skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Developing a Decision Support System for Regional Agricultural Nonpoint Salinity Pollution Management: Application to the San Joaquin River, California

    Environmental problems and production losses associated with irrigated agriculture, such as salinity, degradation of receiving waters, such as rivers, and deep percolation of saline water to aquifers, highlight water-quality concerns that require a paradigm shift in resource-management policy. New tools are needed to assist environmental managers in developing sustainable solutions to these problems, given the nonpoint source nature of salt loads to surface water and groundwater from irrigated agriculture. Equity issues arise in distributing responsibility and costs to the generators of this source of pollution. This paper describes an alternative approach to salt regulation and control using the concept ofmore » “Real-Time Water Quality management”. The approach relies on a continually updateable WARMF (Watershed Analysis Risk Management Framework) forecasting model to provide daily estimates of salt load assimilative capacity in the San Joaquin River and assessments of compliance with salinity concentration objectives at key monitoring sites on the river. The results of the study showed that the policy combination of well-crafted river salinity objectives by the regulator and the application of an easy-to use and maintain decision support tool by stakeholders have succeeded in minimizing water quality (salinity) exceedances over a 20-year study period.« less
  2. Applications of GIS and remote sensing in public participation and stakeholder engagement for watershed management

    The use of Geographic Information Systems (GIS) and remote sensing technologies for the development of water quality management programs and for post-implementation assessments has increased dramatically in the past decade. This increase in adoption has been made more accessible through the interfaces of many popular software tools used in the regulation and assessment of water quality. Customized applications of these tools will increase, as ease of access and affordability of directly monitored and remotely sensed datasets improve over time. Concurrently, there is a need for inclusive participatory engagement with stakeholders to achieve solutions to current watershed management challenges. This papermore » explores the potential of these GIS and remote sensing datasets, tools, models, and immersive engagement technologies from other domains, for improving public participation and stakeholder engagement throughout the watershed planning process. To do so, an initial review is presented about the use of GIS and remote sensing in watershed management and its role in impairment identification, model development, and planning and implementation. Then, ways in which GIS and remote sensing can be integrated with stakeholder engagement through (1) leveraging GIS and remote sensing datasets, and (2) stakeholder engagement approaches including outreach and education, modeler-led development, and stakeholder-led involvement and feedback, are discussed. Finally, future perspectives on the potential for transforming public participation and stakeholder engagement in the watershed management process through applications of GIS and remote sensing are presented.« less
  3. Comparison of Deterministic and Statistical Models for Water Quality Compliance Forecasting in the San Joaquin River Basin, California

    Model selection for water quality forecasting depends on many factors including analyst expertise and cost, stakeholder involvement and expected performance. Water quality forecasting in arid river basins is especially challenging given the importance of protecting beneficial uses in these environments and the livelihood of agricultural communities. In the agriculture-dominated San Joaquin River Basin of California, real-time salinity management (RTSM) is a state-sanctioned program that helps to maximize allowable salt export while protecting existing basin beneficial uses of water supply. The RTSM strategy supplants the federal total maximum daily load (TMDL) approach that could impose fines associated with exceedances of monthlymore » and annual salt load allocations of up to $1 million per year based on average year hydrology and salt load export limits. The essential components of the current program include the establishment of telemetered sensor networks, a web-based information system for sharing data, a basin-scale salt load assimilative capacity forecasting model and institutional entities tasked with performing weekly forecasts of river salt assimilative capacity and scheduling west-side drainage export of salt loads. Web-based information portals have been developed to share model input data and salt assimilative capacity forecasts together with increasing stakeholder awareness and involvement in water quality resource management activities in the river basin. Two modeling approaches have been developed simultaneously. The first relies on a statistical analysis of the relationship between flow and salt concentration at three compliance monitoring sites and the use of these regression relationships for forecasting. The second salt load forecasting approach is a customized application of the Watershed Analysis Risk Management Framework (WARMF), a watershed water quality simulation model that has been configured to estimate daily river salt assimilative capacity and to provide decision support for real-time salinity management at the watershed level. Analysis of the results from both model-based forecasting approaches over a period of five years shows that the regression-based forecasting model, run daily Monday to Friday each week, provided marginally better performance. However, the regression-based forecasting model assumes the same general relationship between flow and salinity which breaks down during extreme weather events such as droughts when water allocation cutbacks among stakeholders are not evenly distributed across the basin. A recent test case shows the utility of both models in dealing with an exceedance event at one compliance monitoring site recently introduced in 2020.« less
  4. Policy-Driven Sustainable Saline Drainage Disposal and Forage Production in the Western San Joaquin Valley of California

    Environmental policies to address water quality impairments in the San Joaquin River of California have focused on the reduction of salinity and selenium-contaminated subsurface agricultural drainage loads from westside sources. On 31 December 2019, all of the agricultural drainage from a 44,000 ha subarea on the western side of the San Joaquin River basin was curtailed. This policy requires the on-site disposal of all of the agricultural drainage water in perpetuity, except during flooding events, when emergency drainage to the River is sanctioned. The reuse of this saline agricultural drainage water to irrigate forage crops, such as ‘Jose’ tall wheatgrassmore » and alfalfa, in a 2428 ha reuse facility provides an economic return on this pollutant disposal option. Irrigation with brackish water requires careful management to prevent salt accumulation in the crop root zone, which can impact forage yields. The objective of this study was to optimize the sustainability of this reuse facility by maximizing the evaporation potential while achieving cost recovery. This was achieved by assessing the spatial and temporal distribution of the root zone salinity in selected fields of ‘Jose’ tall wheatgrass and alfalfa in the drainage reuse facility, some of which have been irrigated with brackish subsurface drainage water for over fifteen years. Electromagnetic soil surveys using an EM-38 instrument were used to measure the spatial variability of the salinity in the soil profile. The tall wheatgrass fields were irrigated with higher salinity water (1.2–9.3 dS m-1) compared to the fields of alfalfa (0.5–6.5 dS m-1). Correspondingly, the soil salinity in the tall wheatgrass fields was higher (12.5 dS m-1–19.3 dS m-1) compared to the alfalfa fields (8.97 dS mm-1–14.4 dS mm-1) for the years 2016 and 2017. Better leaching of salts was observed in the fields with a subsurface drainage system installed (13–1 and 13–2). The depth-averaged root zone salinity data sets are being used for the calibration of the transient hydro-salinity computer model CSUID-ID (a one-dimensional version of the Colorado State University Irrigation Drainage Model). This user-friendly decision support tool currently provides a useful framework for the data collection needed to make credible, field-scale salinity budgets. In time, it will provide guidance for appropriate leaching requirements and potential blending decisions for sustainable forage production. This paper shows the tie between environmental drainage policy and the role of local governance in the development of sustainable irrigation practices, and how well-directed collaborative field research can guide future resource management.« less
  5. Modeling Water Quality in Watersheds: From Here to the Next Generation

    In this synthesis, we assess present research and anticipate future development needs in modeling water quality in watersheds. We first discuss areas of potential improvement in the representation of freshwater systems pertaining to water quality, including representation of environmental interfaces, in-stream water quality and process interactions, soil health and land management, and (peri-)urban areas. In addition, we provide insights into the contemporary challenges in the practices of watershed water quality modeling, including quality control of monitoring data, model parameterization and calibration, uncertainty management, scale mismatches, and provisioning of modeling tools. Finally, we make three recommendations to provide a path forwardmore » for improving watershed water quality modeling science, infrastructure, and practices. These include building stronger collaborations between experimentalists and modelers, bridging gaps between modelers and stakeholders, and cultivating and applying procedural knowledge to better govern and support water quality modeling processes within organizations.« less
  6. Seasonally-managed wetland footprint delineation using Landsat ETM+ satellite imagery

    One major challenge in water resource management is the estimation of evapotranspiration losses from seasonally managed wetlands. Quantifying these losses is complicated by the dynamic nature of the wetlands' areal footprint during the periods of flood-up and drawdown. In this paper, we present a data-lean solution to this problem using an example application in the San Joaquin Basin, California. Through analysis of high-resolution Landsat Enhanced Thematic Mapper Plus (ETM+) satellite imagery, we develop a metric to better capture the extent of total flooded wetland area. The procedure is validated using year-long, continuously-logged field datasets for two wetlands within the studymore » area. The proposed classification which uses a Landsat ETM + Band 5 (mid-IR wavelength) to Band 2 (visible green wavelength) ratio improves estimates by 30–50% relative to previous wetland delineation studies. Finally, requiring modest ancillary data, the study results provide a practical and efficient option for wetland management in data-sparse regions or un-gauged watersheds.« less

Search for:
All Records
Author / Contributor
0000000333334763

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization