skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Pressure Effects on the Relaxation of an Excited Ethane Molecule in High-Pressure Bath Gases

    Here, we use molecular dynamics to calculate the rotational and vibrational energy relaxation of C2H6 in Ar, Kr, and Xe bath gases over a pressure range of 10 to 400 atm and at temperatures of 300 K and 800 K. The C2H6 is instantaneously excited by 80 kcal/mol randomly distributed into both vibrational and rotational modes. The computed relaxation rates show little sensitivity to the identity of the noble gas in the bath. Vibrational relaxation rates show a non-linear pressure dependence at 300 K. At 800 K the reduced range of bath gas densities covered by the range of pressuresmore » do not yet show any non-linearity in the pressure dependence. Rotational relaxation is characterized with two relaxation rates. The slower rate is comparable to the vibrational relaxation rate. The faster rate has a linear pressure dependence at 300 K but an irregular, nonlinear pressure dependence at 800 K. To understand this, a model was developed based on approximating the periodic box used in the molecular dynamics simulations by an equal-volume collection of cubes where each cube is sized to allow only single occupancy by the noble gas or the molecule. Combinatorial statistics then leads to a pressure and temperature dependent analytic distribution of the bath gas species the molecule encounters in a collision. This distribution, the dissociation energy of molecule/bath gas complexes and bath gas clusters, and the computed energy release per collision combine to show that only at 300 K is the energy release sufficient to dissociate likely complexes and clusters. This suggests that persistent and pressure-dependent clusters and complexes at 800 K may be responsible for the non-linear pressure dependence of rotational relaxation.« less
  2. Mode-specific pressure effects on the relaxation of an excited nitromethane molecule in an argon bath

    The vibrational and rotational mode-specific relaxations of CH3NO2 with 50 kcal/mol of initial internal energy in an argon bath is computed at 300 K at pressures of 10-400 atm. This work uses archived information from our previously published [J. Chem. Phys. 142, 014303 (2015)] molecular dynamics simulations and employs our previous published [J. Chem. Phys. 151, 034303 (2019)] method for projecting time-dependent Cartesian velocities onto normal mode eigenvectors. The computed relaxations cover three types of energies: vibrational, rotational, and Coriolis. In general, rotational and Coriolis relaxations in all modes are initially fast followed by an orders of magnitude slower relaxation.more » For all modes, that slower relaxation rate is approximately comparable to the vibrational relaxation rate. For all three types of energies, there are small-scale mode-to-mode variations. Of particular prominence is the exceptionally fast relaxation shared in common by the external rotation about the C-N axis, the internal hindered rotation of the CH3 group relative to the NO2 group, and the symmetric stretch of the CH3 group.« less
  3. Normal mode analysis on the relaxation of an excited nitromethane molecule in argon bath

    In our previous work [Rivera-Rivera et al., J. Chem. Phys. 142, 014303 (2015)], classical molecular dynamics simulations followed the relaxation, in a 300 K Ar bath at a pressure of 10-400 atm, of nitromethane (CH3NO2) instantaneously excited by statistically distributing 50 kcal/mol among all its internal degrees of freedom. Both rotational and vibrational energies decayed with nonexponential curves. In this present work, we explore mode-specific mechanisms at work in the decay process. With the separation of rotation and vibration developed by Rhee and Kim [J. Chem. Phys. 107, 1394 (1997)], one can show that the vibrational kinetic energy decomposes onlymore » into vibrational normal modes, while the rotational and Coriolis energies decompose into both vibrational and rotational normal modes. The saved CH3NO2 positions and momenta were converted into mode-specific energies whose decay was monitored over 1000 ps. Lastly, the results identify vibrational and rotational modes that promote/resist energy lost and drive nonexponential behavior.« less
  4. Pressure effects on the vibrational and rotational relaxation of vibrationally excited OH (ν, J ) in an argon bath

    Quasi-classical molecular dynamics simulations were used to study the energy relaxation of an initially non-rotating, vibrationally excited (v = 4) hydroxyl radical (OH) in an Ar bath at 300 K and at high pressures from 50 atm to 400 atm. A Morse oscillator potential represented the OH, and two sets of interaction potentials were used based on whether the Ar-H potential was a Buckingham (Exp6) or a Lennard-Jones (LJ) potential. The vibrational and rotational energies were monitored for 25 000-90 000 ps for Exp6 trajectories and 5000 ps for LJ trajectories. Comparisons to measured vibrational relaxation rates show that Exp6more » rates are superior. Simulated initial vibrational relaxation rates are linearly proportional to pressure, implying no effect of high-pressure breakdown in the isolated binary collision approximation. The vibrational decay curves upward from single-exponential decay. A model based on transition rates that exponentially depend on the anharmonic energy gap between vibrational levels fits the vibrational decay well at all pressures, suggesting that anharmonicity is a major cause of the curvature. Due to the competition of vibration-to-rotation energy transfer and bath gas relaxation, the rotational energy overshoots and then relaxes to its thermal value. Approximate models with adjustable rates for this competition successfully reproduced the rotational results. These models show that a large fraction of the vibrational energy loss is initially converted to rotational energy but that fraction decreases rapidly as the vibrational energy content of OH decreases. Finally, while simulated rates change dramatically between Exp6 and LJ potentials, the mechanisms remain the same.« less
  5. Pressure effects on the relaxation of an excited nitromethane molecule in an argon bath

    Classical molecular dynamics simulations were performed to study the relaxation of nitromethane in an Ar bath (of 1000 atoms) at 300 K and pressures 10, 50, 75, 100, 125, 150, 300, and 400 atm. The molecule was instantaneously excited by statistically distributing 50 kcal/mol among the internal degrees of freedom. At each pressure, 1000 trajectories were integrated for 1000 ps, except for 10 atm, for which the integration time was 5000 ps. The computed ensemble-averaged rotational energy decay is similar to 100 times faster than the vibrational energy decay. Both rotational and vibrational decay curves can be satisfactorily fit withmore » the Lendvay-Schatz function, which involves two parameters: one for the initial rate and one for the curvature of the decay curve. The decay curves for all pressures exhibit positive curvature implying the rate slows as the molecule loses energy. The initial rotational relaxation rate is directly proportional to density over the interval of simulated densities, but the initial vibrational relaxation rate decreases with increasing density relative to the extrapolation of the limiting low-pressure proportionality to density. The initial vibrational relaxation rate and curvature are fit as functions of density. For the initial vibrational relaxation rate, the functional form of the fit arises from a combinatorial model for the frequency of nitromethane "simultaneously" colliding with multiple Ar atoms. Roll-off of the initial rate from its low-density extrapolation occurs because the cross section for collision events with L Ar atoms increases with L more slowly than L times the cross section for collision events with one Ar atom. The resulting density-dependent functions of the initial rate and curvature represent, reasonably well, all the vibrational decay curves except at the lowest density for which the functions overestimate the rate of decay. The decay over all gas phase densities is predicted by extrapolating the fits to condensed-phase densities.« less
  6. Toward accurate high temperature anharmonic partition functions


Search for:
All Records
Author / Contributor
0000000277222029

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization