skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Shadow energy functionals and potentials in Born–Oppenheimer molecular dynamics

    In Born–Oppenheimer molecular dynamics (BOMD) simulations based on the density functional theory (DFT), the potential energy and the interatomic forces are calculated from an electronic ground state density that is determined by an iterative self-consistent field optimization procedure, which, in practice, never is fully converged. The calculated energies and forces are, therefore, only approximate, which may lead to an unphysical energy drift and instabilities. Here, we discuss an alternative shadow BOMD approach that is based on backward error analysis. Instead of calculating approximate solutions for an underlying exact regular Born–Oppenheimer potential, we do the opposite. Instead, we calculate the exactmore » electron density, energies, and forces, but for an underlying approximate shadow Born–Oppenheimer potential energy surface. In this way, the calculated forces are conservative with respect to the approximate shadow potential and generate accurate molecular trajectories with long-term energy stabilities. We show how such shadow Born–Oppenheimer potentials can be constructed at different levels of accuracy as a function of the integration time step, δt, from the constrained minimization of a sequence of systematically improvable, but approximate, shadow energy density functionals. For each energy functional, there is a corresponding ground state Born–Oppenheimer potential. These pairs of shadow energy functionals and potentials are higher-level generalizations of the original “zeroth-level” shadow energy functionals and potentials used in extended Lagrangian BOMD [Niklasson, Eur. Phys. J. B 94, 164 (2021)]. The proposed shadow energy functionals and potentials are useful only within this extended dynamical framework, where also the electronic degrees of freedom are propagated as dynamical field variables together with the atomic positions and velocities. The theory is quite general and can be applied to MD simulations using approximate DFT, Hartree–Fock, or semi-empirical methods, as well as to coarse-grained flexible charge models.« less
  2. A Perspective on Sustainable Computational Chemistry Software Development and Integration

    The power of quantum chemistry to predict the ground and excited state properties of complex chemical systems has driven the development of computational quantum chemistry software, integrating advances in theory, applied mathematics, and computer science. The emergence of new computational paradigms associated with exascale technologies also poses significant challenges that require a flexible forward strategy to take full advantage of existing and forthcoming computational resources. In this context, the sustainability and interoperability of computational chemistry software development are among the most pressing issues. In this perspective, we discuss software infrastructure needs and investments with an eye to fully utilize exascalemore » resources and provide unique computational tools for next-generation science problems and scientific discoveries.« less
  3. Next Generation Quantum Based Molecular Dynamics: Hybrid Performance Optimization [Slide]

    A scalable graph-based scheme for stable QMD simulations of reactive chemical systems running on a distributed platform.
  4. Graph-based quantum response theory and shadow Born–Oppenheimer molecular dynamics

    Graph-based linear scaling electronic structure theory for quantum-mechanical molecular dynamics simulations [A. M. N. Niklasson et al., J. Chem. Phys. 144, 234101 (2016)] is adapted to the most recent shadow potential formulations of extended Lagrangian Born–Oppenheimer molecular dynamics, including fractional molecular-orbital occupation numbers [A. M. N. Niklasson, J. Chem. Phys. 152, 104103 (2020) and A. M. N. Niklasson, Eur. Phys. J. B 94, 164 (2021)], which enables stable simulations of sensitive complex chemical systems with unsteady charge solutions. The proposed formulation includes a preconditioned Krylov subspace approximation for the integration of the extended electronic degrees of freedom, which requires quantummore » response calculations for electronic states with fractional occupation numbers. For the response calculations, we introduce a graph-based canonical quantum perturbation theory that can be performed with the same natural parallelism and linear scaling complexity as the graph-based electronic structure calculations for the unperturbed ground state. The proposed techniques are particularly well-suited for semi-empirical electronic structure theory, and the methods are demonstrated using self-consistent charge density-functional tight-binding theory both for the acceleration of self-consistent field calculations and for quantum-mechanical molecular dynamics simulations. Graph-based techniques combined with the semi-empirical theory enable stable simulations of large, complex chemical systems, including tens-of-thousands of atoms.« less
  5. Semi-Empirical Shadow Molecular Dynamics: A PyTorch Implementation

    Here, extended Lagrangian Born–Oppenheimer molecular dynamics (XL-BOMD) in its most recent shadow potential energy version has been implemented in the semiempirical PyTorch-based software PySeQM. The implementation includes finite electronic temperatures, canonical density matrix perturbation theory, and an adaptive Krylov subspace approximation for the integration of the electronic equations of motion within the XL-BOMB approach (KSA-XL-BOMD). The PyTorch implementation leverages the use of GPU and machine learning hardware accelerators for the simulations. The new XL-BOMD formulation allows studying more challenging chemical systems with charge instabilities and low electronic energy gaps. The current public release of PySeQM continues our development of modularmore » architecture for large-scale simulations employing semi-empirical quantum-mechanical treatment. Applied to molecular dynamics, simulation of 840 carbon atoms, one integration time step executes in 4 s on a single Nvidia RTX A6000 GPU.« less
  6. Quantum Perturbation Theory Using Tensor Cores and a Deep Neural Network

    In this work, time-independent quantum response calculations are performed using Tensor cores. This is achieved by mapping density matrix perturbation theory onto the computational structure of a deep neural network. The main computational cost of each deep layer is dominated by tensor contractions, i.e., dense matrix–matrix multiplications, in mixed-precision arithmetics, which achieves close to peak performance. Quantum response calculations are demonstrated and analyzed using self-consistent charge density-functional tight-binding theory as well as coupled-perturbed Hartree–Fock theory. For linear response calculations, a novel parameter-free convergence criterion is presented that is well-suited for numerically noisy low-precision floating point operations and we demonstrate amore » peak performance of almost 200 Tflops using the Tensor cores of two Nvidia A100 GPUs.« less
  7. Erratum: “DFTB+, a software package for efficient approximate density functional theory based atomistic simulations” [J. Chem. Phys. 152, 124101 (2020)]

    The implementation of the GPU support in DFTB+, as described in Sec. III C of the original publication,1 was developed based on a previous unpublished implementation by Jacek Jakowski. In order to acknowledge his work on this first implementation, the authors of the original publication wish to include J. Jakowski as co-author. The scientific content of the original publication is not affected.
  8. Extended Lagrangian Born–Oppenheimer molecular dynamics for orbital-free density-functional theory and polarizable charge equilibration models

    Extended Lagrangian Born–Oppenheimer molecular dynamics (XL-BOMD) [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] is formulated for orbital-free Hohenberg–Kohn density-functional theory and for charge equilibration and polarizable force-field models that can be derived from the same orbital-free framework. The purpose is to introduce the most recent features of orbital-based XL-BOMD to molecular dynamics simulations based on charge equilibration and polarizable force-field models. These features include a metric tensor generalization of the extended harmonic potential, preconditioners, and the ability to use only a single Coulomb summation to determine the fully equilibrated charges and the interatomic forces in each timemore » step for the shadow Born–Oppenheimer potential energy surface. The orbital-free formulation has a charge-dependent, short-range energy term that is separate from long-range Coulomb interactions. This enables local parameterizations of the short-range energy term, while the long-range electrostatic interactions can be treated separately. The theory is illustrated for molecular dynamics simulations of an atomistic system described by a charge equilibration model with periodic boundary conditions. The system of linear equations that determines the equilibrated charges and the forces is diagonal, and only a single Ewald summation is needed in each time step. The simulations exhibit the same features in accuracy, convergence, and stability as are expected from orbital-based XL-BOMD.« less
  9. Shadow Lagrangian dynamics for superfluidity

    Motivated by a similar approach for Born-Oppenheimer molecular dynamics, this paper proposes an extended "shadow" Lagrangian density for quantum states of superfluids. The extended Lagrangian contains an additional field variable that is forced to follow the wave function of the quantum state through a rapidly oscillating extended harmonic oscillator. By considering the adiabatic limit for large frequencies of the harmonic oscillator, we can derive the two equations of motions, a Schrödinger-type equation for the quantum state and a wave equation for the extended field variable. The equations are coupled in a nonlinear way, but each equation individually is linear withmore » respect to the variable that it defines. The computational advantage of this new system is that it can be easily discretized using linear time stepping methods, where we propose to use a Crank-Nicolson-type approach for the Schrödinger equation and an extended leapfrog scheme for the wave equation. Furthermore, the difference between the quantum state and the extended field variable defines a consistency error that should go to zero if the frequency tends to infinity. By coupling the time-step size in our discretization to the frequency of the harmonic oscillator we can extract an easily computable consistency error indicator that can be used to estimate the numerical error without additional costs. The findings are illustrated in numerical experiments.« less
...

Search for:
All Records
Author / Contributor
0000000318564982

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization