skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Mn(III)-mediated bisphenol a degradation: Mechanisms and products

    Bisphenol A (BPA) is a high production volume chemical with potential estrogenic effects susceptible to abiotic degradation by MnO2. BPA transformation products and reaction mechanisms with MnO2 have been investigated, but detailed process understanding of Mn(III)-mediated degradation has not been attained. Rapid consumption of BPA occurred in batch reaction vessels with 1 mM Mn(III) and 63.9 ± 0.7% of 1.76 ± 0.02 μmol BPA was degraded in 1 hour at circumneutral pH. BPA was consumed at 1.86 ± 0.09-fold higher rates in vessels with synthetic MnO2 comprising approximately 13 mol% surface-associated Mn(III) versus surface-Mn(III)-free MnO2, and 10–35% of BPA transformationmore » could be attributed to Mn(III) during the initial 10-min reaction phase. High-resolution tandem mass spectrometry (HRMS/MS) analysis detected eight transformation intermediates in reactions with Mn(III), and quantum calculations proposed 14 BPA degradation products, nine of which had not been observed during MnO2-mediated BPA degradation, suggesting mechanistic differences between Mn(III)- versus MnO2-mediated BPA degradation. Finally, the findings demonstrate that both Mn(III) and Mn(IV) can effectively degrade BPA and indicate that surface-associated Mn(III) increases the reactivity of synthetic MnO2, offering opportunities for engineering more reactive oxidized Mn species for BPA removal.« less
  2. Sulfurospirillum diekertiae sp. nov., a tetrachloroethene-respiring bacterium isolated from contaminated soil

    Two anaerobic, tetrachloroethene- (PCE-) respiring bacterial isolates, designated strain ACSDCE T and strain ACSTCE, were characterized using a polyphasic approach. Cells were Gram-stain-negative, motile, non-spore-forming and shared a vibrioid- to spirillum-shaped morphology. Optimum growth occurred at 30°C and 0.1–0.4% salinity. The pH range for growth was pH 5.5–7.5, with an optimum at pH 7.2. Hydrogen, formate, pyruvate and lactate as electron donors supported respiratory reductive dechlorination of PCE to cis-1,2-dichloroethene (cDCE) in strain ACSDCE T and of PCE to trichloroethene (TCE) in strain ACSTCE. Both strains were able to grow with pyruvate under microaerobic conditions. Nitrate, elemental sulphur, and thiosulphatemore » were alternative electron acceptors. Autotrophic growth was not observed and acetate served as carbon source for both strains. The major cellular fatty acids were C16:1 ω7c, C16:0, C14:0 and C18:1 ω7c. Both genomes feature a circular plasmid. Strains ACSDCE T and ACSTCE were previously assigned to the candidate species 'Sulfurospirillum acididehalogenans'. Here, based on key genomic features and pairwise comparisons of whole-genome sequences, including average nucleotide identity, digital DNA–DNA hybridization and average amino acid identity, strains ACSDCE T and ACSTCE, 'Ca. Sulfurospirillum diekertiae' strains SL2-1 and SL2-2, and the unclassified Sulfurospirillum sp. strain SPD-1 are grouped into one distinct species separate from previously described Sulfurospirillum species. Compared to Sulfurospirillum multivorans and Sulfurospirillum halorespirans, which dechlorinate PCE to cDCE without substantial TCE accumulation, these five strains produce TCE or cDCE as the end product. In addition, some cellular fatty acids (e.g., C16:0 3OH, C17:0 iso 3OH, C17:0 2OH) were detected in strains ACSDCE T and ACSTCE but not in other Sulfurospirillum species. On the basis of phylogenetic, physiological and phenotypic characteristics, 'Ca. Sulfurospirillum acididehalogenans' and 'Ca. Sulfurospirillum diekertiae' are proposed to be merged into one novel species within the genus Sulfurospirillum, for which the name Sulfurospirillum diekertiae sp. nov. is proposed. Finally, the type strain is ACSDCE T (=JCM 33349T= KCTC 15819T=CGMCC 1.5292T).« less
  3. Can Food–Energy–Water Nexus Research Keep Pace with Agricultural Innovation?

    The interconnection among food–energy–water (FEW) systems in meeting societal demands is broadly acknowledged. Similarly, competitive or synergistic allocations of water and energy resources for agricultural production, manufacturing, and human consumption are understood, and their economic impacts can be predicted. Far less appreciated and understood are the outcomes of the FEW nexus in response to operation changes in agricultural practices and the associated technological innovations for future generations. Also, the inter-scale and feedback effects of emerging technology-driven resource reallocation and decision-making on FEW systems are largely unknown. For example, how do the agroeconomic feedbacks of intelligent technologies influence the FEW nexusmore » of agricultural production under environmental and demographic changes? How does the necessary water allocation for powering non-powered dams and pumped-storage hydropower generation influence agricultural production and municipal water supply maintenance? How do solar and wind energy farms influence land use for agriculture and the rural economy? In turn, how can the generated solar and wind energy help reduce the cost of groundwater extraction or water desalination?« less
  4. Inhibition of Methylmercury and Methane Formation by Nitrous Oxide in Arctic Tundra Soil Microcosms

    Climate warming causes permafrost thaw predicted to increase toxic methylmercury (MeHg) and greenhouse gas [i.e., methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O)] formation. A microcosm incubation study with Arctic tundra soil over 145 days demonstrates that N2O at 0.1 and 1 mM markedly inhibited microbial MeHg formation, methanogenesis, and sulfate reduction, while it slightly promoted CO2 production. Microbial community analyses indicate that N2O decreased the relative abundances of methanogenic archaea and microbial clades implicated in sulfate reduction and MeHg formation. Following depletion of N2O, both MeHg formation and sulfate reduction rapidly resumed, whereas CH4 production remained low, suggestingmore » that N2O affected susceptible microbial guilds differently. MeHg formation strongly coincided with sulfate reduction, supporting prior reports linking sulfate-reducing bacteria to MeHg formation in the Arctic soil. Here, this research highlights complex biogeochemical interactions in governing MeHg and CH4 formation and lays the foundation for future mechanistic studies for improved predictive understanding of MeHg and greenhouse gas fluxes from thawing permafrost ecosystems.« less
  5. Metabolome patterns identify active dechlorination in bioaugmentation consortium SDC-9™

    Ultra-high performance liquid chromatography–high-resolution mass spectrometry (UPHLC–HRMS) is used to discover and monitor single or sets of biomarkers informing about metabolic processes of interest. The technique can detect 1000’s of molecules (i.e., metabolites) in a single instrument run and provide a measurement of the global metabolome, which could be a fingerprint of activity. Despite the power of this approach, technical challenges have hindered the effective use of metabolomics to interrogate microbial communities implicated in the removal of priority contaminants. Herein, our efforts to circumvent these challenges and apply this emerging systems biology technique to microbiomes relevant for contaminant biodegradation willmore » be discussed. Chlorinated ethenes impact many contaminated sites, and detoxification can be achieved by organohalide-respiring bacteria, a process currently assessed by quantitative gene-centric tools (e.g., quantitative PCR). This laboratory study monitored the metabolome of the SDC-9™ bioaugmentation consortium during cis-1,2-dichloroethene (cDCE) conversion to vinyl chloride (VC) and nontoxic ethene. Untargeted metabolomics using an UHPLC-Orbitrap mass spectrometer and performed on SDC-9™ cultures at different stages of the reductive dechlorination process detected ~10,000 spectral features per sample arising from water-soluble molecules with both known and unknown structures. Multivariate statistical techniques including partial least squares-discriminate analysis (PLSDA) identified patterns of measurable spectral features (peak patterns) that correlated with dechlorination (in)activity, and ANOVA analyses identified 18 potential biomarkers for this process. Statistical clustering of samples with these 18 features identified dechlorination activity more reliably than clustering of samples based only on chlorinated ethene concentration and Dhc 16S rRNA gene abundance data, highlighting the potential value of metabolomic workflows as an innovative site assessment and bioremediation monitoring tool.« less
  6. Hydrobiological Mechanism Controlling the Synergistic Effects of Unsaturated Flow and Soil Organic Matter on the Degradation of Emerging Organic Contaminants in Soils

    We report hydrology is a key factor influencing microbial degradation of emerging organic contaminants (EOCs) in soils, but the underlying mechanisms are not clear. In this study, biotic and abiotic column experiments were performed to investigate the removal and degradation of five EOCs in soils with different soil organic matter (SOM) contents under saturated and unsaturated flow conditions. In biotic experiments, 54–90% of bisphenol A (BPA) and 9–22% of ibuprofen (IBU) were removed from the aqueous phase of saturated columns due to adsorption and biodegradation. The biodegradation removed 26–65% of BPA and 1–22% of IBU. Decreasing soil pore water saturationmore » from 100 to 80% increased BPA removal to 97–100% and IBU removal to 42–43% due to increased biodegradation (67–81% for BPA and 36–39% for IBU). No significant removal of BPA and IBU was observed in SOM-removed soils under saturated and unsaturated flow conditions. The desaturation did not influence sorptive losses of BPA (< 27%) and IBU (< 7%), suggesting their negligible adsorption at air–water interfaces but increased biodegradation of BPA and IBU sorbed at SOM–water interfaces. The study shows that soil drying and SOM can synergistically degrade BPA and IBU but have no effect on recalcitrant carbamazepine, tetracycline, and ciprofloxacin.« less
  7. Pseudomonas sp. Strain 273 Incorporates Organofluorine into the Lipid Bilayer during Growth with Fluorinated Alkanes

    Anthropogenic organofluorine compounds are recalcitrant, globally distributed, and a human health concern. Although rare, natural processes synthesize fluorinated compounds, and some bacteria have evolved mechanisms to metabolize organofluorine compounds. Pseudomonas sp. strain 273 grows with 1-fluorodecane (FD) and 1,10-difluorodecane (DFD) as carbon sources, but inorganic fluoride release was not stoichiometric. Metabolome studies revealed that this bacterium produces fluorinated anabolites and phospholipids. Mass spectrometric fatty acid profiling detected fluorinated long-chain (i.e., C12–C19) fatty acids in strain 273 cells grown with FD or DFD, and lipidomic profiling determined that 7.5 ± 0.2 and 82.0 ± 1.0% of the total phospholipids in strainmore » 273 grown with FD or DFD, respectively, were fluorinated. The detection of the fluorinated metabolites and macromolecules represents a heretofore unrecognized sink for organofluorine, an observation with consequences for the environmental fate and transport of fluorinated aliphatic compounds.« less
  8. Dehalogenation of Chlorinated Ethenes to Ethene by a Novel Isolate, “Candidatus Dehalogenimonas etheniformans”

    Dehalococcoides mccartyi strains harboring vinyl chloride (VC) reductive dehalogenase (RDase) genes are keystone bacteria for VC detoxification in groundwater aquifers, and bioremediation monitoring regimens focus on D. mccartyi biomarkers. We isolated a novel anaerobic bacterium, “Candidatus Dehalogenimonas etheniformans” strain GP, capable of respiratory dechlorination of VC to ethene. This bacterium couples formate and hydrogen (H2) oxidation to the reduction of trichloro-ethene (TCE), all dichloroethene (DCE) isomers, and VC with acetate as the carbon source. Cultures that received formate and H2 consumed the two electron donors concomitantly at similar rates. A 16S rRNA gene-targeted quantitative PCR (qPCR) assay measured growth yieldsmore » of (1.2 ± 0.2) × 108 and (1.9 ± 0.2) × 108 cells per μmol of VC dechlorinated in cultures with H2 or formate as electron donor, respectively. About 1.5-fold higher cell numbers were measured with qPCR targeting cerA, a single-copy gene encoding a putative VC RDase. A VC dechlorination rate of 215 ± 40 μmol L-1 day-1 was measured at 30°C, with about 25% of this activity occurring at 15°C. Increasing NaCl concentrations progressively impacted VC dechlorination rates, and dechlorination ceased at 15 g NaCl L-1. During growth with TCE, all DCE isomers were intermediates. Tetrachloroethene was not dechlorinated and inhibited dechlorination of other chlorinated ethenes. Carbon monoxide formed and accumulated as a metabolic by-product in dechlorinating cultures and impacted reductive dechlorination activity. Finally, the isolation of a new Dehalogenimonas species able to effectively dechlorinate toxic chlorinated ethenes to benign ethene expands our understanding of the reductive dechlorination process, with implications for bioremediation and environmental monitoring.« less
  9. Creating a Research Enterprise Framework for Transdisciplinary Networking to Address the Food–Energy–Water Nexus

    Urbanization, population growth, and the accelerating consumption of food, energy, and water (FEW) resources bring unprecedented challenges for economic, environmental, and social (EES) sustainability. It is imperative to understand the potential impacts of FEW systems on the realization of the United Nation’s Sustainable Development Goals (SDGs) as the world transitions from natural ecosystems to managed ecosystems at an accelerating rate. A major obstacle is the complexity and emergent behavior of FEW systems and associated networks, for which no single discipline can generate a holistic understanding or meaningful projections. We propose a research enterprise framework for promoting transdisciplinarity and top-down quantificationmore » of the interrelationships between FEW and EES systems. Relevant enterprise efforts would emphasize increasing FEW resource accessibility by improving coordinated interplays across sectors and scales, expanding and diversifying supply-chain networks, and innovating technologies for efficient resource utilization. This framework can guide the development of strategic solutions for diminishing the competition among FEW-consuming sectors in a region or country, and for minimizing existing inequalities in FEW availability when a sustainable development agenda is implemented.« less
  10. Ultrastructure of Organohalide-Respiring Dehalococcoidia Revealed by Cryo-Electron Tomography

    Dehalococcoides mccartyi (Dhc) and Dehalogenimonas spp. (Dhgm) are members of the class Dehalococcoidia, phylum Chloroflexi, characterized by streamlined genomes and a strict requirement for organohalogens as electron acceptors. Here, we used cryo-electron tomography to reveal morphological and ultrastructural features of Dhc strain BAV1 and “Candidatus Dehalogenimonas etheniformans” strain GP cells at unprecedented resolution. Dhc cells were irregularly shaped discs (890 ± 110 nm long, 630 ± 110 nm wide, and 130 ± 15 nm thick) with curved and straight sides that intersected at acute angles, whereas Dhgm cells appeared as slightly flattened cocci (760 ± 85 nm). The cell envelopesmore » were composed of a cytoplasmic membrane (CM), a paracrystalline surface layer (S-layer) with hexagonal symmetry and ~22-nm spacing between repeating units, and a layer of unknown composition separating the CM and the S-layer. Cell surface appendages were only detected in Dhc cells, whereas both cell types had bundled cytoskeletal filaments. Repetitive globular structures, ~5 nm in diameter and ~9 nm apart, were observed associated with the outer leaflet of the CM. We hypothesized that those represent organohalide respiration (OHR) complexes and estimated ~30,000 copies per cell. In Dhgm cultures, extracellular lipid vesicles (20 to 110 nm in diameter) decorated with putative OHR complexes but lacking an S-layer were observed. Furthermore, the new findings expand our understanding of the unique cellular ultrastructure and biology of organohalide-respiring Dehalococcoidia.« less
...

Search for:
All Records
Author / Contributor
0000000297974279

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization