), timing
and duration.

3. Wind dynamic climatology

We developed a dynamic climatology of weather regimes as a function of month (annual cycle) and
teleconnection patterns to determine any changes in the statistical distribution of the 50 m wind speed
associated with these regimes. This analysis provides a key source of information regarding the
predictability of wind power in terms of region, season, and weather regime, and also provides a
statistical basis for use in the decadal scenarios. The term weather regime typically connects the large-
scale atmospheric recurring patterns such as the northern hemisphere teleconnections to planetary and
synoptic-scale atmospheric dynamics. In general, weather regimes persist for several days to a week, and
rapid transitions may occur between them.

The underlying methodology for determining weather regimes for this study uses a k-means cluster
analysis of 500 hPa geopotential height anomalies from the ECMWF over the North American for each of
the 4 seasons. Several of the cluster patterns resemble combinations between the Arctic Oscillation (AO),
Pacific North American pattern (PNA) and North Atlantic Oscillation (NAO) regimes. The next step was
to composite the near surface wind speed (50-m) from the MERRA reanalysis for each cluster to assess
the impact of a particular large-scale regime onto the hub-height wind speed over South Central US.

The cluster analysis was performed using daily geopotential data for the period 1979-2012 for each of the
4 seasons. The domain for the cluster analysis was selected as 20N-87.5N; 157.5E-360E, to cover North
America and the surrounding ocean basins. The 500 hPa geopotential height anomalies were calculated
with respect to the daily 1979-2012 long-term climatology. The daily data was smoothed with a seven-
day running mean filter to ensure the clustering filters out some of the high frequency signal, and focuses
on more robust lower frequency features. A k-means cluster analysis using Euclidean distance was used
to identify commonly occurring patterns of 500 hPa geopotential height. The clustering was conducted
using the EOF sub-space. The first 10 EOFs were retained as they explain between 81% and 65% of the
variance, depending on the season. Note that selecting more modes does not alter the results significantly.
The number of clusters was selected using the average silhouette of the data, and based on comparison to
previous published studies. Seven clusters were specified for each of all 4 seasons. Results show the
geopotential cluster composites computed from the low-pass filtered geopotential height anomalies by
averaging all the instances associated with each cluster. Similar composites were conducted for the daily
low-pass filtered 50 m wind speed and the AO, PNA and NAO teleconnections.

Figure 1.5 a-d provide analyses for each of the 4 seasons of the most significant clusters. For each season,
the 2 or 3 dominant clusters are shown, with the geopotential pattern for North America and wind
anomalies for the ERCOT region. The scatterplots are interpreted as follows, using DJF as an example.
The figure NAO vs. AO provides the average NAO and AO magnitudes of all days corresponding to each
cluster. For example, Cluster 7 (C7 - in red) is associated with strong negative AO (-2.7) and strong
negative NAO (-0.75). In contrast cluster 6 (C6) - orange is associated with weak positive AO (0.2) and
strong positive NAO (0.2). It appears that the greatest influence on ERCOT wind speeds is represented by
medium to strong PNA patterns in association with weak AO. In contrast, the NAO or strong AO do not
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seem to influence the ERCOT winds in a consistent manner. In general, we see negative PNA and a weak
positive AO is associated with strong winds over ERCOT region, and positive PNA is associated with
weaker than normal ERCOT winds.
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Figure 1.5 a): Selected k-means composite clusters (6 and 1) patterns of 500-hPa geopotential height
anomalies (m) over the N. Am. As well as 50-m wind speed (m/s) over the south central US encompassing
the ERCOT region and composite mean AO, NAO and PNA indices of the all days included in each of the
seven clusters (bottom panels 1 through 3 as labeled). The clusters were computed for the Northern
Hemisphere winter season.
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Figure 1.5 b): Same as a) but for the MAM period, with the top panels depicting clusters 7 and 4.
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Figure 1.5 ¢): Same as b) but for the June through August period. Clusters 2, 3 and 6 were included.
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Figure 1.5 d): Same as c) but for the September through November period. Clusters 1, 3 and 7 were
included.
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Consistent with previous analyses based on near-surface observations or radiosonde data, there are strong
teleconnections between the leading modes of large-scale climate variability and both near-surface and
midtropospheric wind speeds over the contiguous US. Two recently published papers are also significant
in this regard. Pryor and Ledolter (2010) and Schoof and Pryor (2014) examined the relationship between
the annual 90th percentile wind speeds at multiple levels in the lower troposphere and NAO, PNA, and
ENSO and found that regionally averaged wind speeds exhibited significant differences with the phase of
at least one mode in all regions of the contiguous US. ldentification of strong statistical relationships
between near-surface and lower troposphere wind speeds and large-scale modes of climate variability
suggests that low frequency variability associated with these climate modes could be used to estimate low
frequency wind variability using large-scale circulation features simulated by climate models.

Thrust I1. Prediction of regional wind power

For predictions on timescales from days to seasons, CFAN’s operational wind power forecasts are based
on the European Centre for Medium Range Weather Forecasting (ECWMF) ensemble weather forecast
system, including the following products:

e Deterministic atmospheric model: 1-10 days at 0.125° x 0.125° horizontal resolution, available
twice daily at 3-hour intervals to 144 hours, and at 6-hour intervals at beyond 144 hours.

e Atmospheric Ensemble Prediction System: 51 ensemble members, 1-15 days at 0.25° x 0.25°
resolution to 10 days and 0.5°x 0.5° resolution beyond 10 days. Available twice daily at 6-hour
intervals.

e Monthly forecasting system: 51 ensemble members, 1-32 days at 0.5° x 0.5° resolution. Output
variables include wind velocities at 10 m, 1000 hPa and 925hPa, available twice weekly at 6-hour
intervals.

e Seasonal forecasting system: 41 ensemble members, 1-7 months at 1.5°x 1.5° resolution. Output
variables include 10 m wind velocities, available once per month at 6-hour intervals.

1. Produce probabilistic forecasts

CFAN is producing probabilistic forecasts for ERCOT (Texas), Southern Plains, Northern Plains,
Midwest and West Coast (Northwest and California) regions. We are also producing operational forecasts
of wind power and temperature anomalies for the continental U.S. and offshore regions. A large-scale
ramp forecast product is operational for ERCOT. Monthly wind anomalies out to 7 months are produced
for the continental U.S. and Europe. Weather regime forecasts are operational, for 1-15 days, 15-32 days,
and out to 7 months. The login information for DOE users is as follows:

<< Confidential information
Site: http://cfan.eas.gatech.edu/BETA/wd.php
User. DOE
Pass: Phase!!2015
ends here >>

Operational environment

During 2013, CFAN made a major shift in its computing environment that was designed to make it more
robust and geared for true operations. Despite the bandwidth benefit of being located historically in
Georgia Tech facilities, the technical staff was geared only for traditional work-week support. By
entering into a long-term strategic agreement with The Weather Companies, we were able to make a
major leap forward in our operational environment. Our production environment server gained a 16-fold
increase in processing capability and a doubling in our development environment, which can also serve as
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a production backup. This redundancy has also been added to web distribution environment as well. This
computing environment is supported by a 24x7 operational staff that serves a large global user
community.

Regional, daily wind power forecasts

Probabilistic wind and power forecasts out to 15 days are now available for the following regions:
e ERCOT

Northern Great Plains

Southern Great Plains

Midwest

Northwest

California

Each of these locales is divided into zones based upon concentrations of wind farms and meteorological
regimes (Figure I1.1 shows the zones for each of these regions).

(1) North

(2) North-Central
(3) East

(4) Coast

{5) South-Central
(6) South

(7) West

(8) Far West

(8) ALL

{1) NE Nobraska
(2) N Kansas
(3) SE Kansas
(4) S Kansas

{5) NW Oklaholma
(6) SW Oklaholma
{T) NW Texas

(8) W Kansas

{9) NE Colorado
{10) ALL

6 Central CA
7 Southcentral CA
8 Southeast CA

(1) SW North Dakota
(2) NE North Dakota
(3) SE North Dakota
{4) W Minnesota

(5) E South Dakota  (8) NW lowa
(&) SW Minnesota (9) NE lowa

(7) E Minnesota (10) S lowa
(11) NW Missouri
1 South Wi
2 North IL
3 Central IL

1 Northwest WA
2 Southeast WA

7 Northwest OH

3 North OR 8 West NY
4 Southwest ID 4 North Gentral IN 9 South PA
5 Southeast ID 5 West MI

& East MI

Figure 11.1. Forecast region / zone maps for the currently forecasted areas - ERCOT (upper left), Northern
Plains (upper right), California (middle left), Southern Plains (middle right), Northwest (lower left),
Midwest (lower right).
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Figure 11.2 is an example of 15-day wind power forecasts (initialized 1/26/2014) for individual zones in 3
separate regions along with forecasts (initialized 4/30/2015) for zones from the latest regions added to the
operational product in year 2 of the project. The forecasts display outputs derived from both the ECMWF
high resolution deterministic as well as ensemble based forecasting systems.
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Figure 11.2. 15 day forecasts initialized 1/26/14 for: West Minnesota (upper left); west Oklahoma (upper
right); and north Texas (middle left). 15 day forecasts initialized 4/30/15 for: Western New York (middle

right); Southwest Idaho (lower left); and Central California (lower right).
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U.S. wind power anomaly and population weighted energy demand products - daily

Figure 11.3 shows an example of a wind power forecasts anomaly at 96 hours after the initiated forecast
date of 2/15/15. The forecast covers a 6 hour period and in this case reflects the contrast of synoptic scale
features with a large frontal boundary moving across the eastern US.
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Figure 11.3. Example of the operational wind power anomalies generated at 6-hr resolution through 240
hrs. Forecast is initialized 2/15/15 and the time horizon is at 96 hours. The region outlined in black denotes
ERCOT, green indicates the Southern Plains, and purple denotes the Northern Plains.

The anomaly forecasts use the ECMWF ensemble predictions of the 100 m total wind field and calculate
the wind power using the GE 1.5 S power curve for each grid point location. The calculation is completed
at each grid point and for each ensemble separately before calculating the mean ensemble power. The
grid point wind power projections are calibrated using the ECMWF hindcasts for the 100 m total wind.
The climatology is determined by averaging the last 20 years and 5 ensemble members (total sample size:
100 members). Finally, the wind power anomalies are determined by removing the climatology from the
ECMWEF ensembles. The anomalies are then scaled by 1.5%10 to derive the probability (in %) for each
grid point.

Analogously, Figure 1.4 shows an operational forecast of population weighted energy demand based on
temperature anomalies.
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Figure 11.4. Example of the population-weighted temperature anomalies generated at 6-hr resolution
through 240 hrs. The forecast is initialized 2/15/15 and reflects the forecast at 96 hours.
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The population data set used is from the 2010 Census Data. Gridded population estimates valid for 2010
were obtained from Colombia University’s Gridded Population of the World: Future Estimates. This
population dataset contains a low-resolution version of the UN-adjusted population count grids in ASCII
format. The raster data are at 0.25 degrees (15 arc-minutes) resolution for the continental U.S.

Using the ECMWEF ensembles and the 2m surface temperature along with the ECMWF hindcasts, the
surface temperature anomaly per ensemble is determined. Next, the temperature anomaly for each
ensemble member is then scaled by population. The scaling occurs by grid point in which for each grid
point the locus of points that fall within 75 km of a grid point are identified. Then each grid point is
weighted by the population of the grid point normalized by the total population of all grid points that fall
within this radii, and the results are aggregated to determine the final anomaly. The procedure acts as a
smoother to the spatial anomaly fields but also tends to amplify the raw temperature anomalies especially
in regions where the anomalies occur in regions of high population density.

The temperature-based demand forecasts are often used as a primary indicator of the demand side need
for power generation. When used in the conjunction with the wind anomaly forecast, a user can gain a
better understanding of where wind power will or could fit into the overall power generation mix at
forecast intervals over the next 10 days.

ERCOT Wind Ramp Outlooks - daily
Figure 11.5 is an example of a wind ramp risk outlook for ERCOT Zone 7. These high resolution point

forecasts are an example of extreme event forecasts. The forecasts highlight exposure to pronounced
anomalies expected at windfarm level resolution.
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Figure 11.5. Ramp risk forecasts initiated on 2/15/15 for the next 10 days at 30Nx101.75W.

A ramp is forecast to occur when the variation is high and steep enough compared to the normal variation
for a location. We define the variation as 30% of the nominal wind power for a grid point. We classify
ramps based on their support, timing, and intensity. These forecast help both wind energy suppliers and
users in anticipating anomalies outside what would be typically consider a normal diurnal variation
window.

Weather regime forecasts - weekly

We have implemented operational probabilistic weather regime forecasts for 1-32 days using the
ECMWF monthly forecast product. The Arctic Oscillation (AO) index is developed by projecting the
1000 hPa daily geopotential anomalies poleward of 20°N onto the loading pattern of the AQ. This pattern
represents the leading Empirical Orthogonal Function (EOF) of the monthly mean 1000-hPa height
anomalies poleward of 20°N. The other weather regimes loading patterns are determined by applying a
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Rotated Principal Component Analysis (RCPA) analysis to the monthly standardized geopotential height
anomalies at 500 hPa. This analysis yields 10 weather regimes, of which we use the following: North
Atlantic Oscillation, East Atlantic, East Atlantic/Western Russia, Scandinavia, Polar Eurasia, West
Pacific, East Pacific-North Pacific, Pacific North American. This method of calculating the weather
regime indices follows closely the method used by NOAA CPC. These patterns have varying degrees of
influence on weather behavior across the different regions of the U.S. Typically the values help in
diagnosing prolonged (3+ days) variances from normal that can be expected to impact a given region and
its meteorological environment.

Recent forecasts for the Arctic Oscillation (AO) and Pacific/North American pattern (PNA) are shown
below in Figure 11.6.

Forecast Date: 02/16/2015 AO Forecast Period: 02/16-03/15 Forecast Date: 02/16/2015 00Z PNA  Forecast Period: 02/16-03/15
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Figure 11.6. 32 Day Probabilistic forecasts of: Arctic Oscillation (AO; left) and 32 day forecast of the
Pacific/North American pattern (PNA,; right).

Subseasonal and seasonal forecasts

Subseasonal forecasts (out to 32 days) of wind power (% of rated limit) are provided for the ERCOT
region (9 zones plus entire region).
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Figure I11.7. 32 Day probabilistic outlook for Zone 7 in ERCOT.
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Seasonal gridded forecasts of continental wind anomalies (continental U.S. and Europe) are provided out
to 7 months for monthly averaged wind anomalies, although there is limited skill beyond one month.

The example shown in Figure 11.8 demonstrates high overall power availability during the forecast period.
Yet high amounts of uncertainty exist when compared with the projections seen in figure 11.6 for the
influential teleconnection regimes.

Monthly Wind Anomalies (m/s): 925 hPa
Initial Date: 03/01/2015 002 Valid Date: 03/2015
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120W
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Figure 11.8. Monthly average for March showing negative wind anomalies for ERCOT and the West Coast
while the Northern Plains and Midwest can expect enhanced wind production.

A major study is being undertaken on seasonal predictability of ENSO and the SOI (Southern Oscillation
Index), which is the principal basis for any predictability of winds beyond 45 days. Figure 11.9a shows the
long-term variability of March SOI autocorrelation for different lag months using a 15-year sliding
window. Figure 11.9b shows the same but starting in June. Together the figures show generally short-term
persistence in the boreal spring and generally longer persistence from summer onwards. But there is also
coherent interdecadal variability added to this seasonal behavior. For example, Figure 11.9a indicates that
there was an increase in spring persistence between 1946-1956, with the initial March persistence signal
projectioning more like the summer. June persistence shows interannual/interdecadal variability as well
(Fig. 11.9b).
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Figure 11.9. Interannual variability of (a) March and (b) June SOI persistence for the period 1876-2014.

Persistence is calculated as lagged autocorrelation for lag months 1 to 24. A sliding window of width 15

years was used to compute the correlations. The x-axis marks the center of the 15-year window, while the

y-axis represents the lagged months.

Products under development

While the STTR project has formally completed, based on feedback from our BETA users we continue to
undertake enhancements to our operational suite of forecast products.

We have developed the capability for providing ‘point’ forecasts of wind speed and wind power on the
scale of an individual wind farm. Effective forecasts require a real-time stream of hub height wind
observations (as well as detailed information about the wind turbines). We are developing a beta version
in conjunction with Southern Company.

We are evaluating new zones for the Wind Ramp forecasts. This high-resolution type forecast has been
well received by a wide variety of user types; however the production cost is high. Evaluations will be
made on the most prominent regions in the overall US wind energy production profile. This type of
product could also be developed for individual wind farms as part of a suite of ‘point’ products.

In addition, CFAN is in the process of developing a gridded 0.5° resolution, 100 m wind forecast product
for the continental U.S., Europe and eastern Asia, focusing on the subseasonal time scale (3-4 weeks).
This product is being developed to the specifications of Weather Systems International (WSI; a subsidiary
of The Weather Companies), under CFAN’s license and product development agreement with WSI. This
product is targeted at energy traders and the financial sector. It is likely this project will lead into the
expansion of other portions of the existing suite into the European domain.
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2. Statistical post processing and ensemble interpretation

The most challenging and time-consuming aspect of this project has been statistical post processing, and
we continue to evaluate and improve our techniques for statistical post processing.

Regional average power production
An example of the difference between the original area-averaging with the upscaling scheme is illustrated

in Figure 11.10. Depending on the distribution of wind speeds across the domain, the new scheme may
predict more or less power than the original scheme.
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Figure 11.10: Wind power prediction for ERCOT zone 8 initialized in 1/1/14. Left — original area
averaging scheme; right — new upscaling scheme.

Bias and distributional correction

We have implemented a new bias correction based on weighted average mean bias, which has proven to
be superior (particularly at longer lead-times) to the existing 14-day mean bias correction. The scheme is
based on an adaptive (Kalman-type) algorithm to accumulate the decaying averaging bias. Basically, the
bias bj(t) is estimated for each forecast lead time and at each grid point (i, j):
bij(t) = f”(t) - oaij(t)

where f represents quantile corrected ensemble mean the, and oa represents the operational analysis for
that time interval. Next, the decaying average B;j(t) will be updated based on the previous Bj j(t -1) and
current bias bj j(t) and using a decaying average with the weight coefficient w, as follows:

Bi,j(t) =(1- W)*Bi,j(t -1) +W*bi,j(t)
The corrected forecast is then represented by:
F correctedi,j(t) = F g-to-q i,j(t) - Bi,j(t)

The challenge is the selection of an appropriate weight (w) since w may vary regionally.

Currently, the ECMWEF reforecasts are much more limited as they encompass the last 20 years and only
feature a 5-member ensemble that is available once weekly. In May 2015, ECMWF will be making their
reforecasts available twice weekly using an expanded ensemble size. However, there is a growing
concern that the ECMWEF historical reforecasts are diminishing in utility owing to the growing differences
between the model version used for initializing the reforecasts and the current operational model.
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Hence, we are continuing to rethink our calibration scheme, to reduce dependency on the reforecasts. In
addition to these techniques we are also planning to evaluate approaches utilized in a recently completed
precipitation forecast evaluation process. Here, we briefly summarize a few of the methods under
consideration.

Logistic regression and recently extended logistic regression (Wilks 2009)" are a type of generalized
linear model that uses a logistic function (Equation 1) to map a set of input variables, e.g., ensemble mean
precipitation, ensemble standard deviation precipitation, total precipitable water, etc. to probability space
(bounded between 0 and 1).

f&) =

T e_t,where t = Lo+ B1x%+ Bx (1)

Hamill et al. (2008)* uses a one-quarter power transformation factor (o = '), while other analyses where
the ensemble standard deviation is not included often set the power-transformation factor slightly larger
(oo =1/3 or a = %5). Generally, it is thought that for more-highly skewed distributions, a smaller exponent
power transformation is needed. Unlike with temperature calibration where a small 30-day training set
produces improved forecast skill, the Hamill et al. analysis clearly demonstrates the need for a large
sample of reforecasts to improve precipitation forecast skill especially at higher precipitation thresholds
and at longer lead times. Following this methodology we will investigate the optimal power
transformation factors for wind speed and evaluate the use of logistic regression in adjusting the wind
speed.

Another approach for probability calibration is known as the rank analog approach (Hamill et al. 2015)3.
This approach is currently being used experimentally by NOAA ESRL for the GEFS Reforecast v2 here:
http://www.esrl.noaa.gov/psd/forecasts/reforecast2/ccpal/index.html. The technique utilizes the reforecasts
to identify historical analog events relative to the current forecast to compute probabilities of exceedances
at varying forecast lead-times. The probabilities are then smoothed using a 2D Savitzky-Golay smoother.
Verification of this approach clearly demonstrates improved forecast skill relative to the raw model but
produces similar forecast gain to that seen with logistic regression and extended logistic regression.

Ensemble dispersion

A post-processing calibration of an under-dispersive ensemble forecast can have a negative impact on the
forecast. It is more desirable to alleviate the under-dispersion by adding “good spread”, which is defined
as an increase in ensemble variance that simultaneously improves statistical consistency (i.e., ensemble
variance matches the MAE of ensemble mean), reliability, and resolution. For instance, adding noise does
not create good spread since a decrease in resolution would result.

We judged our ensembles to be under-dispersive, especially for the first few days of the forecast. We
improved the dispersion of our forecast ensembles by first computing an inverse normal cumulative
distribution function (CDF) using the mean absolute error as the new sigma. This was then used as the

! Wilks, D. S., 2009: Extending logistic regression to provide full probability-distribution MOS forecasts. Meteor. Appl., 16,

361-368.

2 Hamill, T. M., R. Hagedorn, and J. S. Whitaker, 2008: Probabilistic forecast calibration using ECMWF and GFS ensemble
reforecasts. Part II: precipitation. Mon. Wea. Rev.,136, 2620-2632.

3 Hamill, T. M., M. Scheuerer, and G. T. Bates, 2015, Analog probabilistic precipitation forecasts using GEFS Reforecasts and
Climatology-Calibrated Precipitation, Mon. Wea. Rev., accepted.
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basis for redistributing ensemble members at each forecast time step.

To calibrate a zonal wind power forecasting scheme, historical estimates of the total wind power
generation in each zone (Fig. 11.1, top left) were first created by combining ERCOT-wide wind power
generation data and zone-specific fuel-wide (coal, hydro, etc.) power generation data at 15 minute
intervals. This produced zone-specific wind power data, an example of which is shown in Figure 11.11
(black time series). These observational data were interpolated to 6-hour intervals and converted to a
percentage of rated power in order to be compared to ensemble wind power forecasts. Due to sub-optimal
initial perturbation-generation techniques and unattributed model errors, a common problem in
operational probabilistic forecasting is under-dispersion of ensemble members (Wang and Bishop 2005),
as is illustrated in Figure 11.11 (left).
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Figure 11.11. In the left plot, the dispersion of ensembles (red time series) is insufficient to fully
characterize the forecast uncertainty at shorter lead times. In the right plot, the forecast uncertainty is
conditionally expanded via a lead-time dependent bias correction. The corrected forecast has greater spread
at shorter lead times and encompasses the observation (black time series) in this example.

Ensemble clustering

When the ensembles show a wide spread, interpretation of the ensembles can be aided by clustering,
which can increase the sharpness of the distributions and in the assessment of uncertainty. There are a
variety of clustering methods that can be used, including self-clustering and regime clustering. CFAN has
successfully implemented regime clustering in its seasonal forecasts, whereby ensemble members are
clustered around values of the ENSO or the AO index.

CFAN has developed a new ‘Bayesian’ clustering approach that focuses on selecting a high-predictability
cluster based upon initial verification of each ensemble member by subsequent observations or
subsequently initialized forecasts. CFAN has successfully implemented the high-predictability clustering
approach into our seasonal forecast products and also our daily hurricane forecasts by including the top
five verifying cluster members into a high predictability cluster. The high-predictability clustering
provides a basis for eliminating those ensemble members that are deviating towards an unlikely
trajectory, thus providing for increased sharpness in the forecast. An example of ensemble clustering for
the seasonal forecast is illustrated below, comparing the ensemble mean maps with maps determined from
the high-predictability cluster.
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Figure 11.12. Clustered forecast and ensemble mean forecast for 925 hPa wind anomalies. Forecast
initialized 11/1/12; clustering based on monthly forecast initialized on 11/15/12.

Predicting power ramps

We have implemented operational prediction of large-scale ramp events for ERCOT, which is illustrated
in Figure 11.13.
ERCOT Ramp Events
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Figure 11.13: Example of the power ramp forecast product for ERCOT Zone 7. Top right shows the ramp
up probability as a function of forecast time while the bottom right graphic shows the ramp down
probability. The gray line is the time series of the ECMWF ensemble mean wind power (%) with respect
to total nominal power for a particular grid point.
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The ramp event calculation follows the methodology outlined by Bossavy et al (2012)*. After calculating
wind power for each grid point using the 100 m wind speed and the GE 1.5 power curve, a moving
average linear filter is applied before computing the first-order finite differences for each grid point.

where py is the wind power time series and n is the order of the moving average filter and the time step of
finite differences. For this analysis, we selected n = 5 hours based on the findings from Bossavy at
identifying ramp events based on the ECMWF ensembles. The one major difference from Bossavy
(2012) is we are calculating ramps with respective to differential, smoothed wind power anomalies. These
anomalies are calculated after removing the ECMWF hindcast climatology power for each grid point.
This approach removes systematic features (such as the diurnal cycle) and other biases (such as model
drift), obviating the need for other statistical adjustments to the power time series.

A ramp is forecast to occur when the variation is high and steep enough and if the absolute value of p[is
higher than the variation threshold z, which we define as 30% of the nominal wind power for a grid point.
We classify ramps based on their support, timing, and intensity. The ramp support is defined as the
duration in hours of the forecast ramp event [t;, t]. The ramp timing is defined as the time when the

absolute value of the filtered differential power signal p[ reaches its maximum amplitude, which also
defines the ramp intensity.

We calculate ramp events for each ensemble member after applying an uncertainty prediction interval,
6 = {2, 5,8} hours about the ramp timing value. Using a maximum prediction interval of 8 hours, this
value should account for most of the forecast wind error in phasing for the ensembles, while balancing the
need of sharpness by end-users in the ramp forecasts. The resulting time series graphics display the
probability of a ramp corresponding to each prediction interval and we calculate and display the ramp-up
probabilities separate from the ramp-down probabilities. The probabilities are derived from the ECMWF
ensembles. In the example in Figure 11.13, the different width ranges of the probability bins illustrates
how the methodology modifies the sharpness of the ECMWEF forecasts at extended forecast lead-times.
By displaying the probability for each ramp in its own color, a variety of end users with varying risk
tolerances to false alarms may be able to use the same product. Furthermore, by providing the time series
at each grid point for a given zone, an end-user may select the nearest grid point for their wind farm to
find the most representative forecast for their location.

The 100 m wind speeds from the ECMWF operational analyses for each grid point in the ERCOT region
are very well approximated by a Weibull distribution. We examined the ECMWF hindcasts for the period
12/5/2013 to 1/9/2014 for ERCOT, calculated the grid-point pdfs for ERCOT and conducted a one-
sample Kolmogorov-Smirnov (K-S) test to evaluate the null hypothesis that the hindcast data comes from
a standard normal distribution. For each lead-time that was evaluated -- 0, 24, 72, 120, 168, 240 hrs -- the
K-S test rejected the null hypothesis, indicating the data are non-normal. Hence, the hindcasts maintain
the appropriate pdf structure through 240 hrs lead-time (Figure 11.14).

4 Bossavy, A., R. Girard, and G. Kariniotakis, 2012: Forecasting ramps of wind power production with numerical weather
prediction ensembles. Wind Energy, 16, 51-63.
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Figure 11.14. (left) Probability distribution function of the ECMWF operational analyses 100 m wind speed
for all grid points residing in ERCOT region (in blue) along with a theoretical fit to the observed PDF using
a Weibull distribution (in red) for the period 11/27/2013 to 1/8/2014. Right similar to left, except shows
the wind power for all grid points within ERCOT after applying the GE 1.5MW S power curve on the 100
m wind speeds from the ECMWF operational analyses (blue). Wind power for the 100 m wind speed
Weibull distribution (in red) using same power curve is shown for comparison purposes.

3. Forecast evaluation and confidence assessment

Forecast evaluation is an integral part of the forecast product development. Our initial efforts were based
on techniques utilized for our other product suites available in the market today. The closest approach was
for those related to our temperature forecast products and more specifically the 15 day forecasts. We have
also been investigating insightful evaluation measures for ramp likelihood forecasts.

15-day forecast evaluation

An evaluation of a variety of verification techniques traditionally used with meteorological variables was
undertaken. This included items like Brier Score, Relative Operating Characteristics (ROC), and Root
Mean Square Error (RMSE). The creation of useful verification outputs was complicated by three
elements.

The first of these elements was the bounded nature of power forecasts. Traditionally RMSE is a very
useful criteria used with temperature based product evaluations. Despite it being well received by end
users, it requires the ability of free-floating values both above and below a forecast for effective use. As
can be seen in Figure 11.15, the RMSE values are impacted by the natural diurnal cycle seen in most wind
farm locations. This creates an artificial fluctuation in the RMSE results that favor low wind situations.

However we were interested to evaluate the model’s capability of capturing longer time scales beyond the

diurnal cycle. This led to shifting the evaluation to what we call bucket analysis. In this approach a
forecast can be graded in a hit/miss capacity as well as degree of accuracy.
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Figure 11.15. Example of RMSE analysis for ERCOT Zone 8 over a six month period in 2012.

The bucket technigue evaluates each forecast value at individual time steps for its proximity to the actual
observation value at that time step. Each bucket consists of forecasts that fall into a range. For instance,
all wind power forecasts between 10-20%, 20-30%, etc. Then the evaluation criteria are set for “hits’ and
‘miss’. Typically some percentage around the forecast is given such as +/-5% around the bucket itself.
As can be seen in Figure 11.16, an evaluation is made for the same 6 month period as in RMSE analysis.
In this case very stringent conditions were set for what was considered a hit with the requirement set to
better understand the sensitivities for each of the buckets utilized.

