skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Hard x-ray – optical four-wave mixing using a split-and-delay line

    New, hard x-ray free electron lasers (FEL) produce intense femtosecond-to-attosecond pulses at angstrom wavelengths, giving access to the fundamental spatial and temporal scales of matter. These revolutionary light sources open the door to applying the suite of nonlinear, optical spectroscopy methods at hard x-ray photon energies. Nonlinear spectroscopy with hard x-rays can allow for measuring the coherence properties of short wavelength excitations with atomic specificity and for understanding how high energy excitations couple to other degrees of freedom in atomic, molecular or condensed-phase systems. As a step in this direction, here we present hard x-ray, optical four-wave mixing (4WM) measurementsmore » done at 9.8 keV at the split-and-delay line at the x-ray correlation spectroscopy (XCS) hutch of the Linac Coherent Light Source (LCLS). In this work, we create an x-ray transient grating (TG) from a pair of crossing x-ray beams and diffract optical laser pulses at 400 nm from the TG. The key technical advance here is being able to independently vary the delays of the x-ray pulses. Measurements were made in 3 different solid samples: bismuth germinate (BGO), zinc oxide (ZnO) and yttrium aluminum garnet (YAG). The resulting phase-matched, 4WM signal is measured in two different ways: by varying the x-ray, x-ray pulse delay which can reveal both material and light source coherence properties and also by varying the optical laser delay with respect to the x-ray TG to study how the x-ray excitation couples to the optical properties. Although no coherent 4WM signal was seen in these measurements, the absence of this signal gives important information on experimental requirements for detecting this in future work. Also, our laser-delay scans, although not a new measurement, were applied to different materials than in past work and reveal new examples x-ray induced lattice dynamics in solids. This work represents a key step towards extending nonlinear optics and time-resolved spectroscopy into the hard x-ray regime.« less
  2. Time-resolved Flash X-ray Diffraction of Aluminized High Explosives [Slides]

    Al HE generally has lower performance in Detonation Driving Zone but higher overall blast effects than non-aluminized HE. Objective is to develop benchtop system for dynamic x-ray diffraction (XRD) of aluminized HE.
  3. Measuring an ultrashort, ultraviolet pulse in a slowly responding, absorbing medium

    Frequency-resolved optical gating (FROG) is a common technique for measuring ultrashort laser pulses using an instantaneous, nonlinear-optical interaction as a fast time-gate to measure the pulse intensity and phase. But at high frequencies, materials are often absorbing and it is not always possible to find a medium with a fast nonlinear-optical response. Here we show that an ultrashort, ultraviolet (UV) pulse can be measured in a strongly absorbing medium, using the absorption as the nonlinear-optical time-gate. To do this, we build on our recent implementation of FROG, known as induced-grating cross-correlation FROG (IG XFROG), where an unknown, higher-frequency pulse createsmore » a transient grating that is probed with a lower-frequency, more easily detectable reference pulse. We demonstrate this with an 800 nm reference pulse to characterize 400 nm or 267 nm pulses using ZnS as the nonlinear-optical medium, which is absorptive at and below 400 nm. By scanning the delay between the two UV pulses which create the transient grating, we show that the phase-sensitive instantaneous four-wave-mixing contribution to the nonlinear signal field can be detected and separated from the slower, incoherent part of the response. Measuring a spectrally-resolved cross-correlation in this way and then applying a simple model for the response of the medium, we show that a modified generalized projections (GP) phase-retrieval algorithm can be used to extract the pulse amplitude and phase. We test this approach by measuring chirped UV pulses centered at 400 nm and 267 nm. Since interband absorption (or even photoionization) is not strongly wavelength-dependent, we expect IG XFROG to be applicable deeper into the UV.« less
  4. All-optical single-shot complete electric field measurement of extreme ultraviolet free electron laser pulses

    Recent advances in ultrafast extreme ultraviolet (EUV) and x-ray light sources provide direct access to fundamental time and length scales for biology, chemistry, and materials physics. However, such light pulses are challenging to measure due to the need for femtosecond time resolution at difficult-to-detect wavelengths. Also, single-shot measurements are needed because severe pulse-to-pulse fluctuations are common. Here we demonstrate single-shot, complete field measurements by applying a novel version of frequency resolved optical gating. An EUV free electron laser beam creates a transient grating containing the pulse’s electric field information, which is read out with a 400 nm probe pulse. By varyingmore » the time delay between two copies of the EUV pump, rather than between the pump and the probe, we separate the needed coherent wave mixing from the slow incoherent response. Because this approach uses photoionization, it should be applicable from the vacuum ultraviolet to hard x rays.« less
  5. Encoding the complete electric field of an ultraviolet ultrashort laser pulse in a near-infrared nonlinear-optical signal

    We introduce a variation on the cross-correlation frequency-resolved optical gating (XFROG) technique that uses a near-infrared (NIR) nonlinear-optical signal to characterize pulses in the ultraviolet (UV). Using a transient-grating XFROG beam geometry, we create a grating using two copies of the unknown UV pulse and diffract a NIR reference pulse from it. We show that, by varying the delay between the UV pulses creating the grating, the UV pulse intensity-and-phase information can be encoded into a NIR signal. We also implemented a modified generalized-projections phase-retrieval algorithm for retrieving the UV pulses from these spectrograms. We performed proof-of-principle measurements of chirpedmore » pulses and double pulses, all at 400 nm. This approach should be extendable deeper into the UV and potentially even into the extreme UV or x-ray range.« less
  6. Insight into the Chemistry of PETN Under Shock Compression Through Ultrafast Broadband Mid-Infrared Absorption Spectroscopy

    In this study, thin films of pentaerythritol tetranitrate (PETN) were shock compressed using the laser driven shock apparatus at Los Alamos National Laboratory (LANL). Two spectroscopic probes were available to this apparatus: visible white light transient absorption spectroscopy (VIS) from 400 to 700 nm and mid-infrared transient absorption spectroscopy (MIR) from 1150 to 3800 cm–1. Important PETN vibrational modes are the symmetric and antisymmetric NO2 stretches at 1280 and 1650 cm–1, respectively, as well as CH stretches at ~2900 cm–1. Shock strength was varied from approximately 3 to 55 GPa to span from the chemically unreactive regime to the regimemore » in which fast chemical reaction took place on the 250 ps time scale of the measurements. VIS and MIR results suggest irreversible chemistry was induced in PETN at pressures above 30 GPa. At lower shock pressures, the spectroscopy showed minimal changes attributable to pressure induced effects. Under the higher-pressure reactive conditions, the frequency region at the antisymmetric NO2 stretch mode had a significantly increased absorption while the region around the symmetric NO2 stretch did not. No observable increased absorption occurred in the higher frequency regions where CH-, NH-, and OH- bond absorptions would be observed. A broad absorption appeared on the shoulder at the red-edge of the CO2 vibrational band around 2200 cm–1. In addition to the experiments, reactive molecular dynamics were carried out under equivalent shock conditions to correlate the evolution of the infrared spectrum to molecular processes. The simulations show results consistent to experiments up to 30 GPa but suggest that NO and NO2 related features provided the strongest contributions to the shocked infrared changes. Proposed mechanisms for shocked PETN chemistry are analyzed as consistent or inconsistent with the data presented here. Our experimental data suggests C≡O or N2O bond formation, nitrite formation, and absence of significant hydroxyl or amine concentrations in the initial chemistry steps in PETN shocked above 30 GPa.« less
  7. Experimental observations of exploding bridgewire detonator function

    Exploding bridgewire detonators are an industry standard technology used for over 75 years and valued for their precise timing and safety characteristics. Despite widespread use, their functional mechanism remains controversial with both shock and non-shock mechanisms attributed. In this work, we reexamine the bridgewire detonator function with a suite of modern diagnostics and compare these observations with the existing literature. Traditional detonator observations consisted of voltage applied to the bridgewire and time dependent current, integral response measurements such as case motion, and more recently Schlieren imaging of the detonator surface. In this work, we add visible light emission, x-ray transmission,more » proton radiography, and temperature measurements during detonator function in addition to voltage, current, and function times. The addition of in situ observations of light emission, temperature, and density gives us new insight into the mechanisms of explosive bridgewire detonator function. We see a distinct separation in time, location, symmetry, and velocity of bridgewire output and detonation onset. During the time between bridgewire burst and the initiation of detonation, we observe a temperature ramp in the input pellet. In this paper, we present the suite of measurements and comparisons with the literature on integral response measurements.« less
  8. Induced ferroelectric phases in SrTiO3 by a nanocomposite approach

    Inducing new phases in thick films via vertical lattice strain is one of the critical advantages of vertically aligned nanocomposites (VANs). In SrTiO3 (STO), the ground state is ferroelastic, and the ferroelectricity in STO is suppressed by the orthorhombic transition. In this study, we explore whether vertical lattice strain in three-dimensional VANs can be used to induce new ferroelectric phases in SrTiO3:MgO (STO:MgO) VAN thin films. The STO:MgO system incorporates ordered, vertically aligned MgO nanopillars into a STO film matrix. Strong lattice coupling between STO and MgO imposes a large lattice strain in the STO film. We have investigated ferroelectricitymore » in the STO phase, existing up to room temperature, using piezoresponse force microscopy, phase field simulation and second harmonic generation. We also serendipitously discovered the formation of metastable TiO nanocores in MgO nanopillars embedded in the STO film matrix. Our results emphasize the design of new phases via vertical epitaxial strain in VAN thin films.« less
  9. Parallel replica dynamics simulations of reactions in shock compressed liquid benzene

    The study of the long-term evolution of slow chemical reactions is challenging because quantum-based reactive molecular dynamics simulation times are typically limited to hundreds of picoseconds. In this work, the extended Lagrangian Born-Oppenheimer molecular dynamics formalism is used in conjunction with parallel replica dynamics to obtain an accurate tool to describe the long-term chemical dynamics of shock-compressed benzene. Langevin dynamics has been employed at different temperatures to calculate the first reaction times in liquid benzene at pressures and temperatures consistent with its unreacted Hugoniot. Our coupled engine runs for times on the order of nanoseconds (one to two orders ofmore » magnitude longer than traditional techniques) and is capable of detecting reactions that are characterized by rates significantly slower than we could study before. At lower pressures and temperatures, we mainly observe Diels-Alder metastable reactions, whereas at higher pressures and temperatures we observe stable polymerization reactions.« less
  10. A benchtop shock physics laboratory: Ultrafast laser driven shock spectroscopy and interferometry methods

    Common Ti:sapphire chirped pulse amplified laser systems can be readily adapted to be both a generator of adjustable pressure shock waves and a source for multiple probes of the ensuing ultrafast shock dynamics. Here, we detail experimental considerations for optimizing the shock generation, interferometric characterization, and spectroscopic probing of shock dynamics with visible and mid-infrared transient absorption. While we have reported results using these techniques elsewhere, in this work we detail how the spectroscopies are integrated with the shock and interferometry experiment. The interferometric characterization uses information from beams at multiple polarizations and angles of incidence combined with thin filmmore » equations and shock dynamics to determine the shock velocity, particle velocity, and shocked refractive index. Visible transient absorption spectroscopy uses a white light supercontinuum in a reflection geometry, synchronized to the shock wave, to time resolve shock-induced changes in visible absorption such as changes to electronic structure or strongly absorbing products and intermediates due to reaction. Mid-infrared transient absorption spectroscopy uses two color filamentation supercontinuum generation combined with a simple thermal imaging microbolometer spectrometer to enable broadband single shot detection of changes in the vibrational spectra. These methods are reflected here in the study of shock dynamics at stresses from 5 to 30 GPa in organic materials and from a few GPa to >70 GPa in metals with spatial resolution of a few micrometers and temporal resolution of a few picoseconds. This experiment would be possible to replicate in any ultrafast laser laboratory containing a single bench top commercial chirped pulse amplification laser system.« less
...

Search for:
All Records
Author / Contributor
0000000253256451

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization