skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Optimizing the HSX stellarator for microinstability by coil-current adjustments

    Abstract The optimization of helically symmetric experiment (HSX) for reduced microinstability has been achieved by examining a large set of configurations within a neighborhood of the standard operating configuration. This entailed generating a database of more than 10 6 magnetic-field configurations for HSX by varying the currents in external coils. Using a set of volume-averaged metrics and gyrokinetic simulations, this database has helped to identify a set of configurations that can be used to regulate trapped-electron-mode stability in HSX. This set of configurations is also found to correlate flux-surface elongation and triangularity with an increase in magnetic-well depth, an increasemore » in rotational transform, and low neoclassical heat-flux relative to the standard quasi-helically-symmetric configuration. These results demonstrate sensitivity of plasma behavior in response to changes in a 3D magnetic field to both neoclassical and gyrokinetic models, and the experimental potential in HSX to explore turbulence optimization. This perturbative optimization approach is not unique to HSX, and can readily be deployed on existing fusion devices to identify novel magnetic-fields to be used in turbulence-optimization experiments.« less
  2. Energetic particle optimization of quasi-axisymmetric stellarator equilibria

    Absmore » tract An important goal of stellarator optimization is to achieve good confinement of energetic particles such as, in the case of a reactor, alphas created by deuterium–tritium fusion. In this work, a fixed-boundary stellarator equilibrium was re-optimized for energetic particle confinement via a two-step process: first, by minimizing deviations from quasi-axisymmetry (QA) on a single flux surface near the mid-radius, and secondly by maintaining this improved QA while minimizing the analytical quantity Γ C , which represents the angle between magnetic flux surfaces and contours of J | | , the second adiabatic invariant. This was performed multiple times, resulting in a group of equilibria with significantly reduced energetic particle losses, as evaluated by Monte Carlo simulations of alpha particles in scaled-up versions of the equilibria. This is the first time that energetic particle losses in a QA stellarator have successfully been reduced by optimizing Γ C . The relationship between energetic particle losses and metrics such as QA error ( E q a ) and Γ C in this set of equilibria were examined via statistical methods and a nearly linear relationship between volume-averaged Γ C and prompt particle losses was found.« less
  3. Effect of triangularity on ion-temperature-gradient-driven turbulence

    The linear and nonlinear properties of ion-temperature-gradient-driven turbulence with adiabatic electrons are modeled for axisymmetric configurations for a broad range of triangularities δ, both negative and positive. Peak linear growth rates decrease with negative δ but increase and shift toward a finite radial wavenumber kx with positive δ. The growth-rate spectrum broadens as a function of kx with negative δ and significantly narrows with positive δ. The effect of triangularity on linear instability properties can be explained through its impact on magnetic polarization and curvature. Nonlinear heat flux is weakly dependent on triangularity for |δ|≤0.5, decreasing significantly with extreme δ,more » regardless of sign. Zonal modes play an important role in nonlinear saturation in the configurations studied, and artificially suppressing zonal modes increased nonlinear heat flux by a factor of about four for negative δ, increasing with positive δ by almost a factor of 20. Proxies for zonal-flow damping and drive suggest that zonal flows are enhanced with increasing positive δ.« less
  4. Improving the stellarator through advances in plasma theory

    Improvements to the stellarator concept can be realized through advancements in theoretical and computational plasma physics. Herein, recent advances are reported in the topical areas of: (1) improved energetic ion confinement, (2) the impact of three-dimensional (3D) shaping on turbulent transport, (3) reducing coil complexity, (4) novel optimization and design methods, and (5) computational magnetohydrodynamic tools. Furthermore, these advances enable the development of new stellarator configurations with improved confinement properties.
  5. Kinetic-ballooning-mode turbulence in low-average-magnetic-shear equilibria

    In this work, kinetic-ballooning-mode (KBM) turbulence is studied via gyrokinetic flux-tube simulations in three magnetic equilibria that exhibit small average magnetic shear: the Helically Symmetric eXperiment (HSX), the helical-axis Heliotron-J and a circular tokamak geometry. For HSX, the onset of KBM being the dominant instability at low wavenumber occurs at a critical value of normalized plasma pressure $$\beta ^{\rm KBM}_{\rm crit}$$ that is an order of magnitude smaller than the magnetohydrodynamic (MHD) ballooning limit $$\beta ^{\rm MHD}_{\rm crit}$$ when a strong ion temperature gradient (ITG) is present. However, $$\beta ^{\rm KBM}_{\rm crit}$$ increases and approaches the MHD ballooning limit asmore » the ITG tends to zero. For these configurations, $$\beta ^{\rm KBM}_{\rm crit}$$ also increases as the magnitude of the average magnetic shear increases, regardless of the sign of the normalized magnetic shear. Simulations of Heliotron-J and a circular axisymmetric geometry display behaviour similar to HSX with respect to $$\beta ^{\rm KBM}_{\rm crit}$$ . Despite large KBM growth rates at long wavelengths in HSX, saturation of KBM turbulence with $$\beta > \beta _{\rm crit}^{\rm KBM}$$ is achievable in HSX and results in lower heat transport relative to the electrostatic limit by a factor of roughly five. Nonlinear simulations also show that KBM transport dominates the dynamics when KBMs are destabilized linearly, even if KBM growth rates are subdominant to ITG growth rates.« less
  6. Advancing the physics basis for quasi-helically symmetric stellarators

    A new optimized quasi-helically symmetric configuration is described that has the desirable properties of improved energetic particle confinement, reduced turbulent transport by three-dimensional shaping and non-resonant divertor capabilities. The configuration presented in this paper is explicitly optimized for quasi-helical symmetry, energetic particle confinement, neoclassical confinement and stability near the axis. Post optimization, the configuration was evaluated for its performance with regard to energetic particle transport, ideal magnetohydrodynamic stability at various values of plasma pressure and ion temperature gradient instability induced turbulent transport. The effects of discrete coils on various confinement figures of merit, including energetic particle confinement, are determined bymore » generating single-filament coils for the configuration. Preliminary divertor analysis shows that coils can be created that do not interfere with expansion of the vessel volume near the regions of outgoing heat flux, thus demonstrating the possibility of operating a non-resonant divertor.« less
  7. Stellarator microinstabilities and turbulence at low magnetic shear

    Gyrokinetic simulations of drift waves in low-magnetic-shear stellarators reveal that simulation domains comprised of multiple turns can be required to properly resolve critical mode structures important in saturation dynamics. Marginally stable eigenmodes important in saturation of ion temperature gradient modes and trapped electron modes in the Helically Symmetric Experiment (HSX) stellarator are observed to have two scales, with the envelope scale determined by the properties of the local magnetic shear and an inner scale determined by the interplay between the local shear and magnetic field-line curvature. Properly resolving these modes removes spurious growth rates that arise for extended modes inmore » zero-magnetic-shear approximations, enabling use of a zero-magnetic-shear technique with smaller simulation domains and attendant cost savings. Analysis of subdominant modes in trapped electron mode (TEM)-driven turbulence reveals that the extended marginally stable modes play an important role in the nonlinear dynamics, and suggests that the properties induced by low magnetic shear may be exploited to provide another route for turbulence saturation.« less
  8. A comparison of turbulent transport in a quasi-helical and a quasi-axisymmetric stellarator

    Ion-temperature-gradient-driven (ITG) turbulence is compared for two quasi-symmetric (QS) stellarator configurations to determine the relationship between linear growth rates and nonlinear heat fluxes. We focus on the quasi-helically symmetric (QHS) stellarator HSX and the quasi-axisymmetric (QAS) stellarator NCSX. In normalized units, HSX exhibits higher growth rates than NCSX, while heat fluxes in gyro-Bohm units are lower in HSX. These results hold for simulations made with both adiabatic and kinetic electrons. The results show that HSX has a larger number of subdominant modes than NCSX and that eigenmodes are more spatially extended in HSX. We conclude that the consideration of nonlinearmore » physics is necessary to accurately assess the heat flux due to ITG turbulence when comparing QS stellarator equilibria.« less
  9. Saturation scalings of toroidal ion temperature gradient turbulence

    The emerging understanding of instability-driven plasma-turbulence saturation in terms of energy transfer to stable modes in the same scale range as the instability is employed to derive a saturation theory for the toroidal branch of ion temperature gradient turbulence that provides the scaling of turbulence and zonal flow levels for all physical parameters. The theory is based on the eigenmode decomposition of a nonlinear fluid model, which is subjected to a statistical closure and simplified via an ordering expansion consistent with zonal-flow catalyzed energy transfer from the unstable mode to the stable mode at large scale. Solution of the closedmore » energy balance equations yields a turbulence level that is proportional to the ratio of the zonal flow damping rate and the inverse of the triplet correlation time of the zonal-flow catalyzed wavenumber triplet interaction. The zonal flow energy is proportional to the ratio of the growth rate and the inverse triplet correlation time. The saturation scalings are applied to the ion heat flux, showing that it has a factor proportional to the quasilinear heat flux and a correction factor that includes the inverse of the triplet correlation time and a reduction due to the stable mode.« less
...

Search for:
All Records
Author / Contributor
000000034934400X

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization