
Evaluating Performance Optimizations of Large-Scale
Genomic Sequence Search Applications Using SST/macro

Tae-Hyuk Ahn1, Damian Dechev2,3, Heshan Lin1, Helgi Adalsteinsson3, Curtis Janssen3

thahn@cs.vt.edu, ddechev@sandia.gov, hlin2@cs.vt.edu, hadalst@sandia.gov, cljanss@sandia.gov

1 Department of Computer Science, Virginia Tech, Blacksburg, VA 24061
2 Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816

3 Scalable Computing R&D Department, Sandia National Laboratories, Livermore, CA 94551

Abstract—The next decade will see a rapid evolution of HPC
node architectures as power and cooling constraints are limit-
ing increases in microprocessor clock speeds and constraining
data movement. Future and current HPC applications will have
to change and adapt as node architectures evolve. The applica-
tion of advanced cycle accurate node architecture simulators
will play a crucial role for the design and optimization of
future data intensive applications. In this paper, we present
our simulation-based framework for analyzing the scalability
and performance of a number of critical optimizations of
a massively parallel genomic search application, mpiBLAST,
using an advanced macroscale simulator (SST/macro). In this
paper we report the use of our framework for the evaluation
of three potential improvements of mpiBLAST: enabling high-
performance parallel output, an approach for caching database
fragments in memory, and a methodology for pre-distributing
database segments. In our experimental setup, we performed
query sequence matching on the genome of the yellow fever
mosquito, Aedes aegypti.

Keywords-exascale architecture simulator; mpiBLAST; per-
formance and scalability modeling

I. INTRODUCTION

The exponential growth of data intensive applications and
the necessity for complex and massive data analysis have
elevated modern large-scale parallel computing technology
and demand. Future High-Performance Computing (HPC)
systems will go through a rapid evolution of node architec-
tures as power and cooling constraints are limiting increases
in microprocessor clock speeds. Consequently computer
architects are trying to increase significantly the on-chip
parallelism to keep up with the demands for fast performance
and high volume of data processing. Multiple cores on a chip
is no longer cutting edge technology due to this hardware
paradigm shift. In the new Top 500 supercomputer list
published in March 2011, more than 99% of supercomputers
are multi-core processors [12]. As hardware has evolved,
software applications must adapt and gain the capability of
effectively running multiple tasks simultaneously through
parallel methods. It is of critical importance to provide an
accurate estimate of an application’s performance in a mas-
sively parallel system both for predicting the most effective

design of a multi-core large-scale architecture as well as
for optimizing and fine-tuning the software application to
efficiently execute in such a highly concurrent environment.

A key element of the strategy as we move forward is
the co-design of applications, architectures, and program-
ming environments, to navigate the increasingly daunting
constraint-space for feasible exascale system design. The
complexity of designing large-scale computer systems has
motivated the development and utilization of a large number
of cycle-accurate hardware and system simulators [14], [24],
[28]. There is a pressing need to develop accurate code anal-
ysis and system simulation platforms to insert application
developers directly into the design process for HPC systems
in the exascale era. It is of significant importance to build the
simulation platforms for accurate emulation of the hardware
architectures of the next decade and their design constraints.
This will enable computer scientists to engage early in the
design and utilization of effective programming models.

Three well-known approaches have been investigated for
estimating large-scale performance. The most common ap-
proach is direct execution of the full application on the target
system [21], [22], [29]. This simulation approach uses virtual
time unlike normal benchmarking that uses real time. Here,
performance is modeled by using a processor model and
communication work in addition to simulated time for a
modeled network. Another approach is tracing the program
in order to collect information about how it communicates
and executes [29]. The resulting trace file contains compu-
tation time and actual network traffic. Tracing provides high
levels of evaluation accuracy, but cannot be easily scaled
to a different number of processors. A third approach is
to implement a model skeleton program that is a simple
curtailed version of the full application but provides enough
information to simulate realistic activity [1], [26]. This ap-
proach has the advantage that the bulk of the computational
complexity can be replaced by simple calls with statistical
timing information. What makes this approach challenging
is the necessity to develop a model skeleton program based
on a complex scientific HPC application that often includes

SAND2011-3682C

Application Threads Discrete Event Simulator

(Lightweight Threads)

Process

Callbacks

Events

Events

Callbacks

SimulatorInterface

Kernels

Servers

Request

Trace

Skeleton
CPU

Network

Figure 1. SST/macro Simulation Framework.

a large number of HPC computational methods and libraries,
sophisticated communication and synchronization patterns,
and architecture-specific optimizations. Moreover, it is diffi-
cult to analyze and predict the runtime statistics for domain-
specific applications using heuristic algorithms. The skeleton
application provides a powerful method for evaluating the
scalability and efficiency over various architectures of mod-
erate or extreme scales. For example by running skeleton
applications, the Structural Simulation Toolkit’s macroscale
simulator (SST/macro) [10], [14] has been able to model
application performance at levels of parallelism that are not
obtainable on any known existing HPC system.

In this work we present the design and application of a
discrete event simulation-based framework for analyzing the
scalability and performance of a number of optimizations
of mpiBLAST. mpiBLAST [7] is an open-source parallel
implementation of the National Center for Biotechnology
Information’s (NCBI) Basic Local Alignment Search Tool
(BLAST) [2]. BLAST is the most widely used genomic
sequence alignment algorithm. Though a heuristic method
is employed to improve computational efficiency, compu-
tation time is debilitating because of the rapid growth of
sequence data. A parallel version of BLAST, mpiBLAST,
uses a database segment approach. The design of mpi-
BLAST has been revised a number of times to better
address the challenges of distributed result processing [17],
hierarchical architectures [27], include further dynamic load
balancing optimizations, and I/O optimizations [16], [18].
Our simulation-based framework allows programmers to
better address the challenges of executing genomic sequence
alignment algorithms on many-core architectures and at the
same time gain important insights regarding the effectiveness
of the mentioned mpiBLAST optimization techniques. This
allows both scientists, library developers, and hardware
architecture designers to evaluate the scalability and per-
formance of a data intensive application on a wide variety
of multi-core architectures, ranging from a regular cluster
machine to a future many-core petascale supercomputer. Our

approach can help in several ways including:
• enhance the evolution of the software application by

performing further architecture-specific optimizations
to meet the challenges of the communication and
synchronization bottlenecks of the new multiprocessor
architectures,

• adapt the hardware set-up to better facilitate the compu-
tational and communication patterns of the application,

• evaluate the effectiveness and associated trade-offs of
any future co-design evolution of the application soft-
ware and the hardware platform.

In this paper, we present the application of SST/macro,
an event-driven cycle-accurate macroscale simulator, for
estimating and predicting the performance of large-scale
parallel bioinformatics applications based on mpiBLAST.
SST/macro has been recently developed and released by the
Scalable Computing R&D Department at Sandia National
Labs and is a fully component-based open source project
that is freely available to the research and academic com-
munity [10]. We demonstrate the use of SST/macro and
its trace-driven simulation that is based on DUMPI [14],
a custom-built MPI tracing library developed as a part of
the SST/macro simulator. We also present a methodology
for constructing SST/macro skeleton programs based on
mpiBLAST.

The rest of this work is organized as follows: Section II in-
troduces the event-driven SST/macro simulator that is at the
core of our simulation framework, Section III discusses the
mpiBLAST algorithm for parallel genome sequence match-
ing and the possible optimizations of mpiBLAST, Section
IV presents in details the methodology of collecting DUMPI
trace files and our approach for implementing mpiBLAST-
based skeleton models as well as our experimental set-up
and results, and Section V concludes this paper.

II. EVENT-DRIVEN MACROSCALE SIMULATION

We begin with a discussion of the high-level design and
functionality of the SST macroscale simulator that is at the

core of our framework. The overall network topology and
model are presented in brief. Then we discuss MPI modeling
through skeleton applications and MPI trace files.

The purpose of a large number of simulation tools and
strategies is to help design new hardware platforms and
better applications in HPC computing. The macroscale ver-
sion of the Structural Simulation Toolkit is an architectural
simulator that permits coarse-grained study of data intensive
parallel scientific applications. SST/macro has a modular
structure implemented in C++ [25], allowing flexible addi-
tion of new components and modifications. Figure 1 shows
the highlight of the design of the SST/macro simulator. The
simulator makes use of extremely lightweight application
threads, allowing it to maintain simultaneous task counts
ranging into the millions. Task threads create communication
and compute kernels, then interact with the simulator’s
back-end by pushing kernels down to the interface layer.
The interface layer generates simulation events and handles
the scheduling of resulting events to the simulator back-
end. The interface layer implements servers to manage
the interaction with the network model in the context of
the application. SST/macro supports two execution modes:
skeleton application execution and trace-driven simulation
mode. The processor layer receives callbacks when the
kernels are completed.

Recent growth of large-scale systems has made evaluation
of communication loads across complex networks vital.
SST/macro is capable of simulating and evaluating ad-
vanced network workload with diverse topology and routing.
The simulator currently supports torus, fat-free, hypercube,
Clos, and gamma topologies, all described further in [6].
Moreover, the general framework of a network can be
easily evaluated with network parameters such as bandwidth
and latency, thus allowing the capture of actual trade-offs
between fidelity and runtime of a system’s network. The
routing algorithms are static in SST/macro, i.e., messages
between two processors always follow the same path re-
gardless of network status. The modularity of the simulator
makes defining new connections easy.

A. The MPI Model

The Message Passing Interface (MPI) is a message pass-
ing library interface specification for a distributed parallel
memory system [11]. MPI primarily allows message-passing
communication from the address space of one process to that
of another process. MPI is not a language, and all MPI op-
erations are expressed as functions, subroutines, or methods,
according to the appropriate language bindings, for C, C++,
and FORTRAN. The main advantages of MPI are portability
and usability. The standard includes two main privileges:
point-to-point message passing and collective operations. A
number of important MPI functions involve communication
between two specific processes based on point-to-point op-
erations. MPI specifies mechanisms for both blocking and

non-blocking point-to-point communication mechanisms. A
procedure is blocking if returning from the procedure indi-
cates the user is allowed to reuse resources specified in the
call and a procedure is nonblocking if the procedure may
return before the operation completes. Collective operation is
defined as communication that involves groups of processors
to invoke the procedure. These include such operations as
all-to-all (all processes contribute and receive the result), all-
to-one (all processes contribute to the result and one process
receives the result), and one-to-all (one process contributes
to the result and all processes receive the result).

In the SST/macro simulator, lightweight application
threads perform MPI operations. SST/macro implements a
complete simulated MPI which skeleton applications can
use to emulate node communication in a direct manner.
SST/macro has been used to test the performance impact of
proposed extensions to the MPI standard. A simple processor
model is added to provide timings for processor workload
and data movement within each node. SST includes a
network layer that supports a large array of interconnects.
The application trace and CPU model helps to determine
when a computation operation completes and schedules
a completion event. The SST/macro components provide
a complete performance estimation environment for HPC
platforms.

B. Trace File Simulation

In the trace file simulation approach, an application is
executed and profiled in order to extract a wealth of in-
formation about its execution pattern such as the average
instruction mix, memory access patterns, and communica-
tion mechanisms and bottlenecks. The network utilization
on a per-link basis is also estimated. The generated trace
file contains data such as the time spent in computation
and the communication footprints between processors. SST/-
macro supports two trace file formats: Open Trace Format
(OTF) [15] and DUMPI [14]. OTF is a trace definition
and representation format designed for use with large-scale
parallel platforms. The authors in [15] identify three main
design goals of OTF: openness, flexibility, and performance.
DUMPI is a custom trace format developed as a part of
the SST/macro simulator. Both of the trace formats record
execution information by linking the target application with
a library that uses the PMPI [20] interface to intercept
MPI calls. The DUMPI format is designed to record more
detailed information compared to OTF, including the full
signature of all MPI-1 and MPI-2 calls. In addtion, DUMPI
trace files store information regarding the return values and
the MPI requests, which allows error checking and MPI
operation matching. DUMPI files also provide processor
hardware performance counter information using the Per-
formance Application Programming Interface (PAPI) [14],
which allows information such as cache misses and floating
point operations to be logged.

C. Skeleton Application Simulation

The main advantage of trace file driven simulation is
accuracy, especially if the planned runtime system is known
in details. However, a main difficulty is the fact that it re-
quires the execution of the actual application that could often
be data intensive and of high computational complexity.
Moreover, trace file simulation is not capable of predicting
performance on future hardware platforms, as the generated
trace files are specific to the execution environment.

Skeleton applications are simplified models of actual
HPC programs with enough communication and compu-
tation information to simulate the application’s behavior.
One method of implementing a skeleton application is
to replace portions of the code performing computations
with system calls that instruct the simulator to account for
the time implicitly. Since the performance models can be
embedded in the skeleton application and real calculations
are not performed, the simulator requires significantly less
computational cost than simulating the entire system. Skele-
ton application simulation can also evaluate efficiency and
scalability at extremely different scales, which provides a
powerful option for performance prediction of non-existing
super-scalar systems. Though driving the simulator with a
skeleton application is a powerful approach for evaluating
the application’s scalability and efficiency, it requires ex-
tensive efforts for programmers to implement the skeleton
models for a large-scale parallel program. The effort is
justified by the difficulty of predicting computation time
for complex applications such as mpiBLAST. mpiBLAST
search time varies greatly across the same size database and
query, because the computation time depends on the number
of positive matches found in a query. Match location can also
affect the execution time.

Figure 2 shows the implementation of an MPI ping-pong
skeleton application in which pairwise ranks communicate
with each other. As shown in Figure 2, skeleton application
implementations for the SST/macro are very similar to the
native MPI implementation with the exception of the syntax
of the MPI calls. In addition to replacing the communica-
tion calls, we can replace computation parts with system
calls such as compute(...), which reduce simulation time
dramatically.

III. MPIBLAST

This section lays out the core design and functionality of
mpiBLAST. Furthermore, we discuss the I/O and computa-
tion scheduling optimization proposed to mpiBLAST.

A. The Fundamental Design of mpiBLAST

In bioinformatics, a sequence alignment is an essential
mechanism for the discovery of evolutionary relationships
between sequences. One of the most widely used alignment
search algorithms is BLAST (Basic Local Alignment Search

1 void mpipingpong::run() {
2 timestamp start = mpi()->init();
3 mpicomm world = mpi()->comm_world();
4 mpitype type = mpitype::mpi_double;
5 int rank = world.rank().id;
6 int size = world.size().id;
7 / / With an odd number o f nodes ,
8 / / rank (s i z e −1) s i t s o u t
9 if (!((size % 2) && (rank+1 >= size))) {

10 / / p a r t n e r nodes 0<=>1, 2<=>3, e t c .
11 mpiid peer(rank ˆ 1);
12 mpiapi::const_mpistatus_t stat;
13 for (int half_cycle = 0; half_cycle <
14 2 * num_iter; ++half_cycle) {
15 if ((half_cycle + rank) & 1)
16 mpi()->send(count, type, peer, tag,
17 world);
18 else
19 mpi()->recv(count, type, peer, tag,
20 world, stat);
21 }
22 }
23 timestamp done = mpi()->finalize();
24 }

Figure 2. Core execution loop of the MPI ping-pong skeleton application.

Tool) [2], [3]. The BLAST algorithm searches for similar-
ities between a set of query sequences and large databases
of protein or nucleotide sequences. The BLAST algorithm
is a heuristic search method for finding locally optimal
alignments or HSP (high scoring pair) with a score of at
least the specified threshold. The algorithm seeks words of
length W that score at least T when aligned with the query
and scored with a substitution matrix. Words in the database
that score T or greater are extended in both directions in an
attempt to find a locally optimal un-gapped alignment or
HSP (high scoring pair) with a score of at least E value
lower than the specified threshold. HSPs that meet these
criteria will be reported, provided they do not exceed the
cutoff value specified for the number of descriptions and/or
alignments to report.

Today, the number of stored genomic sequences is in-
creasing dramatically, which demands higher parallelization
of sequence alignment tools. Moreover, next-generation se-
quencing, a new generation of non-Sanger-based sequencing
technologies, has presented new challenges and opportu-
nities in data intensive computing [23]. Many parallel ap-
proaches for BLAST have been investigated [4], [5], [17],
[19], and mpiBLAST is an open-source, widely used parallel
implementation of the NCBI BLAST toolkit.

The original design of mpiBLAST follows a database seg-
mentation approach with a master/worker system. It works
by initially dividing up the database into multiple fragments.
This pre-processing step is called mpiformatdb. The
master uses a greedy algorithm to assign and distribute
pre-partitioned database chunks to worker processors. Each
worker then concurrently performs a BLAST search on its

assigned database fragment in parallel. The master server
receives the results from each worker, merges them, and
writes the output file. mpiBLAST achieves an effective
speedup when the number of processors is small or moder-
ate. However, mpiBLAST suffers from non-search overheads
when the number of processors increases and the database
size varies. Additionally, the centralized output processing
design can greatly hamper the scalability of mpiBLAST.

B. Optimizations of mpiBLAST

Hierarchical Architecture
mpiBLAST expands the original master-worker design to

hierarchical design, which organizes all processes into equal-
sized partitions by a supermaster process. The supermas-
ter process manages assigning tasks to different partitions
and handling inter-partition load balancing. There is one
master processor for each partition that is responsible for
coordinating both computation and I/O scheduling with
many workers in a partition. This hierarchical design has an
advantage in massive-scale parallel machines as it distributes
the workload well across multiple partitions.
Dynamic Load Balancing Design

It is difficult to estimate the execution time of BLAST
because search time is extremely variable and thus unpre-
dictable [9]. Therefore a greedy scheduling algorithm for
fine-grained task assignment to idle processes is necessary.
To avoid load imbalance while reducing the scheduling
overhead, mpiBLAST adopts a dynamic worker group man-
agement approach where the masters dynamically maintain
a window of outstanding tasks. Whenever a worker finishes
its tasks, it requests further assignments from its master.
With query prefetching, the master requests the next query
segment when the total number of outstanding tasks in the
window falls under a certain threshold.
Parallel I/O Strategy

Massive data I/O can lead to performance bottlenecks
especially for data driven applications such as mpiBLAST.
To deal with this challenge, mpiBLAST pre-distributes
database fragments to workers before the search begins.
Workers cache database fragments in memory instead of
local storage. This is recommended on diskless platforms
where there is no local storage attached to each processor.
By default, mpiBLAST uses the master process to collect
and write results within a partition, which may not be suit-
able for massively parallel sequential search. Asynchronous
parallel output writing techniques optimize concurrent non-
contiguous output access without inducing synchronization
overhead which result from traditional collective output
techniques.

IV. EXPERIMENTAL RESULTS

We chose to identify and use freely available datasets for
executing our mpiBLAST-based simulation analysis. In our
experimental set-up we run mpiBLAST on the genome of

the yellow fever mosquito, Aedes aegypti, which has been
investigated by biologists for spreading dengue and yellow
fever viruses. The genome database can be downloaded
freely from the source in [13] and has a suitable size of
1.4GB for testing on both our local machine and the cluster
system. We use 1MB sequences randomly sampled from
the Aedes aegypti transcriptome dataset because such query
sequences match well with the genome’s characteristics.

In our experiments, we relied on DUMPI to facilitate
more detailed tracing of MPI calls than was available from
other trace programs. The results of a DUMPI profiling run
consists of two file formats. One is an ASCII metafile for
the entire run, and the other is a binary trace file for each
node. The metafile is a simple key/value ASCII file that
is intended to be human-readable and to facilitate grouping
related trace files together. Each trace file consists of a 64-
bit lead-in magic number and 8 data records. In order to
trace an application with DUMPI, a collection of DUMPI
libraries are linked to the application when it is executed in
the system. Afterwards, several executables built on DUMPI
repository are used to analyze the DUMPI trace files.

In our experimental setup we have traced and analyzed
the mpiBLAST implementation described in Section III.
The current open-source version of mpiBLAST has several
options for parallel input/ouput of data. We have simulated
and tested three optimizations as described below:

• Optimization 1 (--use-parallel-write), enabling high-
performance parallel output: by default, mpiBLAST uses
the master process to collect and write results within a par-
tition. This is the most portable output solution and should
work on any file system. However, using the parallel-write
solution is highly recommended on platforms with fast
network interconnection and high-throughput shared file
systems.

• Optimization 2 (--use-virtual-frags), enabling workers to
cache database fragments in memory instead of on local
storage: this is recommended on diskless platforms where
there is no local storage attaching to each processor.

• Optimization 3 (--predistribute-db), pre-distributing
database fragments to workers before the search begins:
especially useful in reducing data input time when multiple
database replicas need to be distributed to workers.

We have traced a large number of mpiBLAST experimental
executions with the SST/macro simulator to validate the
simulator and predict the application’s performance on a
large-scale parallel machine. We executed our SST/macro
simulation of the mpiBLAST application on two different
platforms: a multi-core Linux machine and a distributed
memory cluster system. The local machine consisted of a
2.66GHz Intel Core(TM)2 Duo CPU and 2GB memory. The
cluster system is composed of 113 nodes, where each node
contains two 3.2GHz Intel Xeon CPU and 2GB memory.

0 10 20 30 40 50 60 70
0

200

400

600

800

1000

1200

1400

Number of Processors

T
im

e
(s

ec
)

Local−Observed

Local−Simulated

Cluster−Observed

Cluster−Simulated

Figure 3. Comparison of observed and simulated runtimes both on the
local machine and the cluster system.

A. Validation of SST/macro with mpiBLAST

SST/macro has been recently released [10] and it has
not yet been exposed to testing outside of its development
environment at Sandia National Labs. For this reason, in
this section we briefly mention our findings in our efforts to
validate the accuracy of the SST/macro simulator. The sim-
ulator was validated with mpiBLAST results using default
bandwidth (2.5 GB/s) and latency (1.3 µs) on both testing
environments. We used processor counts from 8 to 64, and
traces were collected using the lightweight DUMPI library.
Figure 3 shows the simulated walltime versus the elapsed
realtime for the simulation driven by these DUMPI traces.

We applied the concept of K-L divergence [8] to evaluate
the similarity between the results from observed and simu-
lated run time across the tested systems. K-L divergence
is a non-commutative measure of the difference between
two samples P and Q typically P representing the “true”
distribution and Q representing arbitrary distribution. There-
fore we set P as simulation results and Q as SST/macro
DUMPI-driven runtimes with varying total CPUs. The K-L
divergence is defined to be

DKL(P ||Q) =
∑

i

P (i) log
P (i)
Q(i)

(1)

where Q(i) 6= 0. A smaller value of the K-L divergence
variable signifies greater similarity between the two distri-
butions.

Table I
THE ABSOLUTE DISTANCE AND K-L DIVERGENCE

Method Local Cluster
K-L divergence 6.09 11.55

16 32 64
0

50

100

150

200

250

300

350

Number of Processors

T
im

e
(s

ec
)

No Optimization

Optimization 1

Optimization 2

Optimization 3

Optimization 1+2+3

Figure 4. Scalability of 5 different optimization strategies on a 113-
node cluster system. Regular bars represent SST/macro DUMPI-driven
simulation times with different optimizations and the core bars represent
observed time.

Table I shows the K-L divergence distance. We carefully
analyzed the resulting K-L distance and found out that the
SST/macro trace clock times are very close to real simulation
wall-times on both the local machine and the cluster system.

B. Simulation of mpiBLAST Optimizations

To evaluate the various optimizations of mpiBLAST that
we mentioned earlier in this section, we run SST/macro and
collected the simulation DUMPI traces using 16, 32, and
64 processors on the cluster system. Figure 4 shows the
scalability and efficiency of each approach. The y-axis shows
the total execution time in seconds for all processes of each
approach, and the x-axis represents the number of processors
that we used for our simulation runs. In our diagram we use
the following notations: Optimization 1 is the enabling of
parallel output, Optimization 2 uses virtual fragments, and
Optimization 3 pre-distributes database to workers before
search begins. In addition, we also tested a version that in-
cludes all three mpiBLAST refinements named Optimization
1+2+3, and a version that excludes all optimizations named
No Optimizations. The simulation results indicate that for
our selected genome analysis, the sequence matching of
the Aedes aegypti genome using sequences of size 1MB,
Optimization 2: the use of virtual fragments provides the best
scalability and efficiency. Optimization 2 leads to a speed-up
of a factor of 2 or more compared to our No Optimization
solution when executed on 64 nodes of our cluster system.
This finding is not surprising given the exponential increase
of the cost of accessing global memory with the increase
of the participating compute nodes. Enabling the master
process to collect and write output (Optimization 1) also
led to a performance increase by about a factor of 2

on our 64 node execution. Our tests indicated that in all
execution scenarios the use of static work pre-distribution
alone (Optimization 3) led to a significant overhead in our
genome sequencing analysis and slowed down the execution
time. However, when combined with Optimization 1 and
Optimization 2, static work pre-distribution did not lead
to performance loss and even helped increase the speed
of execution in certain scenarios. Enabling Optimization 2
helped in achieving faster execution in the tests we per-
formed using 16 and 32 nodes, however the observed speed-
up was not as significantly high as with the scenario with 64
nodes. Intuitively, this result demonstrates that Optimization
2 provides excellent scalability, however, due to the overhead
of computing the fragments, the methodology is effective
only when we have a system with a higher degree of
parallelism. The graph in Figure 4 shows the same trend
for Optimization 1, where enabling parallel output even
deteriorated the execution time for the scenario of using 16
cluster nodes.

V. CONCLUSIONS

The application of hardware/software co-design has been
a feature of embedded system designs for a long time. So
far, hardware/software co-design techniques have found little
application in the field of high-performance computing. The
multi-core paradigm shift has left both software engineers
and computer architects with a lot of challenging dilemmas.
The application of hardware/software co-design for HPC
systems will allow for a bi-directional optimization of design
parameters where software specifications and behavior drive
hardware design decisions and hardware constraints are
better understood and accounted for in the implementation
of effective application software. The use of cycle accurate
simulation tools provides the data and insights to estimate
the performance impact on an HPC applications when it
is subjected to certain architectural constraints. In this work
we demonstrated the application of a newly developed open-
source cycle-accurate macroscale simulator (SST/macro) for
the evaluation and optimization of data intensive genome
sequence matching algorithms. We performed both trace-
driven simulation and simulation based on application mod-
eling. In our experimental set-up, we run an mpiBLAST
sequence matching algorithm using 1MB sequences of the
genome of the yellow fever mosquito, Aedes aegypti. Using
this data intensive application as a canonical example, we
validated the accuracy of SST/macro. In addition, the analy-
sis of our performance data indicated that the use of dynamic
data fragmentation leads to significant performance gains
and high scalability on a distributed memory cluster system.
The framework we have presented in this work allows for
the evaluation and optimization of mpiBLAST application
on a wide variety of platforms, ranging from a conventional
workstation to a system allowing levels of parallelism that
are not obtainable by existing supercomputers. This simula-

tion ability can play a crucial role for the effective design
and implementation of large-scale data intensive applications
to be executed on the future multi-core hardware platforms,
that often could include a wide variety of features including
a heterogenous design of CPUs, GPUs, and even FPGAs. In
our future work, we intend to further develop and distribute
a full-scale SST/macro model implementation of the entire
mpiBLAST library and make it available as a part of the
SST/macro simulation distribution.

VI. ACKNOWLEDGEMENTS

We express our gratitude to our team members of the
SST/macroscale simulator team at Sandia National Labora-
tories, Livermore, CA: Scott Cranford, David Evensky, Joe
Kenny, Nicole Lemaster, Jackson Mayo, and Ali Pinar. In
addition, we thank Adrian Sandu from Virginia Tech and
Philip Bell from the University of Central Florida, and the
anonymous referees from SIMULTECH 2011 for providing
helpful comments and suggestions.

REFERENCES

[1] V. Adve, R. Bagrodia, E. Deelman, and R. Sakellariou.
Compiler-optimized simulation of large-scale applications on
high performance architectures. Journal of Parallel and
Distributed Computing, 62(3):393–426, 2002.

[2] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman.
Basic local alignment search tool. Journal of Molecular
Biology, 215:403–410, 1990.

[3] S. Altschul, T. Madden, A. Schäffer, J. Zhang, Z. Zhang,
W. Miller, and D. Lipman. Gapped BLAST and PSI-BLAST:
a new generation of protein database search programs. Nu-
cleic Acids Research, 25(17):3389–3402, 1997.

[4] R. Bjornson, A. Sherman, S. Weston, N. Willard, and J. Wing.
TurboBLAST(r): A Parallel Implementation of BLAST Built
on the TurboHub. In Proceedings of the International Parallel
and Distributed Processing Symposium (IPDPS’02), pages
183–190, 2002.

[5] R. Braun, K. Pedretti, T. Casavant, T. Scheetz, C. Birkett,
and C. Roberts. Parallelization of Local BLAST Service on
Workstation Clusters. Future Generation Computer Systems,
17(6):745–754, 2001.

[6] W. Dally and B. Towles. Principles and Practices of Inter-
connection Networks. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2003.

[7] A. Darling, L. Carey, and W. Feng. The Design, Imple-
mentation, and Evaluation of mpiBLAST. In Proceedings
of ClusterWorld 2003, 2003.

[8] F. Emmert-Streib and M. Dehmer. Information Theory and
Statistical Learning. Springer Publishing Company, Incorpo-
rated, 2008.

[9] M. Gardner, W. Feng, J. Archuleta, H. Lin, and X. Ma. Par-
allel Genomic Sequence-Searching on an Ad-Hoc Grid: Ex-
periences, Lessons learned, and Implications. In IEEE/ACM
International Conference for High-Performance Computing,
Networking, Storage and Analysis (SC’06), 2006.

[10] http://sst.sandia.gov/using sstmacro.html. SST: The Struc-
tural Simulation Toolkit, SST/macro the Macroscale Com-
ponents, Open Source Release, May 2011.

[11] http://www.mpi forum.org/. MPI (Message Passing Interface)
standards documents, errata, and archives of the MPI Forum.,
Sep 2009.

[12] http://www.top500.org/. Top 500 SuperComputers Ranking,
June, 2010.

[13] http://www.vectorbase.org/. NIAID Bioinformatics Resource
Center for Invertebrate Vectors of Human Pathogens., Oct
2010.

[14] C. Janssen, H. Adalsteinsson, S. Cranford, J. Kenny, A. Pinar,
D. Evensky, and J. Mayo. A Simulator for Large-Scale
Parallel Computer Architectures. International Journal of
Distributed Systems and Technologies, 1(2):57–73, 2010.

[15] A. Knüpfer, R.B., H. Brunst, H. Mix, and W. Nagel. Introduc-
ing the Open Trace Format (OTF). In V. Alexandrov, G. van
Albada, P. Sloot, and J. Dongarra, editors, International
Conference on Computational Science (2), volume 3992 of
Lecture Notes in Computer Science, pages 526–533. Springer,
2006.

[16] H. Lin, P. Balaji, R. Poole, C. Sosa, X. Ma, and W. Feng.
Massively Parallel Genomic Sequence Search on the Blue
Gene/P Architecture. In Proceedings of the 2008 ACM/IEEE
conference on Supercomputing (SC’08), pages 33:1–33:11,
Piscataway, NJ, USA, 2008. IEEE Press.

[17] H. Lin, X. Ma, P. Chandramohan, A. Geist, and N. Samatova.
Efficient Data Access for Parallel BLAST. In Proceedings
of the 19th IEEE International Parallel and Distributed
Processing Symposium (IPDPS’05), page 72.2, Washington,
DC, USA, 2005. IEEE Computer Society.

[18] H. Lin, X. Ma, W. Feng, and N. Samatova. Coordinating
Computation and I/O in Massively Parallel Sequence Search.
IEEE Transactions on Parallel and Distributed Systems,
22(4):529–543, April 2011.

[19] D. Mathog. Parallel BLAST on split databases. Bioinformat-
ics, 19(14):1865–1866, 2003.

[20] S. Mintchev and V. Getov. PMPI: High-Level Message
Passing in Fortran 77 and C. In HPCN Europe ’97: Pro-
ceedings of the International Conference and Exhibition on
High-Performance Computing and Networking, pages 603–
614, London, UK, 1997. Springer-Verlag.

[21] S. Prakash, E. Deelman, and R. Bagrodia. Asynchronous
Parallel Simulation of Parallel Programs. IEEE Transactions
on Software Engineering, 26(5):385–400, 2000.

[22] R. Riesen. A Hybrid MPI Simulator. In IEEE International
Conference on Cluster Computing 2006, pages 1–9, sept.
2006.

[23] S. Schuster. Next-generation sequencing transforms today’s
biology. Nature Methods, 5(1):16–18, December 2007.

[24] T. Sherwood, E. Perelman, and G. Hamerly. Automat-
ically Characterizing Large Scale Program Behavior. In
10th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
2002), pages 45–57, 2002.

[25] B. Stroustrup. The C++ Programming Language. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2000.

[26] R. Susukita, H. Ando, M. Aoyagi, H. Honda, Y. Inadomi,
K. Inoue, S. Ishizuki, Y. Kimura, H. Komatsu, M. Kurokawa,
K. J. Murakami, H. Shibamura, S. Yamamura, and Y. Yu.
Performance prediction of large-scale parallell system and
application using macro-level simulation. In Proceedings of
the 2008 ACM/IEEE conference on Supercomputing SC ’08,
pages 20:1–20:9, Piscataway, NJ, USA, 2008. IEEE Press.

[27] O. Thorsen, B. Smith, C. Sosa, K. Jiang, H. Lin, A. Peters,
and W. Feng. Parallel genomic sequence-search on a mas-
sively parallel system. In Proceedings of the 4th International
Conference on Computing Frontiers (CF ’07), pages 59–68,
New York, NY, USA, 2007. ACM.

[28] K. D. Underwood, M. Levenhagen, and A. Rodrigues. Sim-
ulating Red Storm: Challenges and Successes in Building a
System Simulation. In Proceedings of the IEEE International
Parallel and Distributed Processing Symposium (IPDPS’07),
pages 1–10, Los Alamitos, CA, USA, 2007. IEEE Computer
Society.

[29] G. Zheng, T. Wilmarth, P. Jagadishprasad, and L. Kalé.
Simulation-based performance prediction for large parallel
machines. Int. J. Parallel Program., 33(2):183–207, June
2005.

