skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. How machine learning can extend electroanalytical measurements beyond analytical interpretation

    Electroanalytical measurements are routinely used to estimate material properties exhibiting current and voltage signatures. Analysis of such measurements relies on analytical expressions of material properties to describe the experiments. The need for analytical expressions limits the experiments that can be used to measure properties as well as the properties that can be estimated from a given experiment. Such analytical relations are essentially solutions of the physics-based differential equations (with properties as coefficients) describing the material behavior under certain specific conditions. In recent years, a new machine learning-based approach has been gaining popularity wherein the differential equations are numerically solved tomore » interpret the electroanalytical experiments in terms of corresponding material properties. Since the physics-based differential equations are solved, one can additionally estimate underlying fields, e.g., concentration profile, using such an approach. To exemplify the characteristics of such a machine learning assisted interpretation of electroanalytical measurements, we use data from the Hebb–Wagner test on a magnesium spinel intercalation host. In conclusion, as compared to the traditional analytical expression-based interpretation, the emerging approach decreases experimental efforts to characterize relevant material properties as well as provides field information that was previously inaccessible.« less
  2. Effect of Si Content on Extreme Fast Charging Behavior in Silicon–Graphite Composite Anodes

    Commercial Li-ion batteries typically incorporate a small amount of high-capacity silicon (Si)-based materials in the composite graphite-based anode to increase the energy density of the battery. However, very little is known about the effects of Si on the fast-charging behavior of composite anodes. Herein, we examine the effects of the Si/graphite ratio in the composite anode on the fast-charging behavior of full cells. We show that addition of Si increases the rate capability from 1C to 8C and improves the capacity retention in early cycles at 6C due to reduced overpotential in constant current charging cycles. The impacts of Simore » content on fast-charging aging were identified by Post-Test characterization. Despite realizing benefits of available capacity and reduced Li plating at 6C, silicon–electrolyte interactions lead the time-dependent cell performance to fade quickly in the long term. The Post-Test analysis also revealed the thickening of the electrode and nonuniform distribution of electrolyte decomposition products on the Si-containing anodes, as well as the organic-rich solid electrolyte interphase (SEI), which are the factors behind cell degradation. Our study sheds insight on the advantages and disadvantages of Si/graphite composite anodes when they are used in fast-charging applications and guides further research in the area by designing an optimized composition of Si incorporated in a mature graphite matrix.« less
  3. Quantitative Analysis of Origin of Lithium Inventory Loss and Interface Evolution over Extended Fast Charge Aging in Li Ion Batteries

    During the extreme fast charging (XFC) of lithium-ion batteries, lithium inventory loss (LLI) and reaction mechanisms at the anode/electrolyte interface are crucial factors in performance and safety. Determining the causes of LLI and quantifying them remain an essential challenge. We present mechanistic research on the evolution and interactions of aging mechanisms at the anode/electrolyte interface. We used NMC532/graphite pouch cells charged at rates of 1, 6, and 9 C up to 1000 cycles for our investigation. The cell components were characterized after cycling using electrochemical measurements, inductively coupled plasma optical emission spectroscopy, 7Li solid-state nuclear magnetic resonance spectroscopy, and high-performancemore » liquid chromatography/mass spectrometry. The results indicate that cells charged at 1 C exhibit no Li plating, and the increase of SEI thickness is the dominant source of the Li loss. In contrast, Li loss in cells charged at 9 C is related to the formation of the metallic plating layers (42%) the SEI layer (38.1%) and irreversible intercalation into the bulk graphite (19%). XPS analysis suggests that the charging rate has little influence on the evolution of SEI composition. The interactions between competing aging mechanisms were evaluated by a correlation analysis. In conclusion, the quantitative method established in this work provides a comprehensive analytical framework for understanding the synergistic coupling of anodic degradation mechanisms, forecasting SEI failure scenarios, and assessing the XFC lithium-ion battery capacity fade.« less
  4. Cell-Format-Dependent Mechanical Damage in Silicon Anodes

    Strong binders can be counterproductive for silicon anodes. Here, we show that stresses from cycling Si-based electrodes can cause permanent stretching and wrinkling of the current collector. Furthermore, this deformation damages the electrode coating and accelerates cell aging due to the inactivation of Si domains and facilitation of Li plating. Interestingly, we demonstrate that the formation of wrinkles is size-dependent, being present in pouch cells but absent from coin cells. This size-dependent performance decay indicates that, in extreme cases, testing outcomes are highly dependent on scale and that the validation of battery materials may require testing at larger cell formats.
  5. Rational designs to enable 10-min fast charging and long cycle life in lithium-ion batteries

    A daunting challenge in the design of lithium ion batteries (LiBs) is enabling 10-min extreme fast charging (XFC) while achieving appreciable charge acceptance and cycle life. This desirable outcome requires both a comprehensive understanding of LiB operation and aging behavior at different length scales and careful optimization. Lithium plating has been a critical bottleneck because, at XFC rates, it consumes cyclable lithium causing distinct aging and safety concerns even in moderate-loading LiBs. Here, we propose combining multiple solutions, including materials-to-electrode design-to-charging protocols, that are intended to overcome limitations in lithium-ion transport in the electrolyte phase, thus enabling 10-min XFC inmore » LiBs. Some implemented strategies include cathode chemistry, optimized carbon binder domain in the cathode, dual layer anode design, improved separator and advanced electrolyte. Further, innovative charging protocols in moderately loading (~3 mAh/cm2 anode/2.7 mAh/cm2 cathode) single-layer pouch cells are proposed, together with demonstrated 10-min XFC with higher charge acceptance between 87.3 and 92.1% (or 2–2.1 mAh/cm2) for 600 cycles without lithium plating. This methodical study with well-defined cells shows promise in combining multiple solution strategies to enable 10-min XFC, charting a pathway to achieve XFC in higher-loading energy-optimized LiBs.« less
  6. Effect of Salt Concentration on the Interfacial Solvation Structure and Early Stage of Solid–Electrolyte Interphase Formation in Ca(BH4)2/THF for Ca Batteries

    The Ca2+ solvation structure at the electrolyte/electrode interface is of central importance to understand electroreduction stability and solid–electrolyte interphase (SEI) formation for the novel multivalent Ca battery systems. Here, using an exemplar electrolyte, the concentration-dependent solvation structure of Ca(BH4)2-tetrahydrofuran on a gold model electrode has been investigated with various electrolyte concentrations via electrochemical quartz crystal microbalance with dissipation (EQCM-D) and X-ray photoelectron spectroscopy (XPS). For the first time, in situ EQCM-D results prove that the prevalent species adsorbed at the interface is CaBH4+ across all concentrations. As the salt concentration increases, the number of BH4 anions associated with Ca2+ increases,more » and much larger solvated complexes such as CaBH4+·4THF or Ca(BH4)3·4THF form at the interface at high concentrations prior to Ca plating. Different interfacial chemistries lead to the formation of SEIs with different components demonstrated by XPS. High electrolyte concentrations reduce the solvent decomposition and promote the formation of thick, uniform, and inorganic-rich (i.e., CaO) SEI layers, which contribute to improved Ca plating efficiency and current density in electrochemical measurements.« less
  7. Exploring the Promise of Multifunctional “Zintl-Phase-Forming” Electrolytes for Si-Based Full Cells

    Li-M-Si ternary Zintl phases have gained attention recently due to their high structural stability, which can improve the cycling stability compared to a bulk Si electrode. Adding multivalent cation salts (such as Mg2+ and Ca2+) in the electrolyte was proven to be a simple way to form Li-M-Si ternary phases in situ in Si-based Li-ion cells. To explore the promise of Zintl-phaseforming electrolytes, we systematically investigated their application in pouch cells via electrochemical and multiscale postmortem analysis. The introduction of multivalent cations, such as Mg2+, during charging can form LixMySi ternary phases. They can stabilize Si anions and reduce sidemore » reactions with electrolyte, improving the bulk stability. More importantly, Mg2+ and Ca2+ incorporate into interfacial side reactions and generate inorganic-rich solid- electrolyte interphase, thus enhancing the interfacial stability. Therefore, the full cells with Zintl-phase-forming electrolytes achieve higher capacity retentions at the C/3 rate after 100 cycles, compared to a baseline electrolyte. Additionally, strategies for mitigating the electrode-level fractures of Si were evaluated to make the best use of Zintl-phase-forming electrolytes. In conclusion, this work highlights the significance of synergistic impact of multifunctional additives to stabilize both bulk and interface chemistry in high-energy Si anode materials for Li-ion batteries.« less
  8. Unconventional Charge Transport in MgCr2O4 and Implications for Battery Intercalation Hosts

    Ion transport in solid-state cathode materials prescribes a fundamental limit to the rates batteries can operate; therefore, an accurate understanding of ion transport is a critical missing piece to enable new battery technologies, such as magnesium batteries. Based on our conventional understanding of lithium-ion materials, MgCr2O4 is a promising magnesium-ion cathode material given its high capacity, high voltage against an Mg anode, and acceptable computed diffusion barriers. Electrochemical examinations of MgCr2O4, however, reveal significant energetic limitations. Motivated by these disparate observations; herein, we examine long-range ion transport by electrically polarizing dense pellets of MgCr2O4. Our conventional understanding of ion transportmore » in battery cathode materials, e.g., Nernst-Einstein conduction, cannot explain the measured response since it neglects frictional interactions between mobile species and their nonideal free energies. In this work, we propose an extended theory that incorporates these interactions and reduces to the Nernst-Einstein conduction under dilute conditions. This theory describes the measured response, and we report the first study of long-range ion transport behavior in MgCr2O4. We conclusively show that the Mg chemical diffusivity is comparable to lithium-ion electrode materials, whereas the total conductivity is rate-limiting. Given these differences, energy storage in MgCr2O4 is limited by particle-scale voltage drops, unlike lithium-ion particles that are limited by concentration gradients. Future materials design efforts should consider the interspecies interactions described in this extended theory, particularly with respect to multivalent-ion systems and their resultant effects on continuum transport properties.« less
  9. Control of crystal size tailors the electrochemical performance of α-V 2 O 5 as a Mg 2+ intercalation host

    α-V2O5 has been extensively explored as a Mg2+ intercalation host with potential as a battery cathode, offering high theoretical capacities and potentials vs. Mg2+/Mg. However, large voltage hysteresis is observed with Mg insertion and extraction, introducing significant and unacceptable round-trip energy losses with cycling. Conventional interpretations suggest that bulk ion transport of Mg2+ within the cathode particles is the major source of this hysteresis. Herein, we demonstrate that nanosizing α-V2O5 gives a measurable reduction to voltage hysteresis on the first cycle that substantially raises energy efficiency, indicating that mechanical formatting of the α-V2O5 particles contributes to hysteresis. However, no measurablemore » improvement in hysteresis is found in the nanosized α-V2O5 in latter cycles despite the much shorter diffusion lengths, suggesting that other factors aside from Mg transport, such as Mg transfer between the electrolyte and electrode, contribute to this hysteresis. This observation is in sharp contrast to the conventional interpretation of Mg electrochemistry. Therefore, this study uncovers critical fundamental underpinning limiting factors in Mg battery electrochemistry, and constitutes a pivotal step towards a high-voltage, high-capacity electrode material suitable for Mg batteries with high energy density.« less
  10. Energy storage emerging: A perspective from the Joint Center for Energy Storage Research

    Energy storage is an integral part of modern society. A contemporary example is the lithium (Li)-ion battery, which enabled the launch of the personal electronics revolution in 1991 and the first commercial electric vehicles in 2010. Most recently, Li-ion batteries have expanded into the electricity grid to firm variable renewable generation, increasing the efficiency and effectiveness of transmission and distribution. Important applications continue to emerge including decarbonization of heavy-duty vehicles, rail, maritime shipping, and aviation and the growth of renewable electricity and storage on the grid. This perspective compares energy storage needs and priorities in 2010 with those now andmore » those emerging over the next few decades. The diversity of demands for energy storage requires a diversity of purpose-built batteries designed to meet disparate applications. Advances in the frontier of battery research to achieve transformative performance spanning energy and power density, capacity, charge/discharge times, cost,lifetime, andsafety arehighlighted, along with strategic research refinements made by the Joint Center for Energy Storage Research (JCESR) and the broader community to accommodate the changing storage needs and priorities. Innovative experimental tools with higher spatial and temporal resolution, in situ and operando characterization, first-principles simulation, high throughput computation, machine learning, and artificial intelligence work collectively to reveal the origins of the electrochemical phenomena that enable new means of energy storage. This knowledge allows a constructionist approach to materials, chemistries, and architectures, where each atom or molecule plays a prescribed role in realizing batteries with unique performance profiles suitable for emergent demands.« less
...

Search for:
All Records
Author / Contributor
0000000252197517

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization