skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Real-space measurement of orbital electron populations for Li1-xCoO2

    The operation of lithium-ion batteries involves electron removal from and filling into the redox orbitals of cathode materials, experimentally probing the orbital electron population thus is highly desirable to resolve the redox processes and charge compensation mechanism. Here, we combine quantitative convergent-beam electron diffraction with high-energy synchrotron powder X-ray diffraction to quantify the orbital populations of Co and O in the archetypal cathode material LiCoO2. The results indicate that removing Li ions from LiCoO2 decreases Co t2g orbital population, and the intensified covalency of Co–O bond upon delithiation enables charge transfer from O 2p orbital to Co eg orbital, leadingmore » to increased Co eg orbital population and oxygen oxidation. Theoretical calculations verify these experimental findings, which not only provide an intuitive picture of the redox reaction process in real space, but also offer a guidance for designing high-capacity electrodes by mediating the covalency of the TM–O interactions.« less
  2. Revealing High Na-Content P2-Type Layered Oxides as Advanced Sodium-Ion Cathodes

    Layered Na-based oxides with the general composition of NaxTMO2 (TM: transition metal) have attracted significant attention for their high compositional diversity that provides tunable electrochemical performance for electrodes in sodium-ion batteries. The various compositions bring forward complex structural chemistry that is decisive for the layered stacking structure, Na-ion conductivity, and the redox activity, potentially promising new avenues in functional material properties. In this work, we have explored the maximum Na content in P2-type layered oxides and discovered that the high-content Na in the host enhances the structural stability; moreover, it promotes the oxidation of low-valent cations to their high oxidationmore » states (in this case Ni2+). This can be rationalized by the increased hybridization of the O(2p)-TM(3d-eg*) states, affecting both the local TM environment as well as the interactions between the NaO2 and TMO2 layers. These properties are highly beneficial for the Na storage capabilities as required for cathode materials in sodium-ion batteries. It leads to excellent Na-ion mobility, a large storage capacity (>100 mAh g–1 between 2.0-4.0 V), yet preventing the detrimental sliding of the TMO2 layers (P2–O2 structural transition), as reflected by the ultralong cycle life (3000 (dis)charge cycles demonstrated). These findings expand the horizons of high Na-content P2-type materials, providing new insights of the electronic and structural chemistry for advanced cathode materials.« less
  3. Constructing Na-Ion Cathodes via Alkali-Site Substitution

    Not provided.
  4. Constructing Na‐Ion Cathodes via Alkali‐Site Substitution

    Abstract Na‐ion batteries have experienced rapid development over the past decade and received significant attention from the academic and industrial communities. Although a large amount of effort has been made on material innovations, accessible design strategies on peculiar structural chemistry remain elusive. An approach to in situ construction of new Na‐based cathode materials by substitution in alkali sites is proposed to realize long‐term cycling stability and high‐energy density in low‐cost Na‐ion cathodes. A new compound, [K 0.444(1) Na 1.414(1) ][Mn 3/4 Fe 5/4 ](CN) 6 , is obtained through a rational control of K + content from electrochemical reaction. Resultsmore » demonstrate that the remaining K + (≈0.444 mol per unit) in the host matrix can stabilize the intrinsic K‐based structure during reversible Na + extraction/insertion process without the structural evolution to the Na‐based structure after cycles. Thereby, the as‐prepared cathode shows the remarkably enhanced structural stability with the capacity retention of >78% after 1800 cycles, and a higher average operation voltage of ≈3.65 V versus Na + /Na, directly contrasting the non‐alkali‐site‐substitution cathode materials. This provides new insights into alkali‐site‐substitution constructing advanced Na‐ion cathode materials.« less
  5. Correlated Migration Invokes Higher Na + ‐Ion Conductivity in NaSICON‐Type Solid Electrolytes

    Abstract Na super ion conductor (NaSICON), Na 1+ n Zr 2 Si n P 3– n O 12 is considered one of the most promising solid electrolytes; however, the underlying mechanism governing ion transport is still not fully understood. Here, the existence of a previously unreported Na5 site in monoclinic Na 3 Zr 2 Si 2 PO 12 is unveiled. It is revealed that Na + ‐ions tend to migrate in a correlated mechanism, as suggested by a much lower energy barrier compared to the single‐ion migration barrier. Furthermore, computational work uncovers the origin of themore » improved conductivity in the NaSICON structure, that is, the enhanced correlated migration induced by increasing the Na + ‐ion concentration. Systematic impedance studies on doped NaSICON materials bolster this finding. Significant improvements in both the bulk and total ion conductivity (e.g., σ bulk = 4.0 mS cm −1 , σ total = 2.4 mS cm −1 at 25 °C) are achieved by increasing the Na content from 3.0 to 3.30–3.55 mol formula unit −1 . These improvements stem from the enhanced correlated migration invoked by the increased Coulombic repulsions when more Na + ‐ions populate the structure rather than solely from the increased mobile ion carrier concentration. The studies also verify a strategy to enhance ion conductivity, namely, pushing the cations into high energy sites to therefore lower the energy barrier for cation migration.« less
  6. Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries

    The aqueous sodium-ion battery system is a safe and low-cost solution for large-scale energy storage, due to the abundance of sodium and inexpensive aqueous electrolytes. Although several positive electrode materials, e.g., Na0.44MnO2, were proposed, few negative electrode materials, e.g., activated carbon and NaTi2(PO4)3, are available. Here we show that Ti-substituted Na0.44MnO2 (Na0.44[Mn1-xTix]O2) with tunnel structure can be used as a negative electrode material for aqueous sodium-ion batteries. This material exhibits superior cyclability even without the special treatment of oxygen removal from the aqueous solution. Atomic-scale characterizations based on spherical aberration-corrected electron microscopy and ab initio calculations are utilized to accuratelymore » identify the Ti substitution sites and sodium storage mechanism. Ti substitution tunes the charge ordering property and reaction pathway, significantly smoothing the discharge/charge profiles and lowering the storage voltage. Both the fundamental understanding and practical demonstrations suggest that Na0.44[Mn1-xTix]O2 is a promising negative electrode material for aqueous sodium-ion batteries.« less
  7. Integrated Surface Functionalization of Li-Rich Cathode Materials for Li-Ion Batteries


Search for:
All Records
Author / Contributor
0000000284306474

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization