skip to main content

Semantic Search for: "infrasound"

  1. Eruption mass and mass flow rate are critical parameters for determining the aerial extent and hazard of volcanic emissions. Infrasound waveform inversion is a promising technique to quantify volcanic emissions. Although topography may substantially alter the infrasound waveform as it propagates, advances in wave propagation modeling and station coverage permit robust inversion of infrasound data from volcanic explosions. The inversion can estimate eruption mass flow rate and total eruption mass if the flow density is known. However, infrasound-based eruption flow rates and mass estimates have yet to be validated against independent measurements, and numerical modeling has only recently been appliedmore » to the inversion technique. Furthermore we present a robust full-waveform acoustic inversion method, and use it to calculate eruption flow rates and masses from 49 explosions from Sakurajima Volcano, Japan.« less
  2. A variety of Earth surface and atmospheric sources generate low frequency sound waves that can travel great distances. Despite a rich history of ground-based sensor studies, very few experiments have investigated the prospects of free floating microphone arrays at high altitudes. However, recent initiatives have shown that such networks have very low background noise and may sample an acoustic wave field that is fundamentally different than that at the Earth's surface. The experiments have been limited to at most two stations at altitude, limiting their utility in acoustic event detection and localization. We describe the deployment of five drifting microphonemore » stations at altitudes between 21 and 24 km above sea level. The stations detected one of two regional ground-based explosions as well as the ocean microbarom while traveling almost 500 km across the American Southwest. The explosion signal consisted of multiple arrivals; signal amplitudes did not correlate with sensor elevation or source range. A sparse network method that employed curved wave front corrections was able to determine the backazimuth from the free flying network to the acoustic source. Episodic broad band signals similar to those seen on previous flights in the same region were noted as well, but their source remains unclear. Background noise levels were commensurate with those on infrasound stations in the International Monitoring System (IMS) below 2 seconds, but sensor self noise appears to dominate at higher frequencies.« less
  3. This work quantifies the physical characteristics of infrasound signal and noise, assesses their temporal variations, and determines the degree to which these effects can be predicted by time-varying atmospheric models to estimate array and network performance. An automated detector that accounts for both correlated and uncorrelated noise is applied to infrasound data from three seismo-acoustic arrays in South Korea (BRDAR, CHNAR, and KSGAR), cooperatively operated by Korea Institute of Geoscience and Mineral Resources (KIGAM) and Southern Methodist University (SMU). Arrays located on an island and near the coast have higher noise power, consistent with both higher wind speeds and seasonablymore » variable ocean wave contributions. On the basis of the adaptive F-detector quantification of time variable environmental effects, the time-dependent scaling variable is shown to be dependent on both weather conditions and local site effects. Significant seasonal variations in infrasound detections including daily time of occurrence, detection numbers, and phase velocity/azimuth estimates are documented. These time-dependent effects are strongly correlated with atmospheric winds and temperatures and are predicted by available atmospheric specifications. As a result, this suggests that commonly available atmospheric specifications can be used to predict both station and network detection performance, and an appropriate forward model improves location capabilities as a function of time.« less
  4. A bright fireball was reported at 01:43:35 UTC on September 7, 2015 at a height of ~30 km above 14.5°N, 98.9°E near Bangkok, Thailand. It had a TNT yield equivalent of 3.9 kilotons (kt), making it the largest fireball detected in South–East Asia since the ~50 kt 2009 Sumatra bolide. Infrasonic signals were observed at four infrasound arrays that are part of the International Monitoring System (IMS) and one infrasound array located in Singapore. Acoustic bearings and event origin times inferred from array processing are consistent with the eyewitness accounts. A seismic signal associated with this event was also likelymore » recorded at station SRDT, in Thailand. As a result, an acoustic energy equivalent of 1.15 ± 0.24 kt is derived from the Singaporean acoustic data using the period of the peak energy.« less
  5. The purpose of this document is to define the schema used for the operation of the infrasound analysis tool, infrapy. The tables described by this document extend the CSS3.0 or KB core schema to include information required for the operation of infrapy. This document is divided into three sections, the first being this introduction. Section two defines eight new, infrasonic data processing-specific database tables. Both internal (ORACLE) and external formats for the attributes are defined, along with a short description of each attribute. Section three of the document shows the relationships between the different tables by using entity-relationship diagrams.
  6. Sandia National Laboratories has tested and evaluated two infrasound sensors, the model VDP100 and VDP250, built in-house at the USGS Cascades Volcano Observatory. The purpose of the infrasound sensor evaluation was to determine a measured sensitivity, self-noise, dynamic range and nominal transfer function. Notable features of the VDP sensors include novel and durable construction and compact size.
  7. Sandia National Laboratories has tested and evaluated an infrasound sensor, the 5113/A manufactured by Hyperion. These infrasound sensors measure pressure output by a methodology developed by the University of Mississippi. The purpose of the infrasound sensor evaluation was to determine a measured sensitivity, transfer function, power, self-noise, and dynamic range. The 5113/A infrasound sensor is a new revision of the 5000 series intended to meet the infrasound application requirements for use in the International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO).
  8. The February 2014 eruption of Kelud volcano (Indonesia) destroyed most of the instruments near it. We use remote seismic and infrasound sensors to reconstruct the eruptive sequence. The first explosions were relatively weak seismic and infrasound events. A major stratospheric ash injection occurred a few minutes later and produced long-lasting atmospheric and ground-coupled acoustic waves that were detected as far as 11,000 km by infrasound sensors and up to 2300 km away on seismometers. A seismic event followed ~12 minutes later and was recorded 7000 km away by seismometers. We estimate a volcanic intensity around 10.9, placing the 2014 Keludmore » eruption between the 1980 Mount St. Helens and 1991 Pinatubo eruptions intensities. As a result, we demonstrate how remote infrasound and seismic sensors are critical for the early detection of volcanic explosions, and how they can help to constrain and understand eruptive sequences.« less
  9. Sandia National Laboratories has tested and evaluated an infrasound sensor, the 5113/GP manufactured by Hyperion. These infrasound sensors measure pressure output by a methodology developed by the University of Mississippi. The purpose of the infrasound sensor evaluation was to determine a measured sensitivity, transfer function, power, self-noise, dynamic range, and seismic sensitivity. These sensors are being evaluated prior to deployment by the U.S. Air Force.
  10. Infrasound from a four-stage sounding rocket was recorded by several arrays within 100 km of the launch pad. Propagation modeling methods have been applied to the known trajectory to predict infrasonic signals at the ground in order to identify what information might be obtained from such observations. There is good agreement between modeled and observed back azimuths, and predicted arrival times for motor ignition signals match those observed. The signal due to the high-altitude stage ignition is found to be low amplitude, despite predictions of weak attenuation. As a result, this lack of signal is possibly due to inefficient aeroacousticmore » coupling in the rarefied upper atmosphere.« less
Switch to Detail View for this search