skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. The Dark Energy Survey Supernova Program: Cosmological Biases from Host Galaxy Mismatch of Type Ia Supernovae

    Abstract Redshift measurements, primarily obtained from host galaxies, are essential for inferring cosmological parameters from type Ia supernovae (SNe Ia). Matching SNe to host galaxies using images is nontrivial, resulting in a subset of SNe with mismatched hosts and thus incorrect redshifts. We evaluate the host galaxy mismatch rate and resulting biases on cosmological parameters from simulations modeled after the Dark Energy Survey 5 Yr (DES-SN5YR) photometric sample. For both DES-SN5YR data and simulations, we employ the directional light radius method for host galaxy matching. In our SN Ia simulations, we find that 1.7% of SNe are matched to themore » wrong host galaxy, with redshift differences between the true and matched hosts of up to 0.6. Using our analysis pipeline, we determine the shift in the dark energy equation of state parameter (Δ w ) due to including SNe with incorrect host galaxy matches. For SN Ia–only simulations, we find Δ w = 0.0013 ± 0.0026 with constraints from the cosmic microwave background. Including core-collapse SNe and peculiar SNe Ia in the simulation, we find that Δ w ranges from 0.0009 to 0.0032, depending on the photometric classifier used. This bias is an order of magnitude smaller than the expected total uncertainty on w from the DES-SN5YR sample of ∼0.03. We conclude that the bias on w from host galaxy mismatch is much smaller than the uncertainties expected from the DES-SN5YR sample, but we encourage further studies to reduce this bias through better host-matching algorithms or selection cuts.« less
  2. A Search for Faint Resolved Galaxies Beyond the Milky Way in DES Year 6: A New Faint, Diffuse Dwarf Satellite of NGC 55

    We report results from a systematic wide-area search for faint dwarf galaxies at heliocentric distances from 0.3 to 2 Mpc using the full 6 yr of data from the Dark Energy Survey (DES). Unlike previous searches over the DES data, this search specifically targeted a field population of faint galaxies located beyond the Milky Way virial radius. We derive our detection efficiency for faint, resolved dwarf galaxies in the Local Volume with a set of synthetic galaxies and expect our search to be complete to M$$V$$ ~ (-7, -10) mag for galaxies at $$D$$ = (0.3, 2.0) Mpc. We findmore » no new field dwarfs in the DES footprint, but we report the discovery of one high-significance candidate dwarf galaxy at a distance of $${2.2}^{+0.05}_{-0.12}$$ Mpc, a potential satellite of the Local Volume galaxy NGC 55, separated by 47' (physical separation as small as 30 kpc). We estimate this dwarf galaxy to have an absolute $$V$$-band magnitude of $${-8.0}^{+0.05}_{-0.3}$$ mag and an azimuthally averaged physical half-light radius of $${2.2}^{+0.5}_{-0.4}$$ kpc, making this one of the lowest surface brightness galaxies ever found with $$μ$$ = - 32.3 mag arcsec-2. This is the largest, most diffuse galaxy known at this luminosity, suggesting possible tidal interactions with its host.« less
  3. High-quality Extragalactic Legacy-field Monitoring (HELM) with DECam

    High-quality Extragalactic Legacy-field Monitoring (HELM) is a long-term observing program that photometrically monitors several well-studied extragalactic legacy fields with the Dark Energy Camera (DECam) imager on the CTIO 4m Blanco telescope. Since Feb 2019, HELM has been monitoring regions within COSMOS, XMM-LSS, CDF-S, S-CVZ, ELAIS-S1, and SDSS Stripe 82 with few-day cadences in the $(u)gri(z)$ bands, over a collective sky area of $$\sim 38$$ deg$${\rm ^2}$$. The main science goal of HELM is to provide high-quality optical light curves for a large sample of active galactic nuclei (AGNs), and to build decades-long time baselines when combining past and future opticalmore » light curves in these legacy fields. These optical images and light curves will facilitate the measurements of AGN reverberation mapping lags, as well as studies of AGN variability and its dependences on accretion properties. In addition, the time-resolved and coadded DECam photometry will enable a broad range of science applications from galaxy evolution to time-domain science. We describe the design and implementation of the program and present the first data release that includes source catalogs and the first $$\sim 3.5$$ years of light curves during 2019A--2022A.« less
  4. Designing an Optimal Kilonova Search Using DECam for Gravitational-wave Events

    We address the problem of optimally identifying all kilonovae detected via gravitational-wave emission in the upcoming LIGO/Virgo/KAGRA observing run, O4, which is expected to be sensitive to a factor of ~7 more binary neutron star (BNS) alerts than previously. Electromagnetic follow-up of all but the brightest of these new events will require >1 m telescopes, for which limited time is available. We present an optimized observing strategy for the DECam during O4. We base our study on simulations of gravitational-wave events expected for O4 and wide-prior kilonova simulations. We derive the detectabilities of events for realistic observing conditions. We optimizemore » our strategy for confirming a kilonova while minimizing telescope time. For a wide range of kilonova parameters, corresponding to a fainter kilonova compared to GW170817/AT 2017gfo, we find that, with this optimal strategy, the discovery probability for electromagnetic counterparts with the DECam is ~80% at the nominal BNS gravitational-wave detection limit for O4 (190 Mpc), which corresponds to an ~30% improvement compared to the strategy adopted during the previous observing run. For more distant events (~330 Mpc), we reach an ~60% probability of detection, a factor of ~2 increase. For a brighter kilonova model dominated by the blue component that reproduces the observations of GW170817/AT 2017gfo, we find that we can reach ~90% probability of detection out to 330 Mpc, representing an increase of ~20%, while also reducing the total telescope time required to follow up events by ~20%.« less
  5. Chemical Analysis of the Brightest Star of the Cetus II Ultrafaint Dwarf Galaxy Candidate*

    We present a detailed chemical abundance analysis of the brightest star in the ultrafaint dwarf (UFD) galaxy candidate Cetus II from high-resolution Magellan/MIKE spectra. For this star, DES J011740.53-173053, abundances or upper limits of 18 elements from carbon to europium are derived. Its chemical abundances generally follow those of other UFD galaxy stars, with a slight enhancement of the α-elements (Mg, Si, and Ca) and low neutron-capture element (Sr, Ba, and Eu) abundances supporting the classification of Cetus II as a likely UFD. The star exhibits lower Sc, Ti, and V abundances than Milky Way (MW) halo stars with similarmore » metallicity. This signature is consistent with yields from a supernova originating from a star with a mass of ~11.2 M. In addition, the star has a potassium abundance of [K/Fe] = 0.81, which is somewhat higher than the K abundances of MW halo stars with similar metallicity, a signature that is also present in a number of UFD galaxies. A comparison including globular clusters and stellar stream stars suggests that high K is a specific characteristic of some UFD galaxy stars and can thus be used to help classify objects as UFD galaxies.« less
  6. Main belt asteroids taxonomical information from dark energy survey data

    While proper orbital elements are currently available for more than 1 million asteroids, taxonomical information is still lagging behind. Surveys like SDSS-MOC4 provided preliminary information for more than 100 000 objects, but many asteroids still lack even a basic taxonomy. In this study, we use Dark Energy Survey (DES) data to provide new information on asteroid physical properties. By cross-correlating the new DES data base with other data bases, we investigate how asteroid taxonomy is reflected in DES data. While the resolution of DES data is not sufficient to distinguish between different asteroid taxonomies within the complexes, except for V-type objects,more » it can provide information on whether an asteroid belongs to the C- or S-complex. Here, machine learning methods optimized through the use of genetic algorithms were used to predict the labels of more than 68 000 asteroids with no prior taxonomic information. Using a high-quality, limited set of asteroids with data on gri slopes and i - z colours, we detected 409 new possible V-type asteroids. Their orbital distribution is highly consistent with that of other known V-type objects.« less
  7. Identification of Galaxy–Galaxy Strong Lens Candidates in the DECam Local Volume Exploration Survey Using Machine Learning

    We perform a search for galaxy–galaxy strong lens systems using a convolutional neural network (CNN) applied to imaging data from the first public data release of the DECam Local Volume Exploration Survey, which contains ~520 million astronomical sources covering ~4000 deg2 of the southern sky to a 5σ point–source depth of g = 24.3, r= 23.9, i = 23.3, and z = 22.8 mag. Following the methodology of similar searches using Dark Energy Camera data, we apply color and magnitude cuts to select a catalog of ~11 million extended astronomical sources. After scoring with our CNN, the highest-scoring 50,000 imagesmore » were visually inspected and assigned a score on a scale from 0 (not a lens) to 3 (very probable lens). We present a list of 581 strong lens candidates, 562 of which are previously unreported. We categorize our candidates using their human-assigned scores, resulting in 55 Grade A candidates, 149 Grade B candidates, and 377 Grade C candidates. We additionally highlight eight potential quadruply lensed quasars from this sample. Due to the location of our search footprint in the northern Galactic cap (b > 10 deg) and southern celestial hemisphere (decl. < 0 deg), our candidate list has little overlap with other existing ground-based searches. Where our search footprint does overlap with other searches, we find a significant number of high-quality candidates that were previously unidentified, indicating a degree of orthogonality in our methodology. We report properties of our candidates including apparent magnitude and Einstein radius estimated from the image separation.« less
  8. Cool Cores in Clusters of Galaxies in the Dark Energy Survey

    Abstract We search for the presence of cool cores in optically selected galaxy clusters from the Dark Energy Survey (DES) and investigate their prevalence as a function of redshift and cluster richness. Clusters were selected from the redMaPPer analysis of three years of DES observations that have archival Chandra X-ray observations, giving a sample of 99 clusters with a redshift range of 0.11 <  z  < 0.87 and a richness range of 25 <  λ  < 207. Using the X-ray data, the core temperature was compared to the outer temperature to identify clusters where the core temperature is a factor of 0.7 or lessmore » than the outer temperature. We found a cool core fraction of approximately 20% with no significant trend in the cool core fraction with either redshift or richness.« less
  9. The Dark Energy Survey Supernova Program: Corrections on Photometry Due to Wavelength-dependent Atmospheric Effects

    Abstract Wavelength-dependent atmospheric effects impact photometric supernova flux measurements for ground-based observations. We present corrections on supernova flux measurements from the Dark Energy Survey Supernova Program’s 5YR sample (DES-SN5YR) for differential chromatic refraction (DCR) and wavelength-dependent seeing, and we show their impact on the cosmological parameters w and Ω m . We use g − i colors of Type Ia supernovae to quantify astrometric offsets caused by DCR and simulate point-spread functions (PSFs) using the GalSIM package to predict the shapes of the PSFs with DCR and wavelength-dependent seeing. We calculate the magnitude corrections and apply them to the magnitudesmore » computed by the DES-SN5YR photometric pipeline. We find that for the DES-SN5YR analysis, not accounting for the astrometric offsets and changes in the PSF shape cause an average bias of +0.2 mmag and −0.3 mmag, respectively, with standard deviations of 0.7 mmag and 2.7 mmag across all DES observing bands (griz) throughout all redshifts. When the DCR and seeing effects are not accounted for, we find that w and Ω m are lower by less than 0.004 ± 0.02 and 0.001 ± 0.01, respectively, with 0.02 and 0.01 being the 1σ statistical uncertainties. Although we find that these biases do not limit the constraints of the DES-SN5YR sample, future surveys with much higher statistics, lower systematics, and especially those that observe in the u band will require these corrections as wavelength-dependent atmospheric effects are larger at shorter wavelengths. We also discuss limitations of our method and how they can be better accounted for in future surveys.« less
  10. Timing the r-process Enrichment of the Ultra-faint Dwarf Galaxy Reticulum II

    The ultra-faint dwarf galaxy Reticulum II (Ret II) exhibits a unique chemical evolution history, with $${72}_{-12}^{+10}$$% of its stars strongly enhanced in r-process elements. We present deep Hubble Space Telescope photometry of Ret II and analyze its star formation history. As in other ultra-faint dwarfs, the color–magnitude diagram is best fit by a model consisting of two bursts of star formation. If we assume that the bursts were instantaneous, then the older burst occurred around the epoch of reionization, forming ~80% of the stars in the galaxy, while the remainder of the stars formed ~3 Gyr later. When the burstsmore » are allowed to have nonzero durations, we obtain slightly better fits. The best-fitting model in this case consists of two bursts beginning before reionization, with approximately half the stars formed in a short (100 Myr) burst and the other half in a more extended period lasting 2.6 Gyr. Considering the full set of viable star formation history models, we find that 28% of the stars formed within 500 ± 200 Myr of the onset of star formation. The combination of the star formation history and the prevalence of r-process-enhanced stars demonstrates that the r-process elements in Ret II must have been synthesized early in its initial star-forming phase. We therefore constrain the delay time between the formation of the first stars in Ret II and the r-process nucleosynthesis to be less than 500 Myr. This measurement rules out an r-process source with a delay time of several Gyr or more, such as GW170817.« less
...

Search for:
All Records
Author / Contributor
0000000245886517

Refine by:
Resource Type
Availability
Publication Date
Author / Contributor
Research Organization