skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Lagrangian and Dirac constraints for the ideal incompressible fluid and magnetohydrodynamics

    The incompressibility constraint for fluid flow was imposed by Lagrange in the so-called Lagrangian variable description using his method of multipliers in the Lagrangian (variational) formulation. An alternative is the imposition of incompressibility in the Eulerian variable description by a generalization of Dirac’s constraint method using noncanonical Poisson brackets. Here it is shown how to impose the incompressibility constraint using Dirac’s method in terms of both the canonical Poisson brackets in the Lagrangian variable description and the noncanonical Poisson brackets in the Eulerian description, allowing for the advection of density. Both cases give the dynamics of infinite-dimensional geodesic flow onmore » the group of volume preserving diffeomorphisms and explicit expressions for this dynamics in terms of the constraints and original variables is given. Since Lagrangian and Eulerian conservation laws are not identical, comparison of the various methods is made.« less
  2. Hamiltonian magnetohydrodynamics: Lagrangian, Eulerian, and dynamically accessible stability—Examples with translation symmetry

    Because different constraints are imposed, stability conditions for dissipationless fluids and magnetofluids may take different forms when derived within the Lagrangian, Eulerian (energy-Casimir), or dynamically accessible frameworks. This is in particular the case when flows are present. These differences are explored explicitly here by working out in detail two magnetohydrodynamic examples: convection against gravity in a stratified fluid and translationally invariant perturbations of a rotating magnetized plasma pinch. In this second example, we show in explicit form how to perform the time-dependent relabeling introduced in Andreussi et al. [Phys. Plasmas 20, 092104 (2013)] that makes it possible to reformulate Eulerianmore » equilibria with flows as Lagrangian equilibria in the relabeled variables. The procedures detailed in the present article provide a paradigm that can be applied to more general plasma configurations and in addition extended to more general plasma descriptions where dissipation is absent.« less
  3. Radiation pressure acceleration: The factors limiting maximum attainable ion energy

    Radiation pressure acceleration (RPA) is a highly efficient mechanism of laser-driven ion acceleration, with near complete transfer of the laser energy to the ions in the relativistic regime. However, there is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. The tightly focused laser pulses have group velocities smaller than the vacuum light speed, and, since they offer the high intensity needed for the RPA regime, it is plausible that group velocity effects would manifest themselves in the experiments involving tightly focused pulses and thin foils. However, in this case,more » finite spot size effects are important, and another limiting factor, the transverse expansion of the target, may dominate over the group velocity effect. As the laser pulse diffracts after passing the focus, the target expands accordingly due to the transverse intensity profile of the laser. Due to this expansion, the areal density of the target decreases, making it transparent for radiation and effectively terminating the acceleration. The off-normal incidence of the laser on the target, due either to the experimental setup, or to the deformation of the target, will also lead to establishing a limit on maximum ion energy.« less

Search for:
All Records
Author / Contributor
0000000272165491

Refine by:
Resource Type
Availability
Author / Contributor
Research Organization