skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Filter Measurement System for Nuclear Material Storage Canisters. End of Year Report FY 2013

Abstract

A test system has been developed at Los Alamos National Laboratory to measure the aerosol collection efficiency of filters in the lids of storage canisters for special nuclear materials. Two FTS (filter test system) devices have been constructed; one will be used in the LANL TA-55 facility with lids from canisters that have stored nuclear material. The other FTS device will be used in TA-3 at the Radiation Protection Division’s Aerosol Engineering Facility. The TA-3 system will have an expanded analytical capability, compared to the TA-55 system that will be used for operational performance testing. The LANL FTS is intended to be automatic in operation, with independent instrument checks for each system component. The FTS has been described in a complete P&ID (piping and instrumentation diagram) sketch, included in this report. The TA-3 FTS system is currently in a proof-of-concept status, and TA-55 FTS is a production-quality prototype. The LANL specification for (Hagan and SAVY) storage canisters requires the filter shall “capture greater than 99.97% of 0.45-micron mean diameter dioctyl phthalate (DOP) aerosol at the rated flow with a DOP concentration of 65±15 micrograms per liter”. The percent penetration (PEN%) and pressure drop (DP) of fifteen (15) Hagan canister lidsmore » were measured by NFT Inc. (Golden, CO) over a period of time, starting in the year 2002. The Los Alamos FTS measured these quantities on June 21, 2013 and on Oct. 30, 2013. The LANL(6-21-2013) results did not statistically match the NFT Inc. data, and the LANL FTS system was re-evaluated, and the aerosol generator was replaced and the air flow measurement method was corrected. The subsequent LANL(10-30-2013) tests indicate that the PEN% results are statistically identical to the NFT Inc. results. The LANL(10-30-2013) pressure drop measurements are closer to the NFT Inc. data, but future work will be investigated. An operating procedure for the FTS (filter test system) was written, and future project milestones are on track for completion« less

Authors:
 [1];  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1119584
Report Number(s):
LA-UR-14-20641
TRN: US1500370
DOE Contract Number:  
AC52-06NA25396
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; 42 ENGINEERING; 61 RADIATION PROTECTION AND DOSIMETRY; LANL; AEROSOLS; CONTAINERS; FILTERS; STORAGE; COMPARATIVE EVALUATIONS; PERFORMANCE TESTING; PRESSURE DROP; ABUNDANCE; EFFICIENCY; FISSILE MATERIALS; OPERATION; SPECIFICATIONS; Radiation Protection

Citation Formats

Moore, Murray E., and Reeves, Kirk P. Filter Measurement System for Nuclear Material Storage Canisters. End of Year Report FY 2013. United States: N. p., 2014. Web. doi:10.2172/1119584.
Moore, Murray E., & Reeves, Kirk P. Filter Measurement System for Nuclear Material Storage Canisters. End of Year Report FY 2013. United States. https://doi.org/10.2172/1119584
Moore, Murray E., and Reeves, Kirk P. 2014. "Filter Measurement System for Nuclear Material Storage Canisters. End of Year Report FY 2013". United States. https://doi.org/10.2172/1119584. https://www.osti.gov/servlets/purl/1119584.
@article{osti_1119584,
title = {Filter Measurement System for Nuclear Material Storage Canisters. End of Year Report FY 2013},
author = {Moore, Murray E. and Reeves, Kirk P.},
abstractNote = {A test system has been developed at Los Alamos National Laboratory to measure the aerosol collection efficiency of filters in the lids of storage canisters for special nuclear materials. Two FTS (filter test system) devices have been constructed; one will be used in the LANL TA-55 facility with lids from canisters that have stored nuclear material. The other FTS device will be used in TA-3 at the Radiation Protection Division’s Aerosol Engineering Facility. The TA-3 system will have an expanded analytical capability, compared to the TA-55 system that will be used for operational performance testing. The LANL FTS is intended to be automatic in operation, with independent instrument checks for each system component. The FTS has been described in a complete P&ID (piping and instrumentation diagram) sketch, included in this report. The TA-3 FTS system is currently in a proof-of-concept status, and TA-55 FTS is a production-quality prototype. The LANL specification for (Hagan and SAVY) storage canisters requires the filter shall “capture greater than 99.97% of 0.45-micron mean diameter dioctyl phthalate (DOP) aerosol at the rated flow with a DOP concentration of 65±15 micrograms per liter”. The percent penetration (PEN%) and pressure drop (DP) of fifteen (15) Hagan canister lids were measured by NFT Inc. (Golden, CO) over a period of time, starting in the year 2002. The Los Alamos FTS measured these quantities on June 21, 2013 and on Oct. 30, 2013. The LANL(6-21-2013) results did not statistically match the NFT Inc. data, and the LANL FTS system was re-evaluated, and the aerosol generator was replaced and the air flow measurement method was corrected. The subsequent LANL(10-30-2013) tests indicate that the PEN% results are statistically identical to the NFT Inc. results. The LANL(10-30-2013) pressure drop measurements are closer to the NFT Inc. data, but future work will be investigated. An operating procedure for the FTS (filter test system) was written, and future project milestones are on track for completion},
doi = {10.2172/1119584},
url = {https://www.osti.gov/biblio/1119584}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Feb 03 00:00:00 EST 2014},
month = {Mon Feb 03 00:00:00 EST 2014}
}