skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. A remote sensing algorithm for vertically resolved cloud condensation nuclei number concentrations from airborne and spaceborne lidar observations

    Cloud condensation nuclei (CCN) are mediators of aerosol–cloud interactions (ACIs), contributing to the largest uncertainties in the understandings of global climate change. We present a novel remote-sensing-based algorithm that quantifies the vertically resolved CCN number concentrations (NCCN) using aerosol optical properties measured by a multiwavelength lidar. The algorithm considers five distinct aerosol subtypes with bimodal size distributions. The inversion used the lookup tables developed in this study, based on the observations from the Aerosol Robotic Network, to efficiently retrieve optimal particle size distributions from lidar measurements. The method derives dry aerosol optical properties by implementing hygroscopic enhancement factors in lidarmore » measurements. The retrieved optically equivalent particle size distributions and aerosol-type-dependent particle composition are utilized to calculate critical diameters using κ-Köhler theory and NCCN at six supersaturations ranging from 0.07 % to 1.0 %. Sensitivity analyses indicate that uncertainties in extinction coefficients and relative humidity greatly influence the retrieval error in NCCN. The potential of this algorithm is further evaluated by retrieving NCCN using airborne lidar from the NASA ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) campaign and is validated against simultaneous measurements from the CCN counter. The independent validation with robust correlation demonstrates promising results. Furthermore, the NCCN has been retrieved for the first time using a proposed algorithm from spaceborne lidar – Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) – measurements. The application of this new capability demonstrates the potential for constructing a 3D CCN climatology at a global scale, which helps to better quantify ACI effects and thus reduce the uncertainty in aerosol climate forcing.« less
  2. Muted extratropical low cloud seasonal cycle is closely linked to underestimated climate sensitivity in models

    Abstract A large spread in model estimates of the equilibrium climate sensitivity (ECS), defined as the global mean near-surface air-temperature increase following a doubling of atmospheric CO 2 concentration, leaves us greatly disadvantaged in guiding policy-making for climate change adaptation and mitigation. In this study, we show that the projected ECS in the latest generation of climate models is highly related to seasonal variations of extratropical low-cloud fraction (LCF) in historical simulations. Marked reduction of extratropical LCF from winter to summer is found in models with ECS > 4.75 K, in accordance with the significant reduction of extratropical LCF under a warming climatemore » in these models. In contrast, a pronounced seasonal cycle of extratropical LCF, as supported by satellite observations, is largely absent in models with ECS < 3.3 K. The distinct seasonality in extratropical LCF in climate models is ascribed to their different prevailing cloud regimes governing the extratropical LCF variability.« less
  3. Model spread in tropical low cloud feedback tied to overturning circulation response to warming

    Among models participating in the Coupled Model Intercomparison Project phase 6 (CMIP6), here we show that the magnitude of the tropical low cloud feedback, which contributes considerably to uncertainty in estimates of climate sensitivity, is intimately linked to tropical deep convection and its effects on the tropical atmospheric overturning circulation. First, a reduction in tropical ascent area and an increased frequency of heavy precipitation result in high cloud reduction and upper-tropospheric drying, which increases longwave cooling and reduces subsidence weakening, favoring low cloud reduction (Radiation-Subsidence Pathway). Second, increased longwave cooling decreases tropospheric stability, which also reduces subsidence weakening and lowmore » cloudiness (Stability-Subsidence Pathway). In summary, greater high cloud reduction and upper-tropospheric drying (negative longwave feedback) lead to a more positive cloud feedback among CMIP6 models by contributing to a greater reduction in low cloudiness (positive shortwave feedback). Varying strengths of the two pathways contribute considerably to the intermodel spread in climate sensitivity.« less
  4. Cloud condensation nuclei characteristics at the Southern Great Plains site: role of particle size distribution and aerosol hygroscopicity

    The activation ability of aerosols as cloud condensation nuclei (CCN) is crucial in climate and hydrological cycle studies, but their properties are not well known. We investigated the long-term measurements of atmospheric aerosol properties, CCN concentrations (NCCN) at supersaturation (SS = 0.1%–1.0%), and hygroscopicity at the Department of Energy's Southern Great Plains (SGP) site to illustrate the dependence of NCCN on aerosol properties and transport pathways. Cluster analysis was applied to the back trajectories of air masses to investigate their respective source regions. The results showed that aged biomass burning aerosols from Central America were characterized by higher accumulation modemore » particles (Naccu; median value 805 cm-3) and relatively high aerosol hygroscopicity (κ; median value ~0.25) values that result in the higher CCN activation and relatively high NCCN (median value 258–1578 cm-3 at a SS of 0.1%–1.0%). Aerosols from the Gulf of Mexico were characterized by higher Naccu (~35%), and NCCN (230–1721 cm-3 at a SS of 0.1%–1.0%) with the lowest κ (~0.17). In contrast, relatively high nucleation mode particles (Nnucl; ~20%) and low NCCN (128–1553 cm-3 at a SS of 0.1%–1.0%) with higher κ (~0.30) values were observed on the aerosols associated with a westerly wind. The results indicate particle size as the most critical factor influencing the ability of aerosols to activate, whereas the effect of chemical composition was secondary. Our CCN closure analysis suggests that chemical composition and mixing state information are more crucial at lower SS, whereas at higher SS, most particles become activated regardless of their chemical composition and size. This study affirms that soluble organic fraction information is required at higher SS for better NCCN prediction, but both the soluble organics fraction and mixing state are vital to reduce the NCCN prediction uncertainty at lower SS.« less
  5. Air quality impact of the Northern California Camp Fire of November 2018

    The Northern California Camp Fire that took place in November 2018 was one of the most damaging environmental events in California history. Here, we analyze ground-based station observations of airborne particulate matter that has a diameter <2.5 µm (PM2.5) across Northern California and conduct numerical simulations of the Camp Fire using the Weather Research and Forecasting model online coupled with chemistry (WRF-Chem). Simulations are evaluated against ground-based observations of PM2.5, black carbon, and meteorology, as well as satellite measurements, such as Tropospheric Monitoring Instrument (TROPOMI) aerosol layer height and aerosol index. The Camp Fire led to an increase in Baymore » Area PM2.5 to over 50 µg m–3 for nearly 2 weeks, with localized peaks exceeding 300 µg m–3. Using the Visible Infrared Imaging Radiometer Suite (VIIRS) high-resolution fire detection products, the simulations reproduce the magnitude and evolution of surface PM2.5 concentrations, especially downwind of the wildfire. The overall spatial patterns of simulated aerosol plumes and their heights are comparable with the latest satellite products from TROPOMI. WRF-Chem sensitivity simulations are carried out to analyze uncertainties that arise from fire emissions, meteorological conditions, feedback of aerosol radiative effects on meteorology, and various physical parameterizations, including the planetary boundary layer model and the plume rise model. Downwind PM2.5 concentrations are sensitive to both flaming and smoldering emissions over the fire, so the uncertainty in the satellite-derived fire emission products can directly affect the air pollution simulations downwind. Our analysis also shows the importance of land surface and boundary layer parameterization in the fire simulation, which can result in large variations in magnitude and trend of surface PM2.5 . Inclusion of aerosol radiative feedback moderately improves PM2.5 simulations, especially over the most polluted days. Results of this study can assist in the development of data assimilation systems as well as air quality forecasting of health exposures and economic impact studies.« less
  6. Constraining Aging Processes of Black Carbon in the Community Atmosphere Model Using Environmental Chamber Measurements

    Abstract The direct radiative forcing of black carbon aerosol (BC) on the Earth system remains unsettled, largely due to the uncertainty with physical properties of BC throughout their lifecycle. Here we show that ambient chamber measurements of BC properties provide a novel constraint on the crude BC aging representation in climate models. Observational evidence for significant absorption enhancement of BC can be reproduced when the aging processes in the four‐mode version of the Modal Aerosol Module (MAM4) aerosol scheme in the Community Atmosphere Model version 5 are calibrated by the recent in situ chamber measurements. An observation‐based scaling method ismore » developed in the aging timescale calculation to alleviate the influence of biases in the simulated model chemical composition. Model sensitivity simulations suggest that the different monolayer settings in the BC aging parameterization of MAM4 can cause as large as 26% and 24% differences in BC burden and radiative forcing, respectively. We also find that an increase in coating materials (e.g., sulfate and secondary organic aerosols) reduces BC lifetime by increasing the hygroscopicity of the mixture but enhances its absorption, resulting in a net increase in BC direct radiative forcing. Our results suggest that accurate simulations of BC aging processes as well as other aerosol species are equally important in reducing the uncertainty of BC forcing estimation.« less
  7. Toward reconciling the influence of atmospheric aerosols and greenhouse gases on light precipitation changes in Eastern China

    The attribution of the widely observed shifted precipitation extremes to different forcing agents represents a critical issue for understanding of changes in the hydrological cycle. To compare aerosol and greenhouse-gas effects on the historical trends of precipitation intensity, we performed AMIP-style NCAR/DOE CAM5 model simulations from 1950-2005 with and without anthropogenic aerosol forcings. Precipitation rates at every time step in CAM5 are used to construct precipitation probability distribution functions. By contrasting the two sets of experiments, we found that the global warming induced by the accumulating greenhouse gases is responsible for the changes in precipitation intensity at the global scale.more » However, regionally over the Eastern China, the drastic increase in anthropogenic aerosols primarily accounts for the observed light precipitation suppression since the 1950s. Here, compared with aerosol radiative effects, aerosol microphysical effect has a predominant role in determining the historical trends of precipitation intensity in Eastern China.« less

Search for:
All Records
Author / Contributor
0000000259298951

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization