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ABSTRACT tions that enable us to avoid detailed discretization of
the individual matrix blocks. These processes are gen-

A new type of dual-porosity model is being developed erally governed by diffusion-type partial differential
to simulate two-phase flow processes in fractured geoth- equations. We model these diffusive processes with
ermal reservoirs. At this time it is assumed that the nonlinear ordinary differential equations that relate the
liquid phase in the matrix blocks remains immobile. By average thermodynamic properties in the block to those
utilizing the effective compressibility of a two-phase at the outer boundary (in the fractures). The first stage
water/steam mixture in a porous rock, flow within the of our work, dealing with isothermal flow of a single-
matrix blocks can be modeled by a single diffusion phase fluid, was described at the 17th Stanford
equation. This equation in turn is replaced by a non- Workshop (Zimmerman et al., 1992). We have since
linear ordinary differential equation that utilizes the extended the general approach to treat thermal conduc-
mean pressure and mean saturation in the matrix blocks tion within the matrix blocks. This extension is
to calculate the rate of fluid flow between the matrix straightforward, as shown by Pruess and Wu (1989),
blocks and fractures. This equation has been incor- since the governing equation for conduction is exactly
porated into the numerical simulator TOUGH to serve analogous to that for single-phase flow. In this paper
as a source/sink term for computational gridblocks that we describe a further extension of this approach to
represent the fracture system. The new method has processes involving two-phase conditions in which the
been compared with solutions obtained using fully- liquid phase is immobile.
discretized matrix blocks, on a problem involving a
three-dimensional vapor-dominated reservoir containing DUAL-POROSITY MODELS
an injection and a production well, and has been found We now briefly describe the main ideas behind dual-
to be quite accurate, porosity models for fractured reservoirs; for further

details, see Barenblatt et al. (19(_0), Warren and Root
INTRODUCTION (1963), and Duguid and Lee (1977). In order to avoid a
Although most geothermal reservoirs reside in fractured cumbersome notation, we will discuss these models with
rocks, most models that have been developed to analyze specific reference to single-phase, !sothermal flow of a
their behavior have been based on porous medium slightly-compressible fluid. Consider .6rst p.fracture net-
approximations. In these models, the hydraulic behavior work, and assume temporarily that the matrix blocks are
of the fractures and the matrix blocks are modeled impermeable. A basic assumption underlying the use of
together as a locally-homogeneous porous medium. It is dual-porosity models is that there exists a scale at which
weii-known, however, that porous medium models are it is possible to assign macroscopic properties to the
poorly s_fited for predicting certain aspects of the fracture network, such as a permeability kf, etc.
behavior of geothermal wells, especially enthalpy tran- Although it does not seem to be true that such a length-
sients, then_aal front migration due to injection, and scale always exists (cf., Long and Witherspoon, 1985),
chemical tra,:er movement. Nevertheless, in many cases standard dual-porosity models assume that such a scale
the porous r,aedium approximation must be invoked, due does exist. This scale then serves as a representative
to constr_nts c f computer time or cost. There is, conse- elementary volume (REV; see Bear, 1972) upon which a
quently, a grea: need for improved numerical capabili- continuum formulation can be based. "Points" in the

ties for the modeling of fractured geothermal reservoirs, fracture network are then denoted by the vector xf,
using accurate and appropriate models, where it is understood that properties defined at point x.t.

are averaged over an REV centered at that point.In :his paper we discuss our on-going research aimed at
' improved methods of simulating processes in fractured When a single-phase, slightly compressible fluid flows

geothermal reservoirs. The main concept behind our through such a fractured medium, the fluid pressure in
approach is to analyze the heat and mass flow processes the fractures is governed by the tbllowing equation
occurring within the matrix blocks by simplified equa- (Matthews and Russell, 1967):



_Pf (xf, t) kf V 2p
_)f_f _t = _ f f(Xf,t) + Q(xf,t) (1) 1987), the reservoir would be giscrefized into a numberof gridblocks, each representing a macroscopic region

that contained a portion of the fracture continuum.

