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Sandia
What is Warm Dense Matter? i) Natora

=  Warm Dense Matter is generally associated with strongly coupled ions
(', > 1) and moderately degenerate electrons (0 ~1)

<PE>i0n — 8—22*2 9 = kBT
k,TR, E

: <KE > ion Fermi

= |tis typically found at the junction of solid, liquid, gas, and plasma. The
complicated interplay of the physical processes that WDM shares with its
neighbors creates considerable difficulties for theory.

1
"= I <<1lisequivalentto g = PE << 1 where g is the “plasma parameter”
n
(weakly coupled) e “Debye

>>1 where A is the thermal de Broglie

= O >>1 isequivalent to 5
n A

wavelength e
(Maxwell-Boltzmann statistics)




Where is Warm Dense Matter found? i) e
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Warm Dense Matter is closely connected with High Energy Density Matter (P > 1 Mbar)
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What makes it difficult? i) Natonat

There is no small parameter
= Plasma expansions in g, the plasma parameter, fail for WDM

Many different aspects of the physics contribute at a
comparable level and must be included

= strong correlations

" jonization

= bond formation and breaking

= complex pressure and temperature dependent chemistry

Computations/simulations are often quite demanding
= Massively parallel computations are the norm
= Shortcuts are very tempting

Experimental conditions are short lived and hard to diagnose
= Which experimental results should you believe?




Consider something as “simple” as the deuterium Hugoniot (i i
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Areas of Active Research i) fatora

= Creating Warm Dense Matter in the laboratory
= High Intensity Lasers
= Pulsed power (magnetically driven compression)
= Explosively driven compressions
= Gas gun shock experiments
" Free electron lasers
= |on beams

= Electron beams
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Inertial Confinement Fusion — starts from cold condensed matter
and ends up as a very hot dense plasma, spending much of the implosion
path as warm dense matter. All sorts of bad things can happen there.
Capsule design simulations need

= Equations of state for warm dense hydrogen, the ablator material, and
hydrogen/ablator mixtures

= Thermal conductivities

= |on-electron equilibration rates
= \iscosities

= QOptical properties
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Areas of Active Research P atonal
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= Planetary Science — WDM research is broadly relevant here

= Hydrogen-Helium de-mixing (the Saturn problem)

= Equations of state for gas giants and exo-planets
Hydrogen
Water
Helium
co,
Methane

Winfried Lorenzen
= Conductivities for dynamo models

= The properties of iron and iron + impurities for earth core conditions
Phase boundaries, particularly melt

" Fe

Shock

Thermal and electrical properties
= Properties of silicates

The earth-moon problem

Jupiter
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Areas of Active Research i) Natora

= White Dwarfs

= Cosmochronology — age of white dwarfs through cooling rate
Equations of state for C, O, and He at extreme conditions
Thermal conductivities, viscosities, diffusion coefficients

= Asteroseismology — model pulsating white dwarf, to infer
Total mass and mass composition
Interior rotation profile
Surface temperature
Structural details

NASA/HST

Due to the intense gravity, white dwarfs are highly stratified:
C/O core, remnant from nuclear burning
He envelope
H outer layer Conditions at the C/He boundary (model dependent)
Mixing at the boundaries T from 30 to 300eV, P from 100 to 10° Mbar




Areas of Active Research

= Diagnosing Warm Dense Matter
= Traditional shock experiments and diagnostics

VISAR (velocity interferometry, back out density and pressure)
Pyrometry (temperature, needs good WDM emissivity models)
= X-ray Thomson scattering
Non-collective (high k, Compton limit), pretty well understood
Collective limit (low k, plasmons), not so well
= X-ray diffraction (for warm dense solids)
Debye-Waller effects
Material strength of warm dense solids
= X-ray absorption fine structure (XAFS)
XANES
EXAFS

Sandia
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Areas of Active Research

= Theoretical and Computational Methods

= More atoms, and faster (meso and macro scales)
Faster molecular dynamics algorithms
Orbital free density functional theory
Wave packet molecular dynamics
Warm Dense Matter with classical and semi-classical potentials

= More electrons, and faster (extreme conditions, core excitations)
All electron calculations and dynamics
Orbital free DFT

= |mproved average atom methods, and beyond (multi-center techniques)

11
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Areas of Active Research i) flatona

= Theoretical and Computational Methods

= More accurate electronic structure methods
= Better functionals for density functional theory

— Finite temperature
— Exact exchange
— Hybrids
— Kinetic Energy in Orbital Free DFT

= Better potentials for density functional theory
— Good high energy scattering properties
— Handle a broad range of conditions

= Time dependent density functional theory
— Beyond ground state electronic densities
— Electron ion coupling

= Quantum Monte Carlo
— PIMC, CEIMC, DMC

12
- _________________________________________________________________________________________________________________



Scientific needs in Warm Dense Matter Research

Better EOS

Phase diagrams

Transport and

Material structure,
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Sandia’s Z Machine is a unique platform for multi-mission
research on high energy density (HED) environments
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Isentropic compression and shock wave experiments i) e
. . Laboratories
map different regions of phase space

Flyer Plate
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Isentropic Compression Experiments: Shock Hugoniot Experiments:
gradual pressure rise in sample shock wave in sample on impact




HEDP computer simulations rely on “physics packages”: ) Nt
Conductivities, Equations of State, and Opacities

Tungsten Conductivity

s Degeneracy and

magnetization effects

Log o l ’
v o=n AZ 01t
T kT m ,

Pressure ionization, metal-insulator
5  transition, Thomas-Fermi at high T, p

Coulomb and electron-neutral
collisions, Bloch-Gruneisen solid,
Lindemann melting law

4 B

Log p (kg/m?)

This highly structured portion of phase space is Warm Dense Matter 16




A demanding application: Ultra-high velocity ) e,
magnetically launched flyer plates (> 40 km/sec)
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We simulated these magnetically launched flyer plates ) e,
Laboratories
using the modified Lee-More (LMD) conductivities

Detailed comparison between simulations and experiments for magnetically
launched flyer plates suggested that our improved conductivities were still not
sufficiently accurate for the warm dense liquid aluminum.

Simulations by Ray Lemke with Sandia’s 3D Rad-MHD ALEGRA code
density old default Imd
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For many of our applications we require conductivities

accurate to well within a factor of two 18



Density Functional Theory (DFT) is a formally exact
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representation of the N electron Schrodinger Equation
Schrodinger view ___ DFT view
- \\ , o —
® ® S o
O ! O h
| I
1 Formally ) O !
o equivalent o ©

@ electron
Interaction
—— external potential

Hard problem to solve
(scales like N° )

Nobel prize in Chemistry for Walter Kohn in 1998

~
i

© Kohn-Sham particle
(non-interacting)
- - -- effective potential:

a functional of n

“Easy” problem to solve
( scales like N3 or better)

Hohenberg and Kohn proved this (1964)

19




We are using Density Functional Theory (DFT) to perform 7
Quantum Molecular Dynamics (QMD) simulations of

Laboratories
Warm Dense Matter

Density Functional Theory is formally exact, but is, in practice, a good
approximate solution to the N electron Schrodinger equations. DFT is
a work-horse tool in condensed matter physics, but a relative
newcomer to Warm Dense Matter and High Energy Density Physics.

QMD: The Kohn-Sham* DFT equations are solved for a given atomic
configuration (fixed in the Born-Oppenheimer approximation) and the
quantum mechanical forces on all the atoms are calculated from
the wavefunctions following the Feynman-Hellmann theorem, the
atomic positions are advanced classically, and a new solution to
the DFT equations is calculated.

QMD is also known as
*Kohn and Sham,1965 ab initio molecular dynamics (AIMD)

See Car and Parrinello (PRL, 1985), for the original DFT/QMD paper. 20
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What do the Kohn-Sham equations look like? ) e

Kinetic Energy term

1
— + Vo (rl))‘l{. =¢ W Electron and lon Coulomb terms

Exchange and Correlation
/ We don’t know this piece exacily,

p(rz) ,7* - but simple approximations work
eﬁ‘ (rl {f 2 » + ch (rl) surprisingly well
14

V()= E lp@)]
5 p(1)
e.g., Dirac e:xchange(fop(i{)ma’F1 ) , LDA, GGA, Exact Exchange, ...

where E _ 1s the Exchange and Correlation Functional,

*)‘2 (The f; are Fermi occupation numbers)

— p(H) =) f,




. . . Sandia
Details of the QMD simulations i) Netoal

= The simulations are performed with VASP, a plane wave density
functional code.

= Exchange and Correlation functionals are typically Local Density
Approximation (LDA) or Generalized Gradient Approximation
(GGA).

=  We typically use up to 250 atoms, but it varies depending on
density and the number of electrons we need to carry (the
valence) ; We use Projector Augmented Wave (PAW) all-
electron, frozen core potentials for the atoms.

= We generally perform our simulations in the Canonical Ensemble
(N,V,T) using thermostats to regulate the temperature; Fermi
statistics for the electrons; Spin included as needed, e.g., iron.

= Typical runs cover one to tens of picoseconds.

22



Frequency-dependent electrical conductivities ) e,
are calculated with the Kubo-Greenwood formula

Laboratories

Difference of Fermi occupations _
3 N N »  Energy Conservation

2me’h’
o (w) = mz 2 (F(gi,k) _F(gj,k)) <1Pj,k vV, lPi,k> 5(8j,k - &, —hw),

a=l j=11i Dipole matrix elements

where e and m are the electron charge and mass. The /i and j summations are
over the N discrete bands of the triply periodic calculation for the cubic supercell
with volume Q. The coordinate index is o and in general we average over o to
improve the statistics. F(¢;,) is the Fermi weight corresponding to the energy for
the i-th band at k with orbital W, .

We integrate over the Brillouin zone using the method of special k-points

o)=Y ok (@WK
k

and average over 10 to 20 configurations selected from the MD run.

This representation of the conductivity is really nothing more than the
quantum analog of the classical current-current correlation function.

23




The QMD-KG results are in good agreement with Fr ,lﬁagd.
DeSilva’s data over a two decade range of density

o

Log 6o [in (m)~ 1]
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DeSilva and Katsouros data in black or grey, MD-KG results in red
% 30000 K, H20000K, A 10000K, @ 6000K

Desjarlais, Kress, and Collins, Phys. Rev. E 66, 025401 (2002) 24



The calculated liquid aluminum conductivities are higher i 'ﬁagd'
than the modified Lee-More (LMD) model predictions

Al <T>=2000K

T
S 6.5 Lo
=} iqui .," Dense solid
g 6 \ < (5glcc)
b
=55
&’ LMD model
—

’

-0.5 =025 0 025 05 075 1
Log,, p [in g/cm’]

The dashed line shows the 2000 K isotherm from

our QMD-tuned wide-range aluminum model .




Flyer plate simulations with the QMD based conductivities give ) et
very good agreement with experiment

Simulations by Ray Lemke with Sandia’s 3D Rad-MHD ALEGRA code
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Conductivities based on the QMD calculations
have given us a new predictive capability
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Simulations of the flyer velocities with ALEGRA ) i
are now in very good agreement with experiments
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Shock Hugoniot experiments are routinely used on HED ) i
facilities to probe the equation of state

The Hugoniot is the locus of single shock end states satisfying
the Rankine-Hugoniot relation for various Us

Mass — U U. —u

conservation '01/’00 8/( i p)

Momentum [ __
u, = (P — P,

conservation 5P (P 0)/po

Energy - P+ R

conservation by — Fo = 9 (Vo — V1)
Rankine-Hugoniot relation

Hugoniot calculations are relatively straightforward 28




Deuterium equation of state experiments and theory ) et
have been very active areas of research

250 1 1 1 1 1

200 - Kerley ‘03 EOS B
\
E (@)
g 150 I"'l n
o \ New high precision Z data
5 —o—
wn
wn
o
o

See Marcus’ talk 1.10.4
100 1 o -
50 A -

0 T

100 GPa = 1 Mbar Density Compressmn

M. D. Knudson et al., Phys. Rev. Lett. 87, 225501 (2001)
M. P. Desjarlais, Phys. Rev. B 68, 064204 (2003)

See McMahon et al., Rev. Mod. Phys. 84, 1607 (2012) for a recent review on H and He



Hugoniot temperature measurements for deuterium on Z ) e,
. . . . . Laboratories
using pyrometry also agree well with the first-principles results
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Experiments on Z explored the shock melting of diamond () s
in support of the National Ignition Campaign

Motivated by ICF capsule designs

1.6
At what shock pressure does diamond melt? 1-4- .—*
12 1.2 1
QMD Hugoniot 10A % / »—F*ﬂ
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o 8 1.2 Z data
5 41 3
= 1.0
\ melt
21 0.81 K/ completion
diamond bc8 0.6 -
0 . | . 04 melt onset
0 500 1000 1500 2000 ' 5 é 7 é )
Pressure (GPa) Density (g/cc)

1000 GPa = 10 Mbar

Our Z experiments achieved unprecedented accuracy for shocked diamond 31
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Shock Velocity (km/s)

QMD calculations predicted measurable changes i) e

in the shock velocity at the phase boundaries
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Shock-Wave Exploration of the
High-Pressure Phases of Carbon

M. D. Knudson,* M. P. Desjarlais, D. H. Dolan

19 DECEMBER 2008 VOL 322 SCIENCE

Melt onset: 6.9 Mbar

Melt completion: 10.4 Mbar
First experimental evidence
for BC8 phase in carbon

Neptune




The a-quartz Hugoniot is now the most extensively ) =,
explored Hugoniot in the warm dense matter regime
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We have also performed six release experiments from

a-quartz Hugoniot states in the 3 to 8 Mbar range

s00L «— Shocked state of quartz
700 -
—~ 600
Q «— Reflected quartz Hugoniot
QO 500
o
2 400
n
o
300
o Shocked state of aerogel
200 | /
100 o\° QMD
< release
calculation

Particle Velocity (km/s)

See poster 2.30, Knudson and Desjarlais for our new quartz release model
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Simulations predicted that the principal Hugoniot of water ) e
was stiffer than SESAME 7150 and earlier data

I

| .
== QMD (16 molecules)
10 |== QMD (54 molecules)
- SESAME 7150 i
| & Podurets et al. 72
v Volkov et al. ’80 [
® Mitchell&Nellis *82 |
¢ Celliers et al. 04 I
O 8e potential QMD

p [Mbar]

|

20 222 25 285 3.3 4.0
p (g/cm3)

Equation of state and phase diagram of water
at ultrahigh pressures as in planetary interiors
French, Mattsson, Nettelman, and Redmer
PRB 79, 054107 (2009).
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QMD results agree with gas-
gun data (<1 Mbar)

QMD results agree with very
high P result from Russia

QMD results disagree with
SESAME 7150

QMD results disagree with
prior data

Technical detail: all-electron
calculations (8 e~ O potential)

Careful calculations but
disagreement with data is a
point of concern




New experimental data from Z validates the QMD calculations ) s,
and the equation of state from the Rostock group

Laboratories

* QMD results agree with gas-
10°F gun data (<1 Mbar)
: « QMD results agree with very
high P result from Russia
5 * QMD results agree with high P
2 result from Sandia’s Z machine
" 102 » ’
¢ Mitchell and Nellis;
Volkov
2: 2?5 (l3 3?5 éll
Density (g/cc)

Probing the interiors of the ice giants: Shock compression of water to 700 GPa and
3.8 g/cc, Knudson, Desjarlais, Lemke, Mattsson, French, Nettelmann, and Redmer,

Phys. Rev. Lett. 108, 091102 (2012).




Re-shock states approximate isentropic compression
and are relevant to planetary interiors
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Re-shock results validate
isentropic compression results
obtained from DFT

Data along planetary
isentropes for Neptune and
hot exoplanets like GJ436b

Data with unprecedented
accuracy for second shock in
water

Probing the interiors of the ice giants: Shock compression of water to 700 GPa and
3.8 g/cc, Knudson, Desjarlais, Lemke, Mattsson, French, Nettelmann, and Redmer,

Phys. Rev. Lett. 108, 091102 (2012).




We have performed experiments and simulations ) s,
for xenon at high pressures
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S. Root et al., Phys. Rev. Lett. 105, 085501 (2010).
J. H. Carpenter et al., EPJ Web of Conf. 10, 00018 (2010).




We have now executed similar experiments for krypton ) e

* Hugoniot determined to 8 Mbar

* Used reflected Al Hugoniot to
calculate Kr state

* Using SESAME 3700 release shifts
density lower ~ 1%

*Improved PAW results agree with
experimental data

* VASP Original PAW too stiff
* SESAME 5181 agrees to 4 Mbar

Pressure (GPa)
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500

300

200

100
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— Y360, P. Sterne, LLNL

400

r 1 1 11 7T1r 711
o Expt. Glukhodedov et al.

LEOS 360

SESAME 5181

o  DFT LDA - Improved PAW 140 kK

©  DFT AMO5 - Improved PAW

DFT LDA - 18e PAW
= Z-Expt, Root et al.

Density (g/cmS}

Phil Sterne (LNLL) developed Y360 using DFT and Z Results




Recent work has explored the Hugoniot of CO,

Hugoniot measured to 5.5 Mbar — consistent with DFT results

Data determined using quartz and sapphire impedance matching — consistent results
regardless of impedance standard

Experiments show a less compressible Hugoniot after dissociation

LEOS 2272 is too compressible and SESAME 5212 has different trajectory

Sandia
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LEOS 2274 (Wu) utilized the DFT and Z experimental results for high pressure Hugoniot
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Root, Cochrane, Carpenter, and Mattsson, Phys. Rev. B 87, 224102 (2013)
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We have also obtained data on reshock states of CO,

A weighted linear fit and weighted quadratic fit
determined for the data

Because of some attenuation of the shock we use fit
and CO, shock velocity to calculate state prior to
reshock at rear quartz window

Reshock state determined from quartz shock velocity

T T T T T T T v T
—<
800 |- —
F
700 | D v .
© R _
S 600 ' ’
o
Q
’5 500 | / -
[7)]
(7]
o
a 400 | O Boates et al, DFT - PBE -
O This work, DFT - AM05
300 | This work, DFT Reshock _
*  This work, DFT Reshock Envelope
Blue Symbols - Shock - Reshock Data
200 | , .
1 1 1 1 1 1 1 1 1 1 1 1 1
3.6 4.0 4.4 4.8 5.2 5.6 6.0

Density (g/cms)
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T T T T T
® Z Expt. Data, This Work
O  DFT - AMO05, This Work
O Boates et al., DFT - PBE

Nellis et al.

Weighted Linear Fit (Z-Data) =
Weighted Quadratic Fit (Expt. and DFT Data)

8 10 12

14
U, (km/s)

16 18 20

CO, reshock state measured to 8.4
Mbar

Reshock end states determined from
LEOS 2274 and quartz Hugoniot

Experimental data shows more

compressibility on reshock than
predicted by DFT

Root, Cochrane, Carpenter, and Mattsson, Phys. Rev. B 87, 224102 (2013)



We have developed an extensive set of data
and simulations for MgO
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See talk 1.5.4 (Root, et al.) and poster 2.34 (Shulenburger, et al.)
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= First-principles molecular dynamics with density functional theory (a.k.a
QMD or AIMD) has emerged over the last decade as a very powerful tool
for studying warm dense matter

= New insights have been obtained into the high pressure phase diagram
and behavior of materials

= Extensive validation experiments for a wide range of materials have been
carried out on Sandia’s Z machine

= Greatly improved transport models and equations of state have been
developed with input from QMD simulations
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