skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evaluation of Concepts for Mulitiple Application Thermal Reactor for Irradiation eXperiments (MATRIX)

Technical Report ·
DOI:https://doi.org/10.2172/1116745· OSTI ID:1116745
 [1];  [1];  [1]
  1. Idaho National Lab. (INL), Idaho Falls, ID (United States)

The Advanced Test Reactor (ATR) is a high power density test reactor specializing in fuel and materials irradiation. For more than 45 years, the ATR has provided irradiations of materials and fuels testing along with radioisotope production. Originally operated primarily in support of the Offcie of Naval Reactors (NR), the mission has gradually expanded to cater to other customers, such as the DOE Office of Nuclear Energy (NE), private industry, and universities. Unforeseen circumstances may lead to the decommissioning of ATR, thus leaving the U.S. Government without a large-scale materials irradiation capability to meet the needs of its nuclear energy and naval reactor missions. In anticipation of this possibility, work was performed under the Laboratory Directed Research and Development (LDRD) program to investigate test reactor concepts that could satisfy the current missions of the ATR along with an expanded set of secondary missions. This work can be viewed as an update to a project from the 1990’s called the Broad Application Test Reactor (BATR). In FY 2012, a survey of anticipated customer needs was performed, followed by analysis of the original BATR concepts with fuel changed to low-enriched uranium. Departing from these original BATR designs, four concepts were identified for further analysis in FY2013. The project informally adopted the acronym MATRIX (Multiple-Application Thermal Reactor for Irradiation eXperiments). This report discusses analysis of the four MATRIX concepts along with a number of variations on these main concepts. Designs were evaluated based on their satisfaction of anticipated customer requirements and the “Cylindrical” variant was selected for further analysis of options. This downselection should be considered preliminary and the backup alternatives should include the other three main designs. The baseline Cylindrical MATRIX design is expected to be capable of higher burnup than the ATR (or longer cycle length given a particular batch scheme). The volume of test space in IPTs is larger in MATRIX than in ATR with comparable magnitude of neutron flux. In addition to the IPTs, the Cylindrical MATRIX concept features test spaces at the centers of fuel assemblies where very high fast flux can be achieved. This magnitude of fast flux is similar to that achieved in the ATR A-positions, however, the available volume having these conditions is greater in the MATRIX design than in the ATR. From the analyses performed in this work, it appears that the Cylindrical MATRIX design can be designed to meet the anticipated needs of the ATR replacement reactor. However, this statement must be qualified by acknowledging that this design is quite immature, and therefore any requirements currently met must be re-evaluated as the design matures. Also, some of the requirements were not strictly met, but are believed to be achievable once features to be added later are designed.

Research Organization:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC07-05ID14517
OSTI ID:
1116745
Report Number(s):
INL/EXT-13-30045
Country of Publication:
United States
Language:
English