where 0c is the total fracture porosity, and 13f is the Each of these regions would also therefore contain a
total compressibility of the fractures and the fluid within certain number of matrix blocks, within which the flow

them. The product Of 13/ serves as the capacitance term will be governed by equation (2). For some problems

in the diffusion-type equation (1). The pressure P/ is the matrix blocks can be replaced, for computational
the mean value of the fluid pressure in the fractures, purposes, by a single equivalent matrix block having the

averaged over some REV. The operator V] is the same volume and same fracture/matrix interface area as
Laplacian with respect to the coordinates xf. The term does the collection of actual matrix blocks. In order to
Q is a source/sink term representing the net volumetric accurately re_olve the pressure gradients within the
addition of fluid to the fracture system, per unit of total matrix blocks, this equivalent matrix block must be
volume. Although we assume here that the fracture discretized into a number of concentric gridblocks. One
continuum is isotropic, this assumption is not necessary, efficient way of creating this type of dual-porosity grid

is the MINC (Multiple INteracting Continua) method,
Now assume that at each point x/- in the fracture contin- which is described by Pruess and Narasimhan (1985).
uum, there is located a permeable matrix block of some We have found that accurate MINC simulations over

specified shape. These matrix blocks can exchange fluid large time scales require roughly ten gridblocks in each
with the fracture continuum; hence we can identify the equivalent matrix block. The total number of gridblocks
source/sink term Q in equation (1) with the fluid used in a simulation will therefore be llN, where N is

exchange between the fractures and matrix blocks, the number of fracture gridblocks. For three-
Inside each matrix block the fluid pressure Pm will, in dimensional problems, this number will usually be
general, vary from point to point. Points inside the impractically large, which suggests the desirability of
matrix block are identified by two position variables: x m replacing the fine-gridding in the matrix blocks with a
locates the point within the block relative to its centroid, readily-computed source/sink term.
and xf is used to locate that particular block within the
fracture continuum. Fluid flow within each matrix block LUMPED-PARAMETER MODELS

is governed by an equation analogous to (1): The earliest double-porosity models, developed by
Barenblatt et at. (1960) and Warren and Root (1963),

O_ _m _Prn (Xm t; Xf ) k_ 2 treated the matrix blocks in a lumped_parameter fashion.' = "" VmPm(xm,t;xf). (2_ The equations of such an approach can be derived as
_t _ follows. We first integrate equation (2) over an entire

matrix block, and use the divergence theorem to convert
The spatial derivatives are in this case taken with the volume integral on the right into a surface integral,
respect to the local variable xm. The fracture/matrix to find
interflow term Q does not appear in equation (2) since,

whereas the interflow is assumed to be distributed OPm(x/, t) _ f km OPmthroughout the fracture continuum as a source/sink term, Cm13m = --_ (4)
the interflow enters the matrix blocks only at their boun- _t Vm av, I.t _n dA ,
daries. If the existence of a fracture skin is ignored

(cf., Moench, 1984; deSwaan, 1990), then the pressure where the average pressure Pm is defined by
at the outer boundary of a given matrix block is equal to
the local fracture pressure: i.e., if x m is on the boundary

of the matrix block, thenPm(Xra,t;xf)=P1.(xf,t ). Pm(xf,t) = vl_.fPm(xm,t;x/)_/ (5)
" /71 Vim

The system of equations (1) and (2) are coupled through
the term Q, which can be found in principle by integrat-
ing the flux out of the boundary of each matrix block, Comparison of equations (3) and (4) shows that Pm is
_V,n, using Darcy's law (Duguid and Lee, 1977): governed by the following equation:

--1 krn _Pm dPm (xf ' t )

Q(x/,t)= -_!. --._- _---_dA, (3) Ora_m dt =-Q(xf,t). (6)

Equations (1) and (6) provide two equations for the

where n is measured along the outward unit normal to three variables Pf, Pm and Q To complete the systemthe boundary of the block. If the system of equations ' '
of equations, Q must be expressed as a function of Pf(1-3) were solved with a numerical simulator such as
and Pro"the integral-finite-difference simulator TOUGH ffh'uess,



Barenblatt et al: (1960) and Warren and Root (1963) Grant and Sorey (1979) derived an expression for the
assumed that Q is proportional to the difference effective compressibility of the water/steam mixture,
between P/ and P,n, so that based on the following analysis. Imagine that the pres-

sure increases, in which case the temperature will also
increase, since the water and steam remain in thermo-

Q (x/, t) = - (zk'n (Pf -/Tm) , (7) dynamic equilibrium. Heat will then flow from the fluid
t.t into the rock matrix, causing some of the vapor to con-

dense. Since liquid water is denser than steam, the
' where ct is a parameter that depends on block shape, overall volume of fluid will decrease, giving rise to an

and has dimensions of area-1. The governing equation apparent compressibility effect. The resulting expres-
(6) for/Tm then takes the form sion for the effective compressibility is

dt = --_'-(P[-I'm). (8) (013),sI= <pC>rVt_ht_' (I0)

For a given shape of the matrix block, (z can be chosen
such that equation (8) is asymptotically accurate at late where vtv = vv-vt is the difference between the specific
times (see Zimmerman et al., 1992). For spherical volume of the vapor and the liquid, htv= hv- ht is the
matrix blocks of radius am, which will be used in this latent heat of vaporization, and <pC> is the overall
paper for illustrative purposes, ct= _/a_. heat capacity of the system, which is given by

The Warren-Root equation is known to be inaccurate in
the early stages of diffusion into a matrix block <pC>=(1-¢p)p, Cr+(_SvpvCv +(_(1-Sv)PtCt, (11)
(Strelts0va, 1983; Dykhuizen, 1990). A more accurate
interaction equation is that proposed by Vermeulen
(1953): where C is the specific heat, p is the density, and the

subscripts r,l,v denote rock, liquid and vapor. This
apparent compressibility is usually at least an order of

dP, n 7t2km[(Pf-Pt)2- (/Tm_P_)2] magnitude greater than that of single-phase water or

OmF3,,, d--"_-= 2_ta_(_m_p i) , (9) steam. Since the diffusivity is inversely proportional to
((_13),diffusive processes involving two-phase mixtures
will proceed relatively slowly.

where Pi is the initial pressure in the matrix block.
When the liquid phase is immobile, the flow of theThis interaction equation was shown to be fairly accu-

rate for a wide range of boundary conditions (see Zim- vapor is therefore governed by an equation analogous to
merman et ai., 1992). Recognizing that the combination equation (2), with the following modifications. The
r_2km/0,,13,,,I.ta_ is the product of the shape-factor (z and compressibility ((hi3)must be replaced by the expression

in equation (10), km must be multiplied by the relati,lethe hydraulic diffusivity D =k,,,/(_ml.t13m,we see that
equation (9) can be used for other diffusive processes, permeability of the rock to the vapor phase, krv, and _he
such as heat conduction, viscosity must be taken as that of the vapor, I.tv. The

relative permeability krv will vary with vapor saturation,

TWO--PHASES, IMMOBILE LIQUID the viscosity _ will vary with pressure, and ((_13)eff
Porous media generally have a minimum value of the will vary with both saturation and pressure. In the con-
liquid saturation St, below which the relative permeabil- text of the lumped.parameter approximati_on,we evalu-
ity of the liquid phase is zero. If the water saturation in ate these parameters at pressure P,,, and Sv, where S'vis
the matrix blocks is at this irreducible level, then only the mean vapor saturation in the matrix block. During a
the vapor phase (steam) will be mobile. However, numerical simulation, these parameters can be re-
although the water cannot flow out of the matrix blocks evaluated at each time step, as P,, and Sv change with
in the liquid state, water can be produced from the time.
blocks by first vaporizing into the (mobile) steam phase.
This is believed to be the case within vapor-dominated DUAL-POROSITY SIMULATOR
geothermal systems, where only steam is produced at Numerical reservoir simulators used for porous-medium
the wells (Pruess and Narasimhan, 1982). In such cases, reservoirs typically solve equation (1), and analogous

' the flow can still be modeled by a single d' "fusionequa- equations for energy balance, etc., by first discretizing
tion. This requires modifying the compressibility term the reservoir into a number of computational gridblocks.
in the diffusion equation to account for the phase A numerical scheme such as finite-differences
change. (Huyakorn and Pinder, 1983), finite elements (Pinder

and Gray, 1977), or integral finite-differences (Edwards,



1972), is then used to reduce the partial differential
equations to a set of algebraic equations. These alge- TOP VIEW
braic equations are solved at each time-step tn, in order x = 1 2 3 4 5 6
to yield the pressures, temperatures, saturations, etc., in
each gridblock at time-step tn+I = tn + l_t. Y = 1 • i

I

We have implemented our semi-analytical dual-porosity 2 • wellPr°ducti°n
model as a modification to the TOUGH simulator •3 • injection =
(Pruess, 1987), an integral-finite-difference code that has .. well
been widely used to simulate the behavior of geothermal 4
reservoirs. The fracture/matrix interaction equations ......
have been incorporated as an option in the source/sink
subroutine that is normally used to represent injection or SIDE VIEW
withdrawal of fluid from a well, etc. In our dual-

porosity simulations, each computational gridblock x = 1 2 3 4 5 6 305 m depth
represents a region that has properties corresponding to

the fractured continuum, such as ky, ¢i, etc., averaged
over a suitably-large REV. Each gridblock will also z=l
have associated with it three new variables, P, T and
fly, that represent the (average) thermodynamic state of
the fluid in those matrix blocks that are located within

that gridblock. Here we drop the subscript m used to 915 m
denote "matrix", since the overbar serves the purpose
of distinguishing the matrix variables from fracture vari-
ables. We calculate the pressure change in the matrix 2
blocks, at each time step and for each gridblock, from

equation (9), modified as described above: 1372 m

dP ctkmkrv [(Pf - ei )2 _ (/_ _ ei )2] 3= 1601 rn
(Of$)<ir T 2_(F-Y;) , (19-) 4

1753 m

5 1829 m

where (O_3)eM is found from equation (10), and

o_=rc2/a 2 (if the matrix blocks are assumed to be Fig. 1. Schematic diagram of the grid used in simula-
spheres of radius am). The term on the right-hand side tions of a hypothetical geothermal reservoir.
of equation (12) then represents the volumetric fluid flux Dimensions of the gridblocks, and the physical
Q, as shown by equation (6). The integration of equa- properties of the fractures and the matrix
tion (12) must be done implicitly, in order to avoid blocks, are listed in the text.
numerical instabilities. This means that in passing from

tn to t,_+l, the terms on the right-hand side of equation properties corresponding to those believed to be applica-
(12) are evaluated under the conditions that exist at time ble to The Geysers geothermal field in California. This
t,_+l. An iterative process is therefore required for con- hypothetical reservoir (see Fig. 1) is 1524m thick, and
vergence to the correct new values (see Pruess, 1987). extends from a depth of 305m to 1829m below the sur-
The new saturation at time t,,+l is found by applying a face. The cross-sectional shape in any horizontal plane
mass balance to the matrix block. The mass flux of is a rectangle with sides of 914.4m and 609.6m. Each
vapor out of the matrix block into the fracture network layer is broken up into 24 gridblocks, each of length
also carries with it a sensible heat flux of the amount 152.4m in the two horizontal directions. The

PvhvQ, where Q is the volumetric flux. This term thicknesses of the five layers are as shown in Fig. 1. A
must be included in the energy balance equation, production well (Well #1) and an injection well ('Well

EXAMPLE OF RESERVOIR SIMULATIONS #2) axe located in gridblocks xyz =511 and xyz =231
(see Fig. 1), and are completed only in the topmost

To test the accuracy and computational efficiency of the layer of the reservoir.
above-described modifications to the TOUGH code, we

have simulated some problems using, with some The matrix blocks are cubes of 67m on each side, with
modifications, the computational grid and reservoir pro- matrix permeability km =iX 10-19m 2, matrix porosity
perties that were proposed by Spivak (1991) to test _m = 0.04. (A somewhat low matrix permeability is

geothermal simulators. This is a three-dimensional used so as to avoid havin_ the liquid saturation rise
model of a vapor-dominated geothermal reservoir, with above its irreducible value nf.ar the injection well). The



rock has density p, = 2648kg/m 3, and heat capacity 36-_.............. ,........ , --_...... _ ................
Cr = 1000 J/kgK. The fracture network has an overall 0 .... o ....... -o---.--__o_._...__.

porosity Of = 0.01, and permeability kf = 2.0x 10-14 m2. [ -_'_--._ !
The relative permeabilities of both the fracture network 34+ o" T

' and matrix blocks are taken to be linear functions of ! X,-. i

saturation, with the irreducible saturations for the liquid "_ 32 i
phase, and for the vapor phase in the matrix blocks, set _ T !

, to zero. The irreducible saturation for the liquid in the _ i \ i
matrix blocks is 0.25. In this example, capillary pres- _ 3o+ \ Ti
sure effects and thermal conductivity effects are o. _[--semi.analytical (injection block) \ _

neglected in both the fractures and malaS.xblocks. _ f[ O mine10 shells (injectionblock)"6 28

The initial conditions are that the liquid saturation in the _ L
matrix blocks is at its irreducible value of 0.25, and the _ i

pressure in the uppermost layer is 3.45MPa. The initial 2s_ h-
temperature in the uppermost layer is therefore equal to i WELL#1PRODUCINGAT5KG/S I

the saturation temperature at this pressure, which is WELt.#2INJECTINGATSKG/SAND95°C
242C. All outer boundaries of the reservoir are 241 ! ! I i ' i

101 103 I 0s 107
impermeable to fluid flow, and the lateral boundaries are
also impermeable to heat conduction. A heat flux of time (see)
0.5 W/m 2 is conducted vertically upwards through the
reservoir. The remaining initial conditions, such as the
pressures in the lower layers and the saturations in the Fig. 3. Pressure in the fractures of gridblock 231, for
fractures, are found by running a simulation to steady the problem described in the text.
state, with no injection or production from the wells.

In the sample problem whose results are shown in Figs. method to discretize each equivalent matrix block into
2-4, Well #1 produces 5 kg/s of fluid, and Well #2 ten concentric gridblocks. The fracture pressure in grid-
injects 5 kg/s of liquid water at 95 C. The vapor satura- block 511 is shown in Fig. 4. The vapor saturation in
tion and pressure for the fractures in gridblock 231 are the fractures in gridblock 511 remains very close to
shown in Figs. 2 and 3, respectively, for elapsed times 100% through both simulations, and is not shown. The
from 101- 10Ss (about 38 months). The solid lines predictions of the new method are in all cases very
denote the values computed using TOUGH with the close to those of the MINC simulations. Due to the
modifications described above, whereas the open circles relatively complex geometry of this problem, and the
denote values computed with TOUGH using the MINC physical nonlinearities arising from phase-changes, etc.,

no analytical solution is available for comparison.

_' ',O' '_'

36 ;

__ o9-
_ 32 --

0 85- 30--

E__ 0 8-- - semi-analytical T g, 284 \_ --
J _" \ i

- i I PRODUCING AT 5 KG/S---- "_ NNN_"N'N i _ 2 6 minc I0 shells (production block) \--

_ __.. _ semi.analytical (production block) \

075--

WELL # r
WELL ,2 INJECTING AT 5 KG/S AND 95 _C i 24-,-

! _ WELL #1 PRODUCING AT 5 KG/S
I 07 , ! I )

10' 103 10 s 107 WELL #2 INJECTING AT 5 KG/S AND 95 °C

22, i - .... _ l '0time (see) 10 _ 103 10 s I r

time (see)
!

Fig. 2. Vapor saturation in the fractures of gridblock

231, for the problem described in the text. Fig. 4. Pressure in the fractures of gridblock 511, for
the problem described in the text.



CONCLUSIONS Grant, M. A., and Sorey, M. L. (1979), "The compres-
A new type of dual-porosity model is being developed sibility and hydraulic diffusivity of a water-steam flow,"
for two-phase flow processes in fractured geothermal Water Resour. Res., 15, 684-686.
reservoirs. At this time, the model is limited by the
assumption that the liquid phase in the matrix blocks Huyakorn, P. S., and Pinder, G. F. (1983), Computa-

tional Methods in Subsurface Flow, Academic Press,
remains immobile. By utilizing the effective compressi-
bility concept developed for water/steam mixtures in San Diego, Calif.
porous rocks (Grant and Sorey, 1979), flow within the Long, J. C. S., and Witherspoon, P. A. (1985), "The ,
matrix blocks can be modeled by a single diffusion relationship of the degree of interconnect:ion to permea-
equation. This equation is in turn replaced by a non- bility in fracture networks," J. Geophys. Res., 90,
linear ordinary differential equation that utilizes the 3087-3098.

mean pressure and mean saturation in the matrix blocks Matthews, C. S., and Russell, D. G. (1967), Pressure
to find the rate of fluid flow between the matrix blocks Buildup and Flow Tests in Wells, Society of Petroleum
and fractures. This equation has been incorporated into Engineers, Dallas.

the numerical simulator TOUGH (Pruess, 1987), as a Moench, A. F. (1984), "Double-porosity models for a
source/sink term for computational gridblocks that fissured groundwater reservoir with fracture skin,"
represent the fracture system. The accuracy of this new Water Resour. Res., 20, 831-846.
method has been tested by simulating a three-
dimensional reservoir containing partially-penetrating Pinder, G. F., and Gray, W. G. (1977), Finite Element
injection and production wells, and comparing the Simulation in Surface and Subsurface Hydrology,
results to simulations in which the matrix blocks are Academic Press, San Diego, Calif,

each discretized into ten concentric shells. Pruess, K. (1987), "TOUGH User's Guide," Rep.
LBL-20700, Lawrence Berkeley Laboratory, Berkeley,
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