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ABSTRACT

A new type of dual-porosity model is being developed
to simulate two-phase flow processes in fractured geoth-
ermal reservoirs. At this time it is assumed that the
liquid phase in the matrix blocks remains immobile. By
utilizing the effective compressibility of a two-phase
water/steam mixture in a porous rock, flow within the
matrix blocks can be modeled by a single diffusion
equation. This equation in turn is replaced by a non-
linear ordinary differental equation that utilizes the
mean pressure and mean saturation in the matrix blocks
to calculate the rate of fluid flow between the matrix
blocks and fractures. This equation has been incor-
porated into the numerical simulator TOUGH to serve
as a source/sink term for computational gridblocks that
represent the fracture system. The new method has
been compared with solutions obtained using fully-
discretized matrix blocks, on a problem involving a
three-dimensional vapor-dominated reservoir containing
an injection and a production well, and has been found
to be quite accurate.

INTRODUCTION

Although most geothermal reservoirs reside in fractured
rocks, most models that have been developed to analyze
their behavior have been based on porous medium
approximations. In these models, the hydraulic behavior
of the fractures and the matrix blocks are modeled
together as a locally-homogeneous porous medium. It is
well-known, however, that porous medium models are
poorly suited for predicting certain aspects of the
behavior of geothermal wells, especially enthalpy tran-
sients, thennal front migration due to injection, and
chemical tracer movement. Nevertheless, in many cases
the porous raedium approximation must be invoked, due
to constrzints c¢f computer time or cost. There is, conse-
quently, a grea: need for improved numerical capabili-
ties for the modeling of fractured geothermal reservoirs,
using accurate and appropriate models.

In this paper we discuss our on-going research aimed at
improved methods of simulating processes in fractured
geothermal reservoirs. The main concept behind our
approach is to analyze the heat and mass flow processes
occurring within the matrix blocks by simplified equa-

tions that enable us to avoid detailed discretization of
the individual matrix blocks. These processes are gen-
erally governed by diffusion-type partial differential
equations. We model these diffusive processes with
nonlinear ordinary differential equations that relate the
average thermodynamic properties in the block to those
at the outer boundary (in the fractures). The first stage
of our work, dealing with isothermal flow of a single-
phase fluid, was described at the 17th Stanford
Workshop (Zimmerman et al., 1992). We have since
extended the general approach to treat thermal conduc-
ton within the matrix blocks. This extension is
straightforward, as shown by Pruess and Wu (1989),
since the governing equation for conduction is exactly
analogous to that for single-phase flow. In this paper
we describe a further extension of this approach to
processes involving two-phase conditions in which the
liquid phase is immobile.

DUAL~-POROSITY MODELS

We now briefly describe the main ideas behind dual-
porosity models for fractured reservoirs; for further
details, see Barenblatt et al. (1940), Warren and Root
(1963), and Duguid and Lee (1977). In order to avoid a
cumbersome notation, we will discuss these models with
specific reference to single-phase, isothermal flow of a
slightly-compressible fluid. Consider first 2 fracture net-
work, and assume temporarily that the matrix blocks are
impermeable. A basic assumption underlying the use of
dual-porosity models is that there exists a scale at which
it is possible to assign macroscopic properties to the
fracture network, such as a permeability k¢, etc.
Although it does not seem to be true that such a length-
scale always exists (cf., Long and Witherspoon, 1985),
standard dual-porosity models assume that such a scale
does exist. This scale then serves as a representative
elementary volume (REV; see Bear, 1972) upon which a
continuum formulaton can be based. ‘‘Points’’ in the
fracture network are then denoted by the vector x;,
where it is understood that properties defined at point x,
are averaged over an REV centered at that point.

When a single-phase, slightly compressible fluid flows
through such a fractured mediam, the fluid pressure in
the fractures is govemed by the following equation
(Matthews and Russell, 1967):
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where ¢ is the total fracture porosity, and B, is the
total compressibility of the fractures and the fluid within
them. The product ¢, B, serves as the capacitance term
in the diffusion-type equation (1). The pressure Pf is
the mean value of the fluid pressure in the fractures,
averaged over some REV. The operator V7 is the
Laplacian with respect to the coordinates x;. The term
Q is a source/sink term representing the net volumetric
addition of fluid to the fracture system, per unit of total
volume. Although we assume here that the fracture
continuum is isotropic, this assumption is not necessary.

Now assume that at each point Xy in the fracture contin-
uum, there is located a permeable matrix block of some
specified shape. These matrix blocks can exchange fluid
with the fracture continuum; hence we can identify the
source/sink term @ in equation (1) with the fluid
exchange between the fractures and matrix blocks.
Inside each matrix block the fluid pressure P,, will, in
general, vary from point to point. Points inside the
matrix block are identified by two position variables: x,,
locates the point within the block relative to its centroid,
and x; is used to locate that particular block within the
fracture continuum. Fluid flow within each matrix block
is governed by an equation analogous to (1):
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The spatal derivatdves are in this case taken with
respect to the local variable x,. The fracture/matrix
interflow term O does not appear in equation (2) since,
whereas the interflow is assumed to be distributed
throughout the fracture continuum as a source/sink term,
the interflow enters the matrix blocks only at their boun-
daries. If the existence of a fracture skin is ignored
(cf., Moench, 1984; deSwaan, 1990), then the pressure
at the outer boundary of a given matrix block is equal to
the local fracture pressure: i.e., if x,, is on the boundary
of the matrix block, then P,,,(x,,,,t;xf)=Pf(x/,l).

The system of equations (1) and (2) are coupled through
the term Q, which can be found in principle by integrat-
ing the flux out of the boundary of each matrix block,
dV,,, using Darcy’s law (Duguid and Lee, 1977):
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where n is measured along the outward unit normal to
the boundary of the block. If the system of equations
(1-3) were solved with a numerical simulator such as
the integral-finite-difference simulator TOUGH (Pruess,

1987), the reservoir would be discretized into a number
of gridblocks, each represcnting a macroscopic region
that contained a portion of the fracture continuum,
Each of these regions would also therefore contain a
certain number of matrix blocks, within which the flow
will be governed by equation (2). For some problems
the matrix blocks can be replaced, for computational
purposes, by a single equivalent matrix block having the
same volume and same fracture/matrix interface area as
does the collection of actual matrix blocks. In order to
accurately resolve the pressure gradients within the
matrix blocks, this equivalent matrix block must be
discretized into a number of concentric gridblocks. One
efficient way of creating this type of dual-porosity grid
is the MINC (Muliple INteracting Continua) method,
which is described by Pruess and Narasimhan (1985).
We have found that accurate MINC simulations over
large time scales require roughly ten gridblocks in each
equivalent matrix block. The total number of gridblocks
used in a simulation will therefore be 11N, where N is
the number of fracture gridblocks. For three-
dimensional problems, this number will usually be
impractically large, which suggests the desirability of
replacing the fine-gridding in the matrix blocks with a
readily-computed source/sink term.

LUMPED-PARAMETER MODELS

The earliest double-porosity models, developed by
Barenblatt et al. (1960) and Warren and Root (1963),
treated the matrix blocks in a lumped-parameter fashion.
The equations of such an approach can be derived as
follows. We first integrate equation (2) over an entire
matrix block, and use the divergence theorem to convert
the volume integral on the right into a surface integral,
to find
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where the average pressure P, is defined by

Fm(xf,f)=—‘;l——me(xm,t;xf)/ﬂ/ (5)
mV,

Comparison of equations (3) and (4) shows that P, is
governed by the following equation:

dFm(Xf,l)
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Equations (1) and (6) provide two equations for the
three variables P,, Fm, and Q. To complete the system
of equations, @ must be expressed as a function of Pr
and P,,.



Barenblatt et al. (1960) and Warren and Root (1963)
assumed that Q is proportional to the difference
between P, and P, so that

~ 0k, —
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where o is a parameter that depends on block shape,
and has dimensions of area™!, The governing equation

(6) for P,, then takes the form
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For a given shape of the matrix block, & can be chosen
such that equation (8) is asymptotically accurate at late
times (see Zimmerman et al, 1992). For spherical
matrix blocks of radius a,,, which will be used in this
paper for illustrative purposes, &=n2/a,2,

The Warren-Root equation is known to be inaccurate in
the early stages of diffusion into a matrix block
(Streltsova, 1983; Dykhuizen, 1990). A more accurate
interaction equation is that proposed by Vermeulen
(1953):
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where P; is the initial pressure in the matrix block.
This interaction equation was shown to be fairly accu-
rate for a wide range of boundary conditions (see Zim-
merman et al.,, 1992). Recognizing that the combination
702Ky (O, By a2 is the product of the shape-factor o and
the hydraulic diffusivity D =k, /¢, uB,, we see that
equation (9) can be used for other diffusive processes,
such as heat conduction.

TWO-PHASES, IMMOBILE LIQUID

Porous media generally have a minimum value of the
liquid saturation §;, below which the relative permeabil-
ity of the liquid phase is zero. If the water saturation in
the matrix blocks is at this irreducible level, then only
the vapor phase (steam) will be mobile. However,
although the water cannot flow out of the matrix blocks
in the liquid state, water can be produced from the
blocks by first vaporizing into the (mobile) steam phase.
This is believed to be the case within vapor-dominated
geothermal systems, where only steam is produced at
the wells (Pruess and Narasimhan, 1982). In such cases,
the flow can still be modeled by a single d' fusion equa-
tion. This requires modifying the compressibility term
in the diffusion equation to account for the phase
change.

Grant and Sorey (1979) derived an expression for the
effective compressibility of the water/steam mixture,
based on the following analysis. Imagine that the pres-
sure increases, in which case the temperature will also
increase, since the water and steam remain in thermo-
dynamic equilibrium. Heat will then flow from the fluid
into the rock matrix, causing some of the vapor to con-
dense. Since liquid water is denser than steam, the
overall volume of fluid will decrease, giving rise to an
apparent compressibility effect. The resulting expres-
sion for the effective compressibility is

<pC>Tvj?
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where v, = v,—v, is the difference between the specific
volume of the vapor and the liquid, A;, = h,—h; is the
latent heat of vaporization, and <pC> is the overall
heat capacity of the system, which is given by

<pC>=(1-9)p,C, +0S,p,C, +0(1-5,)p,C;, (11)

where C is the specific heat, p is the density, and the
subscripts r,/,v denote rock, liquid and vapor. This
apparent compressibility is usually at least an order of
magnitude greater than that of single-phase water or
steam. Since the diffusivity is inversely proportional to
(¢B), diffusive processes involving two-phase mixtures
will proceed relatively slowly.

When the liquid phase is immobile, the flow of the
vapor is therefore governed by an equation analogous to
equation (2), with the following modifications. The
compressibility (¢p) must be replaced by the expression
in equation (10), k,, must be multiplied by the relative
permeability of the rock to the vapor phase, £,,, and the
viscosity must be taken as that of the vapor, y,. The
relative permeability k,, will vary with vapor saturation,
the viscosity p, will vary with pressure, and (¢B),sy
will vary with both saturation and pressure. In the con-
text. of the lumped-parameter approximation, we evalu-
ate these parameters at pressure P, and S,, where §, is
the mean vapor saturation in the matrix block. During a
numerical simulation, these parameters can be re-
evaluated at each time step, as P,, and S, change with
time.

DUAL-POROSITY SIMULATOR

Numerical reservoir simulators used for porous-medium
reservoirs typically solve equation (1), and analogous
equations for energy balance, etc., by first discretizing
the reservoir into a number of computational gridblocks.
A numerical scheme such as finite-differences
(Huyakorn and Pinder, 1983), finite elements (Pinder
and Gray, 1977), or integral finite-differences (Edwards,




1972), is then used to reduce the partial differential
equations to a set of algebraic equations. These alge-
braic equations are solved at each time-step ¢,, in order
to yield the pressures, temperatures, saturations, etc., in
each gridblock at time-step ¢,,,= ¢, + Ar.

We have implemented our semi-analytical dual-porosity
model as a modification to the TOUGH simulator
(Pruess, 1987), an integral-finite-difference code that has
been widely used to simulate the behavior of geothermal
reservoirs. The fracture/matrix interaction equations
have been incorporated as an option in the source/sink
subroutine that is normally used to represent injection or
withdrawal of fluid from a well, etc. In our dual-
porosity simulations, each computational gridblock
represents a region that has properties corresponding to
the fractured continuum, such as k7, ¢, etc., averaged
over a suitably-large REV. Each gridblock will also
have associated with it three new variables, 7, T and
S,, that represent the (average) thermodynamic state of
the fluid in those matrix blocks that are located within
that gridblock. Here we drop the subscript m used to
denote ‘‘matrix’’, since the overbar serves the purpose
of distinguishing the matrix variables from fracture vari-
ables. We calculate the pressure change in the matrix
blocks, at each time step and for each gridblock, from
equation (9), modified as described above:

o8) dP _ Okmkn [Py =P)2=(P =P
a 2, (P ~P;)

) (12)

where  (0B).;; is found from equation (10), and
a=n%a? (if the martrix blocks are assumed to be
spheres of radius a,,). The term on the right-hand side
of equation (12) then represents the volumetric fluid flux
Q. as shown by equation (6). The integration of equa-
tion (12) must be done implicitly, in order to avoid
numerical instabilities. This means that in passing from
!, 10 1,y the terms on the right-hand side of equation
(12) are evaluated under the conditions that exist at time
ln+1- An iterative process is therefore required for con-
vergence to the correct new values (see Pruess, 1987).
The new saturation at time #,,, is found by applying a
mass balance to the matrix block. The mass flux of
vapor out of the matrix block into the fracture network
also carries with it a sensible heat flux of the amount
pyh,Q, where Q is the volumetric flux. This term
must be included in the energy balance equation.

EXAMPLE OF RESERVOIR SIMULATIONS

To test the accuracy and computational efficiency of the
above-described modifications to the TOUGH code, we
have simulated some problems using, with some
modifications, the computational grid and reservoir pro-
perties that were proposed by Spivak (1991) to test
geothermal simulators. This is a three-dimensional
model of a vapor-dominated geothermal reservoir, with
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Fig. 1. Schematic diagram of the grid used in simula-
tions of a hypothetical geothermal reservoir.
Dimensions of the gridblocks, and the physical
properties of the fractures and the matrix
blocks, are listed in the text.

properties corresponding to those believed to be applica-
ble to The Geysers geothermal field in California. This
hypothetical reservoir (see Fig. 1) is 1524 m thick, and
extends from a depth of 305m to 1829 m below the sur-
face. The cross-sectional shape in any horizontal plane
is a rectangle with sides of 914.4m and 609.6m. Each
layer is broken up into 24 gridblocks, each of length
1524m in the two horizontal directions. The
thicknesses of the five layers are as shown in Fig. 1. A
production well (Well #1) and an injection well (Well
#2) are located in gridblocks xyz =511 and xyz =231
(see Fig. 1), and are completed only in the topmost
layer of the reservoir.

The matrix blocks are cubes of 67 m on each side, with
matrix permeability ,, =ix107°m?, matrix porosity
0, = 0.04. (A somewhat low matrix permeability is
used so as to avoid having the liquid saturation rise
above its irreducible value near the injection well). The




rock has density p, = 2648kg/m3, and heat capacity
C, =1000 J/kgK. The fracture network has an overall
porosity ¢, = 0.01, and permeability k, = 2.0x 1074 m?2,
The relative permeabilities of both the fracture network
and marrix blocks are taken to be linear functions of
saturation, with the irreducible saturations for the liquid
phase, and for the vapor phase in the matrix blocks, set
to zero. The irreducible saturation for the liquid in the
matrix blocks is 0.25. In this example, capillary pres-
sure effects and thermal conductivity effects are
neglected in both the fractures and matrix blocks.

The initial conditions are that the liquid saturation in the
matrix blocks is at its irreducible value of 0.25, and the
pressure in the uppermost layer is 3.45MPa. The initial
temperature in the uppermost layer is therefore equal to
the saturation temperatare at this pressure, which is
242C. All outer boundaries of the reservoir are
impermeable to fluid flow, and the lateral boundaries are
also impermeable to heat conduction. A heat flux of
0.5W/m? is conducted vertically upwards through the
reservoir. The remaining initial conditions, such as the
pressures in the lower layers and the saturations in the
fractures, are found by running a simulation to steady
state, with no injection or production from the wells.

In the sample problem whose results are shown in Figs.
2-4, Well #1 produces Skg/s of fluid, and Well #2
injects 5kg/s of liquid water at 95C. The vapor satura-
tion and pressure for the fractures in gridblock 231 are
shown in Figs. 2 and 3, respectively, for elapsed times
from 10'-10%s (about 38 months). The solid lines
denote the values computed using TOUGH with the
modifications described above, whereas the open circles
denote values computed with TOUGH using the MINC
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Fig. 2. Vapor saturation in the fractures of gridblock

231, for the problem described in the text.
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Fig. 3. Pressure in the fractures of gridblock 231, for
the problem described in the text.

method to discretize each equivalent matrix block into
ten concentric gridblocks. The fracture pressure in grid-
block 511 is shown in Fig. 4. The vapor saturation in
the fractures in gridblock 511 remains very close to
100% through both simulations, and is not shown. The
predictions of the new method are in all cases very
close to those of the MINC simulations. Due to the
relatively complex geometry of this problem, and the
physical nonlinearities arising from phase-changes, etc.,
no analytical solution is available for comparison.
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Fig. 4. Pressure in the fractures of gridblock 511, for
the problem described in the text.



CONCLUSIONS

A new type of dual-porosity model is being developed
for two-phase flow processes in fractured geothermal
reservoirs. At this time, the model is limited by the
assumption that the liquid phase in the matrix blocks
remains immobile. By utilizing the effective compressi-
bility concept developed for water/steam mixtures in
porous rocks (Grant and Sorey, 1979), flow within the
matrix blocks can be modeled by a single diffusion
equation. This equation is in turn replaced by a non-
linear ordinary differential equation that utilizes the
mean pressure and mean saturation in the matrix blocks
to find the rate of fluid flow between the matrix blocks
and fractures. This equation has been incorporated into
the numerical simulator TOUGH (Pruess, 1987), as a
source/sink term for computational gridblocks that
represent the fracture system. The accuracy of this new
method has been tested by simulating a three-
dimensional reservoir containing partially-penetrating
injection and production wells, and comparing the
results to simulations in which the matrix blocks are
each discretized into ten concentric shells.
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