% rated capacity |Total

(forecasts) Forecasts |Miss High |Hit Miss Low
0-10 2726 |X 1122 1604
10-20 3922 938 803 2181
20-30 1761 507 229 1025
30-40 579 168 93 318
40-50 211 88 29 34
50-60 75 37 21 17
60-70 35 28 7 0
70-80 17 17 0 0
80-90 7 7 0 0
90-100 0 0 0|x

Figure 11.16. Example of Bucket analysis for ERCOT region 8 over a six month period in 2012.

The second complication was brought on by user requirements. Feedback has suggested interval analysis
is much more useful in support of decisions they make about products. With respect to meteorologically
based systems, seasonally oriented analysis has proven most useful particularly given shifts in forecast
performance based on changing seasonal regimes. Additionally, users tend to have different sensitivities
with respect to forecast time scales. For instance forecasts in the 3-5 day range might be evaluated
differently than those in 11-15 day window.

With this user feedback we adjusted the bucket analysis to incorporate both those criteria. Figure 11.17
shows an example of the revised bucket analysis. In this example it can be seen that the proximity to zero
was altered by using a range of 0-5%. Additionally the naming criteria were altered for easier user
interpretation. A good forecast started with highly stringent grading requirements that eased in time as
the forecast lead time extended out into the 15 day window. Additionally, the OK criteria level was
provided for forecasts that were on the fringes of the ‘Good’ level and allows for more realistic evaluation
of probability-based forecasts which would be hard to appraise otherwise with this approach.
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Figure 11.17 example demonstrates a quarterly time period and offline approach. The BETA user base
indicated that verification analysis is something that is more often done offline as well as being better
suited to a data format versus graphical where the inputs can be used in their own internal analysis.

Forecast: 0-5% Maximum Capacity Forecast: 25-35% Maximum Capacity
Gradehd 1-2 Dayshd 2-5 Days R 5-10 Days I 10-15 Days d Gradehd 1-2 Days Rl 2-5 Days B 5-10 Days |4 10-15 Dald
1047 1071 519 155 241 688 818
170 168 109 170 277 863 1177
176 45 642 1092 1406,

Forecast: 5-15% Maximum Capacity Forecast: 35-45% Maximum Capacity

Gradeld 1-2 Dayshd 2-5 Days B 5-10 Days_Kd 10-15 Days Ad Gradehd 1-2 Days R 2-5 Days_Rd 5-10 Days R 10-15 nahd

981 1698 3069 2504 103 167 287 161
389 514 744 580 a4 153 326 174
865 1051 1163 409 676 513

Forecast: 15-25% Maximum Capacity Forecast: 45-55% Maximum Capacity
| 1-2 DaysRd 2-5 Days B 5-10 Days K 10-15 Days e | 1-2 Days K 2-5 Days Rl 5-10 Days B 10-15 Dad
321 505 1542 1973 50 114 142
327 485 1454 1961 61 102 180
595 714 1554 2110, 179 242

Figure 11.17. Example of revised Bucket analysis.

The final complication relates to a need to have independent verification information on a much closer to
real-time basis. While this becomes less critical for verification reports and data provided to the users for
consideration when utilizing regular interval evaluations mentioned above, given the critical importance it
plays in statistical correction this data remains critical in the support of statistical based forecast
improvement. In trying to achieve this goal with forecasts there are essentially five approaches to be
considered.

Utilize initial conditions from the forecasting model utilized to make the prediction
Utilize the reforecasts or reanalysis from a different model or proxy based data set
Utilize in situ measurements from an independent provider

Utilize in situ measurements from a wind farm(s) operator

Utilize proxy measurements developed with respect to wind power generation

ok

The first approach mentioned would imply the use of ECMWEF initial conditions as a basis for how the
ECMWEF forecasts performed. This is always a good first order tool and can provide useful insight and
product development direction. This and model reforecasts can also be useful in helping forecast
improvement. However, making a comparison between a model and itself does create a boxing limitation
as it is impossible for a model to see beyond its own limitations. Techniques where this approach is most
appropriate were covered in the statistical post processing section above.

The second approach is often used to validate general forecast model performance when it is known that
another model or proxy is a strong performer. It can be particularly helpful in cases of grid based
forecasts where a reasonable proxy of a large spatial area is required.

A key focus of our initial verification effort was the diurnal cycle. Our assessment focused on the
locations and periods for which the WFIP SODAR data are available. We compared the closest grid point
of the ECMWEF operational analyses with the WFIP SODAR locations.  Figure 11-18 provides an
example comparison of the forecast initialized 1 August 2011 at Cleburne, Texas, comparing the high
frequency SODAR observations with the ensemble mean and the control member. There is a substantial
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amount of high frequency variability in SODAR observations that would not be captured by the coarse
temporal resolution of the ECMWF forecasts.

Figure 11-18. Comparison of SODAR wind data at 100m for Cleburne with the ECMWF forecasts
initialized 8/1/11.

In addition to the use of this data for point forecast such as the case above, it can also be utilized in a
gridded format. Examples of data sets to leverage were covered in the Thrust | analysis. The MERRA
data set for example provided a good proxy in comparison to the SODAR data above which conceptually
made it useful although the delay in its availability makes it more viable for verification analysis versus
real-time forecast enhancement.

Option three is potentially the most ideal for forecasts not geared to select end users, for example
individual wind farms in this case. CFAN acquired data from Onsemble for this specific purpose as part
of the project. This type of data delivers the benefit of in situ measurements that are hard to find for wind
data at hub height. As can be seen in Figure 11.19, the data can be used to adjust a raw model forecast for
better performance. Additionally it has the obvious side benefit of being useful in providing an
independent verification source. Wind speed measurements at the 17 stations were compared to the
ECMWF 100m wind speed operational analyses (a gridded product at 6-hour intervals) in the closest
single grid cell. Because the measurement stations produced data at 10 minute time steps, a humber of
temporal interpolation methods were applied to achieve the best fitting (Fig. 11.19). Method 1 is an
instantaneous sample, Method 2 is a 1-hr moving window, and Method 3 is a 3-hr moving window. The
differentials showed that all three methods produced similar mean errors in 2013 (dashed lines).

These observational data and corresponding daily probabilistic wind speed forecasts from 2013 were used
to train an ensemble dispersion correction. At each of the 17 locations, the lead-time dependent error
characteristics of the ensemble mean versus Method 3 observational data were calculated. These historical
error values were used to create a correction for gridded ECMWF wind speed forecasts. For each Texas
ERCOT grid cell and each forecast time step, the raw 51-member ensemble distribution was transformed
by computing the inverse of the normal cumulative distribution function (CDF). This was done using the
mean of the raw data and the standard deviation of location-specific historical error values.

The challenge with this type of source is the lack of availability. During the course of this project the
selected provider, Onsemble, shuttered its operation and the few others in the industry for the US have
either ceased operations or have delayed roll-outs. In working with the Onsemble data, our team had
substantial reservations about the data quality, as well as concerns about how true the representative point
locations were to larger scale areas.
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Figure 11.19. Example of Onsemble in situ data utilized to enhance raw model forecasts.

The fourth approach is very similar to the third. The benefits though are generally limited to the wind
farms supplying data. While the benefit could expand as more agreements are reached with wind farm
operators such as our aforementioned project with the Southern Company, without large scale adoption it
will be difficult to create zonal, regional, or gridded forecast enhancements with this type of product.

The final approach is one we undertook and achieved useful results. The regional grid operators such as
ERCOT collect heavy amounts of data with respect to wind power generation. While not a direct
measurement of wind at point locations, it does provide wind power information at zone/region levels.
This provides an opportunity to verify and enhance forecasts on these scales as well as reverse engineer to
a direct wind speed forecasts.

Figure 11.20 shows a verification analysis for the 15 day forecast in Zone 2 of ERCOT utilizing ERCOT’s
wind power production data for the given zone. Note the substantial error reduction especially for the first
150 hours of forecast. Utilizing a reverse engineering technique, the wind power production data is turn
into raw wind speed data. Based on this forecast error, the wind forecast is then adjusted before converted
into power. This approach is essentially a reversed methodology compared to techniques where CFAN’s
wind speed forecasts are translated into wind power forecasts. For the example shown it can be seen how
utilizing this technique allows for an overall wind speed forecast improvement particularly over the first
10 days. The overall potential benefits with wind forecast in the U.S. are high with this style of data sets.
There are fewer organizations to work with across the U.S. in securing access to this type of data. While
during the course of this project we used the data in a delayed fashion, ERCOT has worked with
organizations like Xcel to provide data in a near real-time fashion.
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Figure 11.20. Example of ERCOT power generation data used as both an enhancement to raw model
forecasts as well as a source of forecast verification.

Ramp likelihood evaluation

Our ramp forecasts have initially been built around point locations. This implies that the various data
sources we utilize elsewhere for forecast enhancement and improvement would possibly work well in the
ramp verification process. As an example, the SODAR data was used in the verification of ramp
forecasts. Figure 11.21 shows the forecast verification of a ramp on 27 September 2012 for Zone 2, from a
forecast initialized on 21 September. The diurnal amplitude is damped during frontal passages, and the
predicted large-scale ramp compares very well with the SODAR data.
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Figure 11.21. Comparison of the forecast initialized on 9/21/12 for zone 2 with the SODAR observations at
Cleburne.
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For a given wind farm the optimal choice would of course be data from the given wind farm. Of course,
the independent in situ sources would have also been ideal before their exit from the marketplace. When
direct in situ measurements are not available, high resolution data sets such as the previously discussed
MERRA are feasible.

Unlike the wind/power forecast which are probabilistic forecasts built around a mean or deterministic
core, ramp likelihood comes from a reverse position. The goal is evaluate a probability while at the same
time accounting for considerations such as timing shifts as the forecast lead time increases.

For the large area ramps, we assessed the raw model forecast capability for predicting the up ramps as a
function of forecast lead-time (1-15 days). The following statistics are presented:

» Probability of Detection (POD): Ratio of correct forecasts to number of times it occurred (Perfect
= ]_)

* Probability of False Detection (POFD): Ratio of false alarms to the total number of
nonoccurrences of the event (Perfect = 0)

» False Alarm Ratio (FAR): Fraction of yes forecasts that turn out to be wrong (Perfect = 0)

» Bias: Ratio of yes forecasts to the number of yes observations (unbiased = 1, overforecast > 1,
underforecast < 1)

Eliminating the diurnal cycle, the probability of detection exceeds 60% at all lead times out to 7 days,
whereas the probably of false detection is less than 20% for the first 6 days. The False Alarm Ratio is less
than 0.3 for the first week. Overall, the ramps are over forecast, although the False Alarm Ratio would be
reduced if the threshold cutoff for ramp amplitude was broadened.
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Figure 11-22. Statistics of forecast versus observed large area up ramps as a function of lead time: POD,
POFD, FAR, Bias.
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Confidence assessment

There were two overall objectives of this task:

1. Determination of the lead time and averaging period for which there is useful prediction skill

(statistics) for a particular variable, as a function of region, season, and weather regime.

2. Assessment of the confidence of individual subseasonal and season forecasts relative to the
expected predictability, based on the ensemble spread, weather regime, historical predictability

analysis, and recent forecast verification statistics.

Whereas it is relatively easy to make a prediction, it is much more difficult and arguably more important
to objectively assess the confidence level for a specific prediction. Our research has shown that regional
predictability is non-stationary and dependent on the background basic state. We have demonstrated that
seasonal predictability is highest for high amplitude phases of ENSO.®> We have further demonstrated that

predictability is lowest during certain phases of the Madden Julian Oscillation (MJO). ¢

CFAN has begun including an objective confidence assessment for its monthly and seasonal forecasts that
are being provided to clients in the energy sector. An example of monthly forecast with confidence

assessment is provided below:

ﬂ CFAN US Monthly Temperature Outlook << (091 3/2012) »»
~—__Regions ,
Weeks 1:{5&&& MNortheast | Southeast Midwest |South Central| Northwest | Southwest
Week 1
09/13-09M9 | pniionce | Gontence | Confidence
Week 2
09/20-09/26 | Jleceme | HeR
Week 3
09/27 - 10/03 C,rgﬁ?igztze erﬁ?ig;ﬂntze E‘.I;:ﬁgi;l;tse E‘.I;:ﬁgi;l;tse CDnLﬁDu‘;nce
Week 4
10/04 - 1010 Conllr-?pﬂ:nr:e Con;Du:nce CDnLﬁI:;;nce E‘.I;ﬁgigzltze CDnLﬁI:;;nce
Temperature Anomaly Legend =2&2<] 20 LR

Figure 11-23. Forecast table for weekly regional surface temperature, with confidence levels for each

week/region. Forecast initialized 9/13/12.

®>Kim, H. M., P. J. Webster and Judith A. Curry, 2012: Seasonal prediction skill of ECMWF System 4 and NCEP
CFSv2 retrospective forecast for the Northern Hemisphere Winter, Clim. Dyn., DOI: 10.1007/s00382-012-1364-6

http://www.cfanclimate.com/Kim_Webster_Curry 2012_CD.pdf

® Kim, H. M., C. D. Hoyos, P. J. Webster and I. S. Kang, 2008: Sensitivity of MJO simulation and predictability to
sea surface temperature variability. J. Climate, 21, 5304-5317. doi: 10.1175/2008JCL12078.1

http://webster.eas.gatech.edu/Papers/Kim%20et%20al.%202012b_CD.pdf

" Agudelo, PA, CD Hoyos, PJ Webster, JA Curry, 2008: Application of a serial extended forecast experiment using
the ECMWF model to interpret the predictive skill of tropical intraseasonal variability. Climate Dynamics. DOI

10.1007/s00382-008-0447-x  http://webster.eas.gatech.edu/Papers/Webster2008d.pdf

32



Our proposed operational forecast confidence assessment included the following elements:
o Historical predictability analyses;
o Recent prediction verification statistics;
o Phase and amplitude of the Madden Julian Oscillation (MJO) and phase of ENSO;
e Spread of the forecast ensemble members and high prediction cluster;
¢ Relationship between ensemble spread and forecast error conditioned on teleconnection regimes.

During Phase I, we conducted predictability analyses for ENSO, NAO, AO and PNA (details are provided
in the Phase | Final Technical Report). From an anomaly correlation plot derived between the model
forecast and the reanalysis product (assumed to be the “truth”) for the same period, one can readily see
the degree of predictability and the periods of the year at which the correlations and forecast skill are
largest. Such an analysis has been conducted for seasonal forecasts of the teleconnection regimes (ENSO,
NAO, PNA, AO) and also regionally for U.S. surface temperatures and rainfall.

The utility of ensemble quantiles that are correct in a probabilistic sense depends on the ability to
distinguish between situations with low and high uncertainty and on the sharpness of the distributions.
We measure sharpness by the Interquantile Range (IQR), which represents the difference between the
upper and lower quartiles. For the probabilistic forecast to be useful, it is essential that the IQR be smaller
than the IQR obtained from historic data.

One of the traditional estimates of predictability is directly based on ensemble spread without considering
ensemble intercorrelations. We have developed a new method for incorporating ensemble
intercorrelations into the predictability analysis (although we have not yet implemented this scheme into
our operational forecasts). Ensemble intercorrelations together with ensemble spread can be rendered in a
phase-space diagram in which four different quadrants can be differentiated. Extremes in Quadrant |
correspond to high intercorrelation and high spread. This case is typical of situations when the model is
already set in a temporal pattern, i.e., there is low uncertainty in the evolution of the climate modes, but
the magnitude of the response is susceptible to initial conditions or forcing variability. One example could
be a seasonal forecast in the middle of an El Nifio event, where the temporal evolution is well known as it
tends to be locked to the annual cycle, but the magnitude of the event is not as predictable as its evolution.
Extremes in Quadrant Il reflect high intercorrelation and low spread, which correspond to the most
predictable cases. Extremes in Quadrant 111 correspond to low intercorrelation and low spread. In this
cases the magnitude of the forecasts are similar among the ensembles but the temporal evolution (troughs
and ridges in the time series) are out of sync. This is the least likely of the cases and typically appears
when forecasting normal or average periods. Finally, Quadrant IV corresponds to the least predictable
scenario with low intercorrelation and high spread. A typical example of this situation is the seasonal
forecasting of tropical pacific SSTs before the spring predictability barrier when not only the magnitude
but also the temporal evolution of the SSTs are very sensitive to tropical and extratropical initial
conditions and teleconnections.

Thrust I11. Decadal projections of the wind power environment

Our proposed overall strategy for developing regional scenarios of extreme weather events and climate
variability on decadal time scales (out to 2040), included the following elements:

e Assess the historical prediction skill of the 10 year CMIP5 simulations. Infer the distributions of
extreme wind and demand events using two complementary approaches: i) a Model Output
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Statistics (MOS) approached (described in Thrust 1) based upon the historical climate dynamics
analysis; and ii) a ‘weather typing’ approach for developing regional statistics of extreme events
(wind ramps and gusts; heat and cold events).

o Develop observationally-based scenarios based on phase-locked states and shifts in a
synchronized network of climate indices. The historical climate dynamics analysis and ‘weather
typing’ of extreme events is used in conjunction with scenarios of future shifts in these indices to
develop the observationally-based scenarios.

During Phase Il, we conducted a survey of the skill of the CMIP5 simulations. With regards to
observationally based scenarios, the paper by Wyatt and Curry that provides the framework for this task
has been published at Climate Dynamics. Curry has convened a UK-US Workshop on Climate Science
Needed to Support Robust Adaptation Decisions that focuses specifically on developing regional climate
scenarios for decadal time scales. A specific application of this methodology is being conducted for
Florida Power and Light, to address interannual and decadal variability of hurricane landfall locations and
extreme winds; one application of this analysis is siting of offshore wind generation. This thrust was
allocated a reduced level of effort relative to the original proposal, owing to concerns about the utility of
the climate models, the substantial uncertainty associated with predicting current modes of interannual
and interdecadal variability, and the lack of interest from potential clients.

1. Develop scenarios from the CMIP5 decadal simulations

A key reason for the lack of utility of 21% climate model simulations on regional and decadal time scales
has been the failure to simulate correctly the multi-decadal ocean oscillations. In an attempt to rectify this
deficiency, the latest climate model simulations for the IPCC (CMIP5) coordinated decadal hindcast and
prediction experiments with initialization from observations of both the atmosphere and ocean. It was
anticipated that the CMIP5 decadal simulations would provide a valuable new resource for predicting
regional climate variability and change on decadal time scales.

During year one, we downloaded and processed the results for the following models: CanCM4, CFSv2,
CNRM-CM5, HadCM3, MIROC4h, MIROCS5, and MRI-CGCM3. Given the volume of data, a script
was developed for simultaneous synchronized downloading. The following monthly averaged gridded
variables were downloaded: wind variables (surface and on the standard pressure levels), sea level
pressure, surface temperature (mean, max and min) and precipitation. Three-hourly output is available
only for the surface meteorological variables. We developed a NCL program to process model outputs
and create results in output files in a unified format on the same spatial grid.

We have processed the results for most of the CMIP5 climate models in comparison to recent peer
reviewed evaluations. Kim, Webster and Curry (2012)° assessed the CMIP5 decadal hindcast/forecast
simulations of seven coupled ocean-atmosphere models: HadCM3 (UK), CanCM4 (Canada), CNRM-
CMS5 (France), MIROC4h (Japan), MIROCS5 (Japan), MRI-CGCM3 (Japan), CFSv2 (US). Each decadal
prediction consists of simulations over a 10-year period, initialized every five years from climate states of
1960/1961 to 2005/2006. Most of the models overestimate trends, whereby the models predict less
warming or even cooling in the earlier decades compared to observations and too much warming in recent
decades (Figure I111.1).

8 Kim, H.-M., P. J. Webster, and J. A. Curry (2012), Evaluation of short-term climate change prediction in multi-model CMIP5
decadal hindcasts, Geophys. Res. Lett., 39, L10701, doi:10.1029/2012GL051644.
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Figure 111.1. Time series of globally averaged annual-mean surface temperature [K] for reanalysis (black)
and the ensemble mean of the CMIP5 decadal hindcasts and forecasts (red and blue) for (a) HadCM3, (b)
CanCM4, (c) CNRM, (d) MIROC4h, (e) MIROCS, (f) MRI and (g) CFSv2. Gray shades represent the
ranges of one standard deviation of the ensembles in each hindcasts.

All models show high prediction skill for surface temperature over the Indian, North Atlantic and western
Pacific Oceans, with low prediction skill found over the equatorial and North Pacific Ocean. As shown in
Figure 111.2, the AMO is predicted in most of the models with significant skill, while the PDO shows
relatively low predictive skill. In fact, evaluation of the PDO forecasts showed that by far the best forecast
was a simple persistence forecast. There is low prediction skill of North American surface weather
including anticipated wind anomalies; what little prediction skill there is seems associated with the
models’ capability of simulating the AMO.

Of the models examined, MIROC4h and MIROC5 best meet the selection objectives of: horizontal
resolution 100 m or less, at least 3 ensemble members, little drift following initialization, and relatively
good performance over the U.S. and the North Atlantic. This analysis identified a key sensitivity of the
simulations to the initialization strategy and to the initialization timing. Several models, notably CanCM4
and CNRM, which are initialized close to the observed state (full field initialization), drift towards the
model climate over about a third of the integration period, with a drift magnitude that is substantially
greater than the observed trend. Models that are initialized with anomaly assimilation (MIROC4h,
MIROCS and MRI) better represent the model’s actual decadal variability.
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Figure 111.2. Correlation coefficients for the (a) AMO and (b) PDO index predicted by MME, persistence
(PERS) and ensemble mean of each CMIP5 decadal hindcasts as a function of lead time (years). Solid
(dashed) horizontal line represents statistical significance of the correlation coefficients at 95% (90%)
confidence level.

Based upon our experience with subseasonal and seasonal predictability, predictability is greatest when
the model is initialized in a well-established climatic regime. For example, for subseasonal forecasts this
depends particularly on where in the cycle of the Madden-Julian oscillation the model is initialized; and
for seasonal forecasts, this depends on the magnitude of the ENSO signal at the time of initialization. Our
preliminary analysis suggests that this same general principle holds for the decadal simulations. Hence,
the year 2005 (when the 30 year simulation was initialized) is a good year to initialize in terms of the
AMO, since 2005 was a peak (if not the peak) in the current warm phase of the AMO. This means that
regional climate features that are sensitive to the AMO should be well represented. However, 2005 was
not a good year for initialization in context of the PDO, since the PDO was in a flickering state during the
middle of the previous decade.

Another result from Kim, Webster and Curry (2012) that provided useful guidance for this project is the
evaluation of the multi-model ensemble (MME) relative to single models. Although the MME does not
outperform all of the constituent models for every forecast skill metric, it has in general better forecast
quality than the single models for global mean temperature, AMO, and PDO. This study partly supports
the utility of the multi-model ensemble approach in overcoming the systematic model biases from
individual models and in enhancing decadal predictability.
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Several recent papers have analyzed the CMIP5 circulation regimes and surface meteorological variables.
A recent paper by Schoof and Pryor (2014)° assessed the fidelity of CMIP5 climate models in simulating
modes of variability in the atmospheric circulation regimes (ENSO, PNA, AO) and their relation to near
surface wind speeds. Spatial patterns and temporal indices for ENSO, AO, and PNA derived from daily
output of 10 CMIP5 models indicate that all models reproduced some aspects of these modes, both in the
spatial and temporal domains. The models are capable of reproducing at least some fraction of the wind
climate variability that arises due to variations in the AO and PNA, but are less skillful in reproducing the
influence of the ENSO, and particularly La Nifia, on flow over the contiguous US. Sheffield et al.
(2013)* found that no model stands out as being particularly unskillful, bolstering the argument to
consider all models irrespective of performance to encompass the uncertainties.

2. Develop observationally-based scenarios

The objective of this task was to develop and evaluate strategies for empirical data-based scenarios for the
next two decades of statistics of the variability of the wind power and demand environment.

The simplest observationally-based climate scenario is a “physics free’ forecast that assumes that the
climate for the next two decades is the same as that for the previous 30 years, which is referred to as the
‘climatology”’ scenario. The climatology scenario provides a quantitative ‘zero skill’ target for evaluation
of forecasts based on more complicated models. The key issue that discriminates a persistence forecast
from a climatology forecast is that a shorter period is used as the basis for the persistence forecast, and
that there is a physical rationale for selecting the particular period. Here we use the period since 2002,
based upon the identification by Tsonis et al."* and Swanson et al.*? of a global climate shift occurring
2001/2002 that included a major shift in the circulation of the Pacific Ocean and encompasses a shift to
the cool phase of the Pacific Decadal Oscillation (PDO). This new regime is characterized by more
frequent La Nina events and a break in the global mean temperature trend. More frequent La Nina events
are associated with higher surface wind speeds.

More sophisticated empirically-based models for a non-stationary climate are being developed using a
dynamic climatology approach using networks of climate teleconnection indices and analysis of the
synchronization among the indices. Tsonis et al.'* showed that that when these indices of climate
variability (ENSO, PDO, NAO, NPO) are synchronized, and the coupling between those modes increases,
then the climate system becomes unstable and is thrown into a new state that is marked by a change in the
character of ENSO variability and the global mean temperature trend.

Subsequent analyses that includes larger numbers of indices found additional shifts of relevance to the
interpretation of regional climate variability and change. Wyatt and Curry (2014)* framed multidecadally
varying climate-related phenomena within the context of a signal propagating throughout a network of
synchronized chaotic quasi-oscillators, effectively compressing individual circulations into nodes of an
interconnected network, with each node representing, or related to, a subset of processes. The sequence

® Schoof, JT and SC Pryor 2014: Assessing the fidelity of AOGCM-simulated relationships between large-scale

modes of climate variability and wind speeds. J. Geophys. Res., 119, 9719-9734, doi:10.1002/ 2014JD021601

10 gSheffield JT et al. 2013: North American Climate in CMIP5 Experiments. Part I1: Evaluation of Historical Simulations of
Intraseasonal to Decadal Variability. Journal of Climate, DOI: 10.1175/JCLI-D-12-00593.1

1 Tsonis, AA, K. Swanson, S. Kratsov, 2007: A new dynamical mechanism for major climate shifts. Geophys. Res. Lett., 34,
L12705. https://pantherfile.uwm.edu/aatsonis/www/2007GL030288.pdf

12 Swanson, K.L., AA Tsonis, 2009: Has the climate recently shifted? Geophys. Res. Lett, 26, DOI: 10.1029/
https://pantherfile.uwm.edu/kswanson/wwwi/publications/2008GL037022_all.pdf

¥ Wyatt MG and JA Curry 2014: Role for Eurasian Arctic shelf sea ice in a secularly varying hemispheric climate signal
during the 20" century. Climate Dynamics http:/link.springer.com/article/10.1007%2Fs00382-013-1950-2#page-1
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below indicates the order of the signal’s propagation through the network of eight climate indices. The
years in parentheses indicate the mean phase shifts (lag times) between indices:

-NHT — (4y) —» -AMO — (7y) —» +AT — (2y) — +NAO — (5y)— +NINO — (3y) —
+NPO/+PDO — (3y) — +ALPI — (8y) —» +NHT — (4y) —» +tAMO — (7y) — -AT — (2y) — -
NAO — (5y)— -NINO — (3y)— -NPO/-PDO — (3y) — -ALPI — (8y) — -NHT .

where NHT is Northern Hemisphere Mean Temperature, AMO is the Atlantic Multidecadal Oscillation,
AT is the Atmospheric Mass Transfer Anomaly, NAO is the North Atlantic Oscillation, NINO is the
NINO 3.4 Index, NPO is the North Pacific Oscillation, PDO, is the Pacific Decadal Oscillation, and
ALPI is the Aleutian Low Pressure Index.

The sequence depicted above, referred to as the ‘stadium wave’, indicates the propagation of a climate
signal through a collection of atmospheric and oceanic teleconnections. The secular-scale duration of this
hemispheric propagation was estimated to be ~ 64 years during the 20" century. Wyatt’s Ph.D. thesis™
shows that the observed 20" century signal-propagation has existed for the past 300 years. The key
finding is that that there appears to be a statistically significant succession of indices carrying this climate
signal, where expression of the signal in one index is expected to follow in all other indices in successive
lagged order. A simplified version of the stadium wave is illustrated in the diagram below.

(2010?)

Figure 111.3. Illustration of the progression of the stadium wave. The stadium-wave ‘wheel’ is divided into
segments (from center to perimeter): the light gray ring identifies the segment number; the dark gray ring
indicates key hemispheric indices; sea ice indices are in the yellow ring; and the outer green ring provides
peak dates for the segment. Segment | begins with a cold North Atlantic ((-AMO), maximum sea ice extent
in the European Arctic shelf seas (+WIE). Segments Il through IV show evolution of the climate signal
initiated in the cold Atlantic. As sea ice growth increases eastward into the Siberian Arctic (+ArcSib),
strong winds develop that convert an initially cold ocean-ice signal into a warming atmospheric one
(Segment 11). Events proceed, carrying the signal across Eurasia and into the Pacific (+PDO; Segment 111),
ultimately culminating in maximum Arctic and NH surface temperatures in Segment IV. Segment —I
follows with maximum warmth in the North Atlantic and minimal sea ice in the European Arctic shelf seas.
This marks a shift whereby trends of AMO and WIE decrease and increase, respectively. An initial warm
signal converts to a cooling one until reaching Segment —IV, where temperatures dip to their minima,
followed soon after by shift to a warming regime (I). (adapted from Wyatt and Curry, 2014).

4 Wyatt, MG 2012: A multidecadal climate signal propagating across the Northern Hemisphere through indices of a
synchronized network. Ph.D. thesis, Department of Geology, University of Colorado-Boulder.
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The stadium wave is used to develop scenarios of regional climate variability on decadal time scales that
accounts for uncertainty in timing of the most recent transitions and the uncertainty in the length of the
individual regimes. Regional expressions of the stadium wave analysis are accomplished through linking
the climate regimes to the statistics of weather regimes and regional meteorological variables (mean
values as well as extreme event statistics).

The elements are now in place to apply this methodology to developing scenarios of future wind power.
This allows CFAN to work with individual prospects to develop plausible scenarios for a given
development project and the potential risk exposure for project success. A particular benefit of this
method is ability to evaluate a ranking of plausible scenarios to better capture the true uncertainty
associated with a given location and time scale in consideration.

3. Applications

In February 2014, Curry organized an international Workshop on Climate Science Needed to Support
Robust Adaptation Decisions™ that focuses specifically on developing regional climate scenarios for
decadal time scales and using them to support robust decision making. The title of Curry’s talk was
Generating possibility distributions of scenarios for regional climate change.'® The findings of the
Workshop were reported in a series of 5 blog posts:

e UK-US Workshop on Climate Science to Support Robust Adaptation Decisions®’
e Perspectives from the private sector in climate adaptation®®

e Strategies for robust decision making for climate adaptation®®

e Limits of climate models for adaptation decision making®

e Broadening the portfolio of climate information®

The Workshop brought together atmospheric scientists/climate researchers with social scientists and
decision makers in both the public and private sectors who are engaged in adaptation to climate change.
The Workshop provided an opportunity to integrate some of the research funded under this project into a
broader range of climate adaptation applications; at the same time, the Workshop provided insights for
this project in terms of the challenges of applying decadal-scale climate information to decision making.

Of particular interest at the workshop was renewable energy and its role in meeting supply not just in
national level grids but also at local levels especially in developing countries. As large companies and
NGOs look to increase involvement in different areas of the globe, a particular deficiency identified is
appropriate infrastructure including power supply. Workshop participants explored ways that both the
CMIP simulations and Stadium Wave approaches can help provide insight on appropriate large-scale
investments including self-funded power supply options such as wind and solar.

Application for Florida Power and Light

One of the proposed applications for decadal scenarios is for the siting of offshore wind farms, where a
key issue of concern is vulnerability oddly enough to winds from hurricanes on the Atlantic and Gulf
coasts as these large scale weather events are potentially the most destructive to infrastructure including

15 http://www.eas.gatech.edu/event/climate-workshop-feb-6-7

1 http://www.eas.gatech.eduf/sites/default/files/UK-US%20JC%20talk.pptx

7 http://judithcurry.com/2014/02/10/uk-us-workshop-on-climate-science-needed-to-support-robust-adaptation-decisions/
'8 http://judithcurry.com/2014/02/12/uk-us-workshop-part-ii-perspectives-from-the-private-sector-on-climate-adaptation/
1 http://judithcurry.com/2014/02/14/uk-us-workshop-part-iii-strategies-for-robust-decision-making-for-climate-adaptation/
20 http://judithcurry.com/2014/02/18/uk-us-workshop-part-iv-limits-of-climate-models-for-adaptation-decision-making/

2! http://judithcurry.com/2014/03/19/uk-us-workshop-part-v-broadening-the-portfolio-of-climate-information/
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offshore assets. CFAN has a client, Florida Power and Light (FPL), who has expressed interest in
decadal projection of hurricanes (out to 20 years) in the area around Florida, to help support their decision
making including mitigation techniques (both looking at how the infrastructure can be made more
resilient and how long-term energy choices affect the ability to withstand tropical cyclones), and how
climate change may affect the severity and frequency of tropical cyclones.

A preliminary analysis was done to assess the impact of the AMO and PDO on Florida landfalling
tropical cyclones as well as the broader Gulf of Mexico and Coastal Atlantic regions. The analysis took
into account the CMIP findings that the most credible low frequency features include the AMO and PDO.
It is seen in Figure I11.4 that there are more Florida landfalls during the warm phase of the AMO (yellow
and green), with the phase of the PDO having less of a meaningful impact although the analysis shows it
is a more likely indicator of whether tropical cyclones will track toward the Atlantic coast versus being
pushed into the Gulf of Mexico.
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Figure 111.4 Statistics of landfalling tropical cyclones striking the Florida coast. Yellow corresponds to the
warm phase of the AMO, green to the warm phase of the AMO and cool phase of the PDO, blue to the cold
phases of both the PDO. This analysis was done utilizing data from the National Oceanic and Atmospheric
Administration Hurricane Database (HURDAT), which has been post-processed by CFAN to ensure
physical consistency between the best-track data and the location and intensity of landfall.

This type of analysis can help FPL in making decisions about siting offshore wind farms, particularly
when evaluating considerations about risk related to each coastal region. In turn that can lead to more
targeted return period risk exposure as well as climate regime analysis for which FPL is exposed to with
its placement in the transition region between tropical and mid-latitude climates.

V. Decision support tool

The delivery of successful web-based decision support tools is a key aspect of CFAN’s success. Our
ability to effectively match critical user criteria with influential meteorological and climatological
variables in a framework that enhances and streamlines the decision making process is essential basis of
these successful tools. Our objective for Thrust IV of the project was to apply these techniques around
quality forecast elements related to wind energy decision making in hopes of delivering a solution of
superior quality and novel elements to the diverse set of users. The cycle employed for this objective
encourages constant interaction with alpha and beta users, and in turn translating their inputs and
suggestions into viable dashboard based tools. Our beta users included energy market users and regional
power providers.
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1. ldentification of user preference and needs

Preference and need information focused on continued interaction with alpha and beta phase users. They
have provided useful and thoughtful feedback on what they like and changes they think could enhance the
offering.

Obtaining user feedback

Simple and quick emails have proven the most effective approach to provide feedback. To encourage this
behavior we made it easy to email us directly from the Dashboard when the users have ideas they wish to
convey in real-time. While this information is very useful we still wanted to obtain some more
guantitative type information, particularly as it relates to forecast quality. Accordingly, we also provided a
feedback form that permitted users to submit responses to targeted questions as well as in a generalized
structure. The creator could also choose to submit the data anonymously.

We also took to direct interaction with users to solicit feedback and obtain both product type and delivery
advice. This type of solicitation and dialog uncovered a need multiple users had with obtaining forecast
outputs in a data structure for further use by the end user. This allowed us to modify both production and
delivery components to create a streamline method through which users could obtain data inputs to utilize
with their internal modeling and risk management tools which often use core meteorological inputs.

In addition to interaction with current product users, we continue to also acquire inputs from the broader
wind power community. Our team is engaged with this community through industry meetings,
associations and business development efforts. The feedback obtained through this approach is often in
the context of competitive products and what those users like or dislike about tools they currently use.

Over the course of the project we engaged Dawnbreaker to undertake a competitive landscape analysis as
well as explore avenues for our offerings particularly with organizations with which we not had previous
interaction or limited interaction. The year one feedback continued to shape our development efforts to
help CFAN strike the best balance in providing both required product elements as well as bringing novel
tools and approaches to the marketplace. Year two dug deeper into organizations related to the wind
industry, particularly some of the grid operators. The contacts identified by Dawnbreaker provide new
avenues for potential feedback from the user type most directly engaged with both suppliers and
consumers of wind energy. Dawnbreaker also clearly identified areas where they still see current wind
forecasts falling short of their needs as well as those of the market as a whole.

Feedback and response

The nature of our development process allowed us to consider feedback continually during the Phase Il
process and to incorporate useful feedback into our product interface. Generally, feedback could be
categorized as related to either functionality or content. The following examples introduce not only some
of the feedback received but the product evolution accordingly integrated by CFAN:

o Provide varied scales of forecasts both in time and geography — Our initial dashboard design
provided a focus on small regional forecasts covering days 1-32. Working with a wind farm
operator it was clear they wanted more point and long range elements. Accordingly we developed
point ramp forecasts and seasonal anomaly outlooks.

e Providing delineated text and/or csv outputs — We have experience providing data based outputs
with clients for other forecasting solutions, but it was unclear initially if users would have this
need for the wind forecast products. Working with an energy trading company we developed
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outputs that could be ingested directly into their internal proprietary forecasting system that helps
market traders project pricing impacts. This is achieved via direct web link without the user
having to locate and retrieve the data via a web browser.

e Showing elements that impact power consumption besides wind — This need was brought to us by
different user types but all had a necessity to understand additional drivers to wind generation
impacts and overall power needs. CFAN developed a US wide view that is subdivided into grid
based regions showing population weighted temperature information that provides a first degree
power consumption perspective that can then be combined with projected wind power anomalies
over 6 hour increments. This allows the various user types to ingest these two most primary and
critical inputs into large scale response behaviors.

e More mobile friendly components — This topic is obviously very hot in today’s environment and
CFAN has adjusted various outputs to be well displayed on mobile devices, however the ever
changing mobile landscape and functionality requires a patiently evolving approach. Our future
updates are likely to include scalable vector graphics and location driven content to continue the
enhancements that can benefit not only mobile but regular users alike.

2. Dashboard design and implementation

Evolution of the visual dashboard was focused within the first year of the project, while the second year
included increased content and delivery such as mobile and data. As of the end of Phase Il, all planned
elements have been delivered along with additional content, features and functions not originally planned
in the initial project plan. Forecasts are being delivered across all key wind generation regions across the
US. As of now the product is considered live and fully supported by our operational team.

Working toward a full BETA version release

The primary objective of the design work during year 1 was reaching the goal of having a full BETA
release available by the end of the year. From a design standpoint this was accomplished with most of the
visible aspects solidified before entering year two of the project. During alpha and Phase | development
the project was generally segmented to elements that often were built independently and with their own
layout and structure. While it was convenient for the researchers, forecasters and designers, it minimized
the amount of useful feedback that ultimate product users could provide as access was not always
available for all content nor could they get a sense of what the finished solution may look like.

Figure 1V.1 shows visually the transition that has taken place between the initial BETA release early in
the project and the finalized BETA dashboard release. While the core elements from the first release
remain visible, both layout and content changes are immediately visible. Most of the visible alterations
were driven based on user inputs during the design phase. This finalized dashboard will serve as version
1 of the released product. As with all quality products, the dashboard will evolve over time, but the goal
with this release is to have created a solution with an effective balance of elements and interaction for the
array of user types likely to engage with the product.

Enhancements and incorporation of user feedback

As mentioned previously, we received a wide array of feedback regarding suggested changes to the initial
and subsequent dashboard layouts. Whether the addition of ‘quick maps’ that users now have access to
by simply hovering their mouse over the word ‘map’ or adjusting layout positioning of elements into
combinations not previously used, CFAN continued to enhance the planned final offering to maximize its
potential usefulness to the widest possible user base. We took very seriously the feedback provided by
users and highlight in more detail here how we translated that feedback into viable solution elements.
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Figure IV.1. Comparison of initial beta wind dashboard (left) with the fully developed wind power forecast
dashboard (right).

An example of an update we made specifically based on user feedback is the inclusion of wind power
activity within the context of broader elements that could impact power demand. Through the discussion
it was determined that the most influential element on demand was likely to be temperature anomalies.
Additionally it was determined that understanding this in the context of the larger U.S. power market
would be useful. Accordingly we developed an area of the dashboard that focuses on the both the large
scale and regional power anomaly behavior. As can be seen in Figure 1V.2, this section of the dashboard
displays this information in a U.S. map form broken down into 6 hour values. There is also provided an
opportunity to utilize forecast slider and animation elements that are more common in our other products
but had not been a particular fit for the wind power dashboard.
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Figure IV.2. Close up of the ‘Power Anomaly’ section of the dashboard. Left is 6 hour interval wind power
anomaly projection for the continental and offshore areas of the U.S. Right is a corresponding population
weighted temperature anomaly forecast for land areas of the U.S.

Another challenge that has been unique to the wind power solution is providing data that is oriented to
tight spatial variability. While CFAN has worked to develop point based solutions such as those
associated with our city MOS temperature solutions, understanding the timing variance behavior in very
close range has not been of particular need for our clients. Also, since our focus for this solution is not on
forecasts in the very near term, high-resolution tools have not been required. However, in developing
tools around wind ramps it became clear that being able to visualize behavior at a wind farm level would
be particularly useful. Figure 1.3 shows this final section added to the dashboard that allows users to
mouse over different grid points which display latitude and longitude information until they find the one
most useful for them. They can then select that point to see updated ramp behavior forecasts for both up
and down events. Utilizing the accompanying map, they can also select nearby locations that will provide
additional understanding with respect to timing and location sensitivities.

Ramp Events
Ramp Type: Up / Down << »>ForecastCreated [2014 ¥| [JAN v |[30 v|[oz v | Update
100 Forecast Date: 01/30/2014 00Z Location: 29.75N x 100.50W N
90 |
90 80
70 g
80 60 @
50 &
= 70 0 5
& 30 .
y 60 20 2
H 10 5
o 50 o @
% -10@
c % -20 g
H] -30 E
30 -40 &
-50 e
20 -60 3
-70 2
10 -80
90 |
0
01/30 02/01 02/03 02/05 02/07 02/09

Figure IV.3. Close up of the new ‘Ramp Event’ section of the dashboard.

A final consideration CFAN made was the potential of having unique user or even client type dashboards.
While at this stage we have found that the user mix generally seems happy with the available components,
there remains expectations that this could change over time especially when mobile elements are
considered. That said, our coding and design have been structured in such a way were a ‘pick and choose
elements” methodology can be adapted if necessary with minimal time and cost.
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Ultimately all the choices we have made in design and implementation have been focused on maximizing
the user benefits and broadening the user base potential in an effort to reach as large of a prospective
market as possible.

Going live and into operational mode

The final step in Phase Il was to take the last release of the Dashboard and migrate it into CFAN’s
operational environment. This included not only the visible web components but also the data delivery
elements mentioned earlier as well as all the forecast creation elements. The current processing routine
utilizes approximately 6 hours of server processing on a normal day and an additional 2 hours on days
when monthly outlooks are generated. Should future demand warrant, the system could be shifted to a
twice daily product, although that would essentially require a dedicated processing server and dedicated
data array.

The web based Dashboard is part of our multi-server redundancy cached environment. This allows for
minimal slowness and virtually eliminates outages no matter where across the globe a visitor may access
the site. The web site does not currently utilize encryption in delivery mode to ensure the fastest retrieval
times possible, although an encrypted version is possible in the future should any client data be ingested
by CFAN servers in the production of outputs.

All these forecast creation routines, outputs and servers are as of the end of Phase Il fully supported by
our operational staff that provides 24x7x365 support for this product. This transition required a stringent
debugging check and development of full product documentation. Accordingly, our support team can
now handle any issues that may arise or inquiries from the user community.

45



6.

Identify products developed under the award and technology transfer activities

a. Publications: Relevant publications authored by team members, including those initiated under

separate funding, that were influenced by the needs of this project (including Phase I):

Kim, HM, PJ Webster, JA Curry, 2012: Seasonal prediction skill of ECMWF System 4 and NCEP
CFSv2 retrospective forecast for the Northern Hemisphere winter. Climate Dynamics, DOI
10.1007/s00382-012-1364-6 http://www.cfanclimate.com/Kim_Webster_Curry 2012 _CD.pdf

Kim, HM, PJ Webster, JA Curry, 2012: Asian summer monsoon prediction in ECMWF System 4
and NCEP CFSv2 retrospective forecasts. Climate Dynamics, DOI 10.1007/s00382-012-1470-5.
http://webster.eas.gatech.edu/Papers/Kim%20et%20al.%202012b_CD.pdf

Kim, HM, PJ Webster, JA Curry 2012: Multi-model decadal predictions in CMIP5 decadal hindcast
experiment. Geophys. Res. Lett., 39, Article Number: L10701
http://curryja.files.wordpress.com/2012/05/kim-et-al-2012_grl.pdf

Wyatt, MG and JA Curry 2014: Northern hemispheric climate variability: dynamics of climate signal
hemispheric propagation. Climate Dynamics, Volume 42, Issue 9-10, pp 2763-2782
https://curryja.files.wordpress.com/2013/10/stadium-wavel.pdf

Kravtsov, S., M. G. Wyatt, J. A. Curry, and A. A. Tsonis, 2014: Two contrasting views of
multidecadal climate variability in the twentieth century. Geophys. Res., DOI:
10.1002/2014GL061416 http://www.wyattonearth.net/images/KWCT2014_main_FINAL.pdf

Toma, V., PJ Webster and JA Curry: Re-evaluating the ENSO predictability barrier and its
interannual variability. To be submitted to Climate Dynamics

Belanger, JI, JA Curry, K Shrestha and M Jelinek: Extended-range predictability of wind power for
ERCOT. To be submitted to Journal of Applied Meteorology and Climatology

Relevant conference presentations:

Curry JA: Generating possibility distributions of scenarios for regional climate change. UK-US
Workshop on Climate Science Needed to Suppport Robust Adaptation Decisions. Atlanta, GA, Feb
7, 2014. - http://www.eas.gatech.edu/sites/default/files/UK-US JC talk.pptx

Kim, HM and PJ Webster: ENSO and ENSO teleconnections. ECMWF Seminar, Reading, UK 3-7
Sept. 2012. http://www.ecmwf.int/newsevents/meetings/annual_seminar/2012/presentations/Kim.pdf

Curry, JA: Climate models: fit for what purpose? Presented at the Royal Society Workshop on
Uncertainty in Weather and Climate Prediction, With Application to Health, Agronomy,
Hydrology, Energy and Economics. Chicheley Hall, UK, 4-5 October 2012.
http://curryja.files.wordpress.com/2012/10/rs-uncertainty-12.pdf

Toma, V: Seasonal Weather Predictability and Prediction. 7" Annual Earth Networks Energy
Weather Seminar Winter Outlook 2012-2013. New York City, 18 October 2012.
Annual Meeting of the American Meteorological Society, January 2013, Austin TX:

Shrestha, KY, JA Curry, JI Belanger, J. Mittelman, J Freedman, J. Zack, P. Beaucage: Medium-
Range Wind Power Ensemble Forecasting for Texas.
https://curryja.files.wordpress.com/2015/05/wind-ams-15-final.ppt

Mittelman, J, JA Curry, KY Shrestha, JI Belanger: Subseasonal predictability of regional wind power
generation. https://curryja.files.wordpress.com/2015/05/monthly-ams.pptx
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http://www.cfanclimate.com/Kim_Webster_Curry_2012_CD.pdf
http://webster.eas.gatech.edu/Papers/Kim%20et%20al.%202012b_CD.pdf
http://curryja.files.wordpress.com/2012/05/kim-et-al-2012_grl.pdf
http://link.springer.com/journal/382/42/9/page/1
https://curryja.files.wordpress.com/2013/10/stadium-wave1.pdf
http://www.wyattonearth.net/images/KWCT2014_main_FINAL.pdf
http://www.ecmwf.int/newsevents/meetings/annual_seminar/2012/presentations/Kim.pdf
http://curryja.files.wordpress.com/2012/10/rs-uncertainty-12.pdf

Curry, JA, JI Belanger, M Jelinek, V Toma, PJ Webster: A seamless system for medium range,
subseasonal and seasonal probabilistic forecasts of energy demand.
https://curryja.files.wordpress.com/2015/05/omnicast-ams.ppt

b. Web site or other Internet sites that reflect the results of this project

<< Confidential information
Site: http://cfan.eas.gatech.edu/BETA/wd.php
User: DOE
Pass: Phase!!2015
ends here >>

c. Networks or collaborations fostered

We have developed new collaborations with:
o AWS TruePower

e WSI
e Southern Company

This project has also extended existing collaborations with:
e Shell

e Calpine

d. Technologies/Techniques
Forecast product technologies and techniques are described in the research Thrusts in section 5 above

e. Inventions/Patent Applications, licensing agreements

e MOU with AWS TruePower
e  MOU with Southern Company
e License agreement with WSI

f.  Other products
N/A

7. For projects involving computer modeling, provide the following information with the final
report:

N/A